17β-hydroxywortmannin and certain of its analogs are inhibitors of phosphatidylinositol 3-kinase. The compounds are particularly useful for inhibiting phosphatidylinositol 3-kinase in mammals and for treating phosphatidylinositol 3-kinase-dependent conditions, especially neoplasms, in mammals.
|
1. A method of inhibiting phosphatidylinositol 3-kinase in a lysed or whole cell comprising contacting said lysed or whole cell with a compound of formula I ##STR4## wherein R is H or acetoxy;
R1 is C1 -C6 alkyl; R2 is hydrogen, C1 -C6 alkyl, or a group of the formula --COOR3 ; and R3 is H or C1 -C6 alkyl.
7. A method for inhibiting phosphatidylinositol 3-kinase in a mammal comprising administering to said mammal a phosphatidylinositol 3-kinase inhibiting amount of formula I ##STR5## wherein R is H or acetoxy;
R1 is C1 -C6 alkyl; R2 is hydrogen C1 -C6 alkyl, or a group of the formula --COOR3 ; and R3 is H or C1 -C6 alkyl.
12. A method for treating a phosphatidylinositol 3-kinase-dependent condition in a mammal in need of such treatment comprising administering to said mammal a phosphatidylinositol 3-kinase inhibiting amount of a compound of formula I ##STR6## wherein R is H or acetoxy;
R1 is C1 -C6 alkyl; R2 is hydrogen C1 -C6 alkyl, or a group of the formula --COOR3 ; and R3 is H or C1 -C6 alkyl.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
9. The method of
10. The method of
11. The method of
13. The method of
15. The method
16. The method of
17. The method of
19. The method of
20. The method of
|
The present invention relates to a method of inhibiting phosphatidylinesitol 3-kinase (PI 3-kinase) in a lysed or whole cell by contacting the lysed or whole cell with a compound known as 17β-hydroxywortmannin or one of certain 17β-hydroxywortmannin analogs. Such compounds also can be used to selectively inhibit phosphatidylinositol 3-kinase in mammals, particularly humans, and to treat phosphatidylinositol 3-kinase-dependent conditions, particularly neoplasms, in humans.
The metabolism of inositolphospholipids is believed to be an essential part of the receptor-mediated signal transduction pathways in response to various hormones and growth factors see, e.g., Berridge, M. J., et al., Nature, 312: 315-321 (1984); Nishizuka, Y., Science, 225: 1365-1370 (1984)!.
In this signaling pathway, two intracellular second messengers, inositol 1,4,5-trisphosphate and diacylglycerol are generated through the hydrolysis of phosphatidyl 4,5-bisphosphate by phospholipase C. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular Ca2+ stores leading to the activation of Ca2+/calmodulin-dependent kinase; diacylglycerol activates protein kinase C. Following breakdown, phosphatidylinositol 4,5-bisphosphate is rapidly resynthesized by stepwise phosphorylation of phosphatidylinositol by phosphatidylinositol 4-kinase and phosphatidylinositol-4-phosphate kinase. These 2 kinases appear to play important roles in the production of second messengers (see, e.g., Duell, T. F., U.S. Pat. No. 5,001,064 (1991); Shibasaki, F., et al., J, Biol. Chem., 266 (13): 8108-8114 (1991).
More recently, the existence of another phosphatidylinositol kinase has been identified and associated with certain activated tyrosine kinases Courtneidge, S. A., et al., Cell, 50: 1031-1037 (1987); Kaplan, D. R., et al., Cell, 50: 1021-1029 (1987)!. This kinase, identified as phosphatidylinositol 3-kinase has been found to phosphorylate the 3-position of the inositol ring of phosphatidylinositol (PI) to form phosphatidylinositol 3-phosphate (PI-3P) Whitman, D., et al., Nature, 332: 664-646 (1988).
In addition to PI, this enzyme also can phosphorylate phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-hisphosphate to produce phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate (PIP3), respectively Auger, K. R., et al., Cell, 57: 167-175 (1989)!.
PI 3-kinase physically associates with tyrosine kinases such as pp60v-src, polyoma middle T/pp60c-src, platelet-derived growth factor receptor, colony stimulation factor-1 receptor, and insulin receptor (see, e.g., Shibasaki supra), suggesting it has important, but yet undefined roles in signal transduction, mitogenesis, cell transformation, and other cellular events involving protein tyrosine kinases that associate with and activate PI 3-kinase. PI 3-kinase activity also has been identified in association with G-protein receptors in neutrophils and platelets in neutrophils Traynor-Kaplan, A. E., et al., Nature, 334:353-356 (1988); and Mitchell, C. A., et. al., Proc, Nat. Acad. Sci., 87: 9396-9400 (1990)!. However, activation of PI 3-kinasein the neutrophil occurs independently of tyrosine phosphorylation Vlahos, C. J., et. al., FEBS Letters, 309(3):242-248 (1992)!.
PI 3-kinase exists as a tightly associated heterodimer of an 85 kDa regulatory subunit and an 110 kDa catalytic subunit, and is found in cellular complexes with almost all ligand-activated growth factor receptors and oncogene protein tyrosinekinases Cantley, L. C., et al., Cell, 64: 281-302 (1991)!. The 85 kDa regulatory subunit apparently acts as an adaptor protein which allows the 110 kDa catalytic subunit of PI 3-kinase to interact with growth factor receptors and tyrosine phosphorylated proteins Margolis, C., Cell Growth Differ. 3: 73-80 (1992)!.
Although PI 3-kinase appears to be an important enzyme in signal transduction, with particular implications relative to mitogenesis and the malignant transformation of cells, only a limited number of compounds have been identified as having inhibitory activity against PI 3-kinase see, e.g., Matter, W. F., et al., Biochem. Biophys. Res. Commun., 186: 624-631 (1992)!. Contrary to the selective PI 3-kinase activity of the compounds used in the methods of the present invention, the bioflavinoid compounds used by Matter, et al., particularly quercetin and certain analogs thereof, inhibit PI 3-kinase and other kinases such as protein kinase C and PI 4-kinase (Matter, et al., supra).
Thus, the present invention provides a method for inhibiting phosphatidylinositol 3-kinase in a lysed or whole cell with 17β-hydroxywortmannin or one of certain 17β-hydroxywortmannin analogs.
The present invention also provides a method for inhibiting phosphatidylinositol 3-kinase in mammals, particularly humans, using 17β-chydroxywortmannin or one of certain analogs thereof.
Furthermore, the present invention provides a method for treating phosphatidylinositol 3-kinase-dependent conditions, particularly neoplasms, in mammals.
The present invention provides a method for inhibiting phosphatidylinositol 3-kinase in a lysed or whole cell comprising contacting a lysed or whole cell with a compound of formula I ##STR1## wherein R is H or acetoxy;
R1 is C1 -C6 alkyl;
R2 is hydrogen, C1 -C6 alkyl, or a group of the formula --COOR3 ; and
R3 is H or C1 -C6 alkyl.
The present invention also provides a method for inhibiting phosphatidylinositol 3-kinase in a mammal comprising administering to said mammal a phosphatidylinositol 3-kinase inhibiting amount of a compound of formula I.
The present invention further provides a method for treating a phosphatidylinositol 3-kinase-dependent condition in a mammal in need of such treatment comprising administering to said mammal a phosphatidylinositol 3-kinase inhibiting amount of a formula I compound.
As mentioned above, the present invention relates to a method for inhibiting phosphatidylinositol 3-kinase in a lysed or whole cell comprising contacting said lysed or whole cell with a compound of formula I ##STR2## wherein R is H or acetoxy;
R1 is C1 -C6 alkyl;
R2 is hydrogen, C1 -C6 alkyl, or a group of the formula --COOR3 ; and
R3 is H or C1 -C6 alkyl.
The compounds of formula I generally are known in the art, and are derived from wortmannin (formula II in which R is acetoxy) or 11-desacetoxy wortmannin (formula II in which R is H). ##STR3##
The biosynthetic production of wortmannin is well known in the art. Typically, it is produced by the fermentation of any one of a number of previously disclosed microorganisms such as Talaromyces wortmannin Nakanishi, et. al., J. Biol. Chem., 267 (4): 2157-2163 (1992)!; and Penicillium worgmannii, Myrothecium roridium, and Fusarium oxysporum Abbas, et al., Appl. Environ. Microbiol,, 54(5): 1267-1274 (1988)!. Following fermentation, wortmannin is extracted and purified via known methods.
Preferably, wortmannin is microbially synthesized and isolated in substantially pure form from a fermentation culture of Penicillium duclaaxii identified as A24603.1.
Culture A24603.1 has been deposited in compliance with the Budapest Treaty, and made part of the stock culture collection of the Midwest Area Northern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria. Ill., 61604, from which it has been assigned the accession number NRRL 21122.
The permanency of the deposit of this culture at the Midwest Area Northern Regional Research Center at Peoria, Ill., and ready accessibility thereto by the public is afforded throughout the effective life of the patent in the event the patent is granted. Access to the culture is available during pendency of the application under 37 C.F.R. §1.14 and 35 U.S.C. §112. All restrictions on the availability to the public of the culture will be irrevocably removed upon granting of the patent.
Wortmannin is produced by culturing the above-referenced A24603.1 strain under submerged aerobic conditions in a suitable culture medium until a recoverable amount of wortmannin is produced. Wortmannin can be recovered using various isolation and purification procedures understood in the art.
The medium used to grow the A24603.1 culture can be any one of a number of media. For economy in production, optimal yield, and ease of product isolation, however, preferred carbon sources in large-scale fermentation are glucose and soluble starch such as corn starch. Maltose, ribose, xylose, fructose, galactose, mannose, mannitol, potato dextrin, methyl oleate, oils such as soybean oil and the like can also be used.
Preferred nitrogen sources are enzyme-hydrolyzed casein and cottonseed flour, although pepsinized milk, digested soybean meal, fish meal, corn steep liquor, yeast extract, acid-hydrolyzed casein, beef extract, and the like can also be used.
Among the nutrient inorganic salts which can be incorporated in the culture media are the customary soluble salts capable of yielding calcium, magnesium, sodium, ammonium, chloride, carbonate, sulfate, nitrate, zinc, and like ions.
Essential trace elements necessary for the growth and development of the organism also should be included in the culture medium. Such trace elements commonly occur as impurities in other substituents of the medium in amounts sufficient to meet the growth requirements on the organism.
For production of substantial quantities of wortmannin, submerged aerobic fermentation in stirred bioreactors is preferred. Small quantities of wortmannin may be obtained by shake-flask culture. Because of the time-lag in production commonly associated with inoculation of large bioreactors with the spore form of the organism, it is preferable to use vegetative inoculum. The vegetative inoculum is prepared by inoculating a small volume of culture medium with the spore form or mycelial fragments of the organism to obtain a fresh, actively growing culture of the organism. The vegetative inoculum medium can be the same as that used for larger fermentations, but other media are also suitable.
Wortmannin is produced by the A24603.1 organism when grown at temperatures between about 23° and 29°C Optimum temperature for wortmannin production appears to be about 25°C
As is customary in submerged aerobic culture processes, sterile air is blown into the vessels from the bottom while the medium is stirred with conventional turbine impellors. In general, the aeration rate and agitation rate should be sufficient to maintain a level of dissolved oxygen of at least 45% of air saturation with an internal vessel pressure of about 5 atmospheres.
Production of wortmannin can be observed during the fermentation by testing PI 3-kinase extracts from the broth. A PI 3-kinase assay system described infra is a useful assay for this purpose.
Following its production, wortmannin can be recovered from the fermentation medium by methods used in the art. The wortmannin produced during fermentation of the A24603.1 organism occurs mainly in the broth.
Typically, wortmannin can be recovered from the biomass by a variety of techniques. A preferred technique involves filtering whole fermentation broth with a ceramic filter. The filtrate is eluted with an organic solvent such as ethylacetate and concentrated. The concentrate is suspended in alcohol until crystallization occurs and the solution is filtered, washed and dried. For confirmation, the crystalline material is dissolved in an organic solvent and chromatographed on a reverse-phase silica gel absorbent (C8 or C18). Fractions are eluted in an organic-aqueous buffer such as 60% acetonitrile.
From wortmannini 17β-hydroxywortmannin, a compound of formula I is which R is acetoxy, R1 is methyl and R2 is H, can be prepared by using procedures known in the art. Preferrably, wortmannin is reduced by adding a reducing agent, particularly a metal hydride such as diisobutylaluminum hydride, to a solution of wortmannin in a suitable solvent. Suitable solvents include any solvent or mixture of solvents which will remain inert under reduction conditions.
In addition, 17β-hydroxywortmannin can be further alkylated at the R1 position via removal of the R1 methyl group and realkylation and/or it can be alkylated at the R2 position (wherein R1 and/or R2 is C1 -C6 alkyl). 17β-Hydroxywortmannin also can be carbonated at the R2 position wherein R2 is a group of the formula --COOR3 and R3 is H or C1 -C6 alkyl. Each of these processes, dealkylation of the R1 methyl group, realkylation of the R1 position, alkylation of the R2 position, and carbonation of the R2 position can be accomplished using procedures which are well known to one of ordinary skill in the organic chemical art. For an example of preparation of steroidal carbonates, see, e.g., Ott, A. C., J. Am. Chem. Soc., 74:1239 (1952).
The term "C1 -C6 alkyl" refers to the straight or branched aliphatic chains of 1 to 6 carbon atoms including, for example, methyl, ethyl, prepyl, isopropyl, butyl, n-butyl, pentyl, isopentyl, hexyl, n-hexyl, and the like.
11-desacetoxywoctmannin (formula II in which R is H) also is known in the art as are methods for its preparation. Generally, this compound can be biosynthetically produced by fermenting a culture of Penicillium funiculosum Thom see, e.g., Baggolini, et al., Exp, Cell Res., 169: 408-418 (1987)!; but, preferably, is chemically derived from wortmannin by the method disclosed by Haeflinger, et al., Helv. Chem. Acta, 56(8): 2901-2904 (1973).
11-desacetoxy-17β-hydroxywortmannin is prepared by reducing 11-desacetoxy wortmannin via the above-described procedure for reducing wortmannin, or more particularly, as described below in the examples. 11-desacetoxy-17β-hydroxywortmannin also can be alkylated or carbonated as described above.
In the present method, compounds of formula I are effective for selectively inhibiting phosphatidylinositol 3-kanase in a lysed or whole cell. This method can be carried out in vitro or in vivo and can be utilized as a pharmacological tool for studying, for example, the involvement of PI 3-kinase in mitogenesis, cellular proliferation, or cellular differentiation. The compounds of formula I also can be radiolabeled (e.g., tritiated), to provide for easier detection of such compounds in cells.
When a compound of formula I is used for this method, such a compound is dissolved in an organic solvent such as dimethylsulfoxide (DMSO), and diluted with HEPES buffer (pH 7.5, containing 15 mM of MgCl2 and 1 mM of EGTA), to the desired concentration. The resulting preparation is then placed in contact with purified PI 3-kinase or a cell according to methods well known in the art.
Another embodiment of the present invention provides a method for inhibiting phosphatidylinositol 3-kinase in a mammal, particularly humans, comprising administering to said mammals a phosphatidylinositol 3-kinase inhibiting amount of a compound of formula I.
A preferred embodiment of the present invention includes a method for treating a phosphatidylinositol 3-kinase-dependent condition in a mammal comprising administering to said mammal a phosphatidylinositol 3-kinase inhibiting amount of a compound of formula I. PI 3-kinase-dependent conditions include biochemical processes relevant to pain, diabetes, inflammation, platelet aggregation, vascular diseases such as atherosclerosis, restenosis, and the like, and, particularly, abnormal cell growth as found in neoplasms.
Thus, an especially preferred embodiment of the present invention includes a method of treating phosphatidylinositol 3-kinase-dependent neoplasms, particularly various lymphosarcomas, with a compound of formula I. Other PI 3-kinase-dependent neoplasms include, for example, adenocarcinoma of the female breast, colon cancer, epidermid cancers of the head and neck, leukemia, melanoma, ovarian carcinoma, plasma cell myeloma, and squamous or small-cell lung cancer.
For therapeutic treatment of the specified indications, a compound of formula I may be administered as such, or can be compounded and formulated into pharmaceutical compositions in unit dosage form for parenteral, transdermal, rectal, nasal or intravenous administration or, preferably, oral administration. Such pharmaceutical compositions are prepared in a manner well known in the art and comprise at least one active formula I compound associated with a pharmaceutically carrier. The term "active compound", as used throughout this specification refers to at least one formula I compound.
In such a composition, the active compound is known as "active ingredients". In making the compositions, the active ingredient usually will be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semisolid, or liquid material which acts as a vehicle, excipient of medium for the active ingredient. Thus, the composition can, be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, emulsions, solutions, syrups, suspensions, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
Some examples of suitable carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate alginates, calcium salicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, tragacanth, gelatin, syrup, methyl cellulose, methyl- and propylhydroxybenzoates, talc, magnesium stearate, water, and mineral oil. The formulations can additionally include lubricating agents, wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavoring agents. The compositions may be formulated so as to provide quick, sustained, or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.
For oral administration, a compound can be admixed with carriers and diluents, molded into tablets, or enclosed in gelatin capsules. The mixtures can alternatively be dissolved in liquids such as 10% aqueous glucose solution, isotonic saline, sterile water, or the like, and administered intravenously or by injection.
The compositions preferably are formulated in a unit dosage form, each dosage containing from about 1 to about 500 mg and, more frequently, from about 5 to about 300 mg of the active ingredient. The term "unit dosage form" refers to physically discreet units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with the required pharmaceutically acceptable carrier. By "pharmaceutically acceptable", it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
The following formulation examples are illustrative only and are not intended to limit the scope of the invention in any way. The meaning of the term "active ingredient" is as defined above.
Hard gelatin capsules are prepared using the following ingredients:
______________________________________ |
Quantity |
(mg/capsule) |
______________________________________ |
Active ingredient 250 |
Starch, dried 200 |
Magnesium stearate 10 |
Total 460 mg |
______________________________________ |
A tablet is prepared using the ingredients below:
______________________________________ |
Quantity |
(ma/capsule) |
______________________________________ |
Active ingredient 250 |
Cellulose, microcrystalline |
400 |
Silicon dioxide, fumed |
10 |
Stearic acid 5 |
Total 665 mg |
______________________________________ |
The components are blended and compressed to form tablets each weighing 665 mg.
An aerosol solution is prepared containing the following components:
______________________________________ |
Percent |
______________________________________ |
Active ingredient 0.25 |
Ethanol 25.75 |
Propellant 22 70.00 |
(Chlorodifluoromethane) |
Total 100.00 |
______________________________________ |
The active compound is mixed with ethanol and the mixture added to a portion of the propellant 22, cooled to -30°C and transferred to a filling device. The required amount is then fed to a stainless steel container and diluted with the remainder of the propellant. The valve units are then fitted to the container.
Tablets, each containing 60 mg of active ingredient, are made as follows:
______________________________________ |
Quantity |
(mg/tablet) |
______________________________________ |
Active ingredient 60 mg |
Starch 45 mg |
Microcrystalline cellulose |
35 mg |
Polyvinylpyrrolidone 4 mg |
(as 10% solution in water) |
Sodium carboxymethyl starch |
4.5 mg |
Magnesium stearate 0.5 mg |
Talc 1 mg |
Total 150 mg |
______________________________________ |
The active ingredient, starch and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The aqueous solution containing polyvinylpyrrolidone is mixed with the resultant powder, and the mixture then is passed through a No. 14 mesh U.S. sieve. The granules so produced3are dried at 50°C and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate and talc, previously passed through a No. 60 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.
Capsules, each containing 80 mg of active ingredient, are made as follows:
______________________________________ |
Quantity |
(mg/capsule) |
______________________________________ |
Active ingredient 80 mg |
Starch 59 mg |
Microcrystalline cellulose |
59 mg |
Magnesium stearate 2 mg |
Total 200 mg |
______________________________________ |
The active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 45 mesh U.S. sieve, and filled into hard gelatin capsules in 200 mg quantities.
Suppositories, each containing 225 mg of active ingredient, are made as follows:
______________________________________ |
Quantity |
(mg/unit) |
______________________________________ |
Active ingredient |
225 mg |
Saturated fatty acid |
2,000 mg |
glycerides |
Total 2,225 mg |
______________________________________ |
The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2 g capacity and allowed to cool.
Suspensions, each containing 50 mg of active ingredient per 5 ml dose, are made as follows:
______________________________________ |
Quantity |
______________________________________ |
Active ingredient(s) 50 mg |
Sodium carboxymethyl cellulose |
50 mg |
Syrup 1.25 mL |
Benzoic acid solution 0.10 mL |
Flavor q.v. |
Color q.v. |
Purified water to total 5 mL |
______________________________________ |
The active ingredient is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethyl cellulose and syrup to form a smooth paste. The benzoic acid solution, flavor and color are diluted with a portion of the water and added, with stirring. Sufficient water is then added to produce the required volume.
An intravenous formulation may be prepared as follows:
______________________________________ |
Quantity |
______________________________________ |
Active ingredient 100 mg |
Isotonic saline 1,000 mL |
______________________________________ |
Compounds of formula I are effective against PI 3-kinase and PI 3-kinase-dependent conditions over a wide dosage range. For example, daily dosages will normally fall within the range of about 0.1 mg/kg to about 50 mg/kg of body weight. In the treatment of adult humans, the dosage range from about 5mg/kg to about 25 mg/kg, in single or divided doses, is preferred. However, it will be understood that the amount of the compound actually administered will be determined by a physician in light of the relevant circumstances including the relative severity of a disease state, the choice of compound to be administered, the age, weight, and response of the individual patient, and the chosen route of administration. Therefore, the above dosage ranges are not intended to limit the scope of this invention in any way.
Compounds of formula I have demonstrated selective activity against PI 3-kinase. The following is a description of the test systems used to demonstrate this activity.
PI 3-kinase may be prepared by multiple methods. In one method, PI 3-kinase was prepared from confluent Swiss 3T3 cells obtained from the American Type Culture Collection, Rockville, Md. Prior to purification of PI 3-kinase, cells were maintained in bulk culture in Dulbecco's Modified Eagles Medium (DMEM; Sigma, St. Louis, Mo.) supplemented with 10% fetal calf serum and were passaged using 0.25% trypsin and 0.02% ethylenediaminetetracetic acid (EDTA). 24×106 cells on four, 100 mm culture plates were washed with 10 mL Hanks Balanced Salt Solution (HBSS; Sigma) pH 7.4, and the cells were left in DMEM without fetal calf serum for 1 hour before being stimulated for 15 minutes with 100 ng/mL of the recombinant human BB homodimer of platelet derived growth factor (PDGF; Genzyme, Cambridge, Mass.). The medium was aspirated and the cells washed with 10 mL of HBSS before being lysed with 3 mL of 137 mM NaCl, 20 mM of Tris (pH 8.0) containing 1 mM of MgCl2, 10% of glycerol, 1% of Triton X-100 (Rohm and Haas, Philadelphia, Pa.), 2 μg/mL of leupeptin, 2 μg/mL of aprotonin, 1 mM or phenylmethylsulfonyl fluoride (PMSF), and 1 mM of sodium orthovanadate. The cells were scraped free from the surface of the dish and centrifuged at 6,000×g for 10 minutes. The supernatant was mixed with 50 μL of washed IgG2bk antiphosphotyrosine antibody beads (Upstate Biotechnology Inc., Lake Placid, N.Y.) in 1.5 mL tubes. The tubes were capped and rotated for 2 hours at 4°C and the beads were twice washed with 1 mL of HBSS containing 2 μg/mL of leupeptin, 4 μg/mL of aprotonin, 1 mM of PMSF, 200 μM of adenosine, and 1 mM of sodium orthovanadate. The tyrosine phosphorylated PI 3-kinase was eluted from the beads with 200 μL/tube of 10 mM Tris (pH 7.5), 2M of NaCl, mM of EDTA, 200 μM of adenosine, and 10 mM of sodium phenylphosphate.
In another, preferred, method, PI 3-kinase was prepared from bovine brain. Two bovine brains (wet weight about 900 g) were obtained from a local slaughterhouse within minutes of slaughter, packed on ice, and homogenized within one hour. Brains were trimmed of excess fat and blood vessels and then homogenized using a Tekmar Tissuemizer (Cincinnati, Ohio) at 4°C in 20 mM of Tris(pH 8.3) containing 250 mM of sucrose, 6 mM of β-mercaptoethanol, 1 μg/ml of leupeptin, 1 μg/ml of pepstatin A, 0.4 mM of PMSF, and 1 mM of MgCl2.
Following centrifugation for 60 minutes at 10,000×g, the pH of the supernatant (about 1200 mL) was lowered to 5.75 using dropwise addition of 1M acetic acid at 4°C After stirring for an additional 15 minutes at 4°C, the solution was centrifuged for 60 minutes at 13,500×g. The supernatant was discarded. Pellets were resuspended in Buffer A (20 mM of Tris, pH 8.3, containing 6 mM of β-mercaptoethanol, 0.1 mM of ethylene glycol-bis(β-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), 1 μg/mL of leupeptin, 1 μg/mL of pepstatin A, and 1 mM of MgCl2), and loaded onto a Fast Flow Q Sepharose column (300 ml) at a flow rate of 5 mL/min at 4° C. After loading, the column was washed with 3 volumes of Buffer A containing 0.1M of KCl and the kinase was then eluted with a linear gradient of Buffer A/0.1M KCl to Buffer A/0.6 M KCl at 3 mL/min over 7 volumes.
Fractions were assayed for PI 3-kinase activity using 10 μL of the fraction and phosphatidylinositol as substrate as described below. PI 4-kinase eluted in the breakthrough; PI 3-kinase eluted at approximately 0.3M of KCl. The PI 3-kinase pool was subjected to a 40% ammonium sulfate precipitation. Following centrifugation (60 minutes at 13,500×g), pellets were resuspended in Buffer B (10 mM of potassium phosphate, pH 7.4, containing 6 mM of β-mercaptoethanol, 1 μg/mL of leupeptin, 1 μg/mL of pepstatin A, and 1 mM of MgCl2), and loaded onto a 50 mL hydroxylapatite column (Calbiochem, Inc., La Jolla, Calif.) at 2.5 mL/minute. The column was washed with 150 mL Buffer B until the A280 baseline reached zero, and the kinase was then eluted with a linear gradient of 10-320 mM of KH2 PO4 at 1 mL/minute over 450 minutes.
Active fractions were pooled and then loaded at 3 mL/minute onto a MonoS column (8 ml) (Pharmacia, Inc., Piscataway, N.J.) equilibrated in Buffer C (50 mM of MES, pH 6.2, containing 6 mM of β-mercaptoethanol, 0.1 mM of EGTA, 1 μg/mL of leupeptin, 1 μg/ mL of pepstatin A, and 1 mM of MgCl2). PI 3-kinase was eluted with a linear gradient of 0-0.4M KCl in Buffer C over 120 minutes. In assaying fractions, two pools of PI 3-kinase activity were routinely found. The bulk of the activity was found in the flowthrough, while about 20% of the activity was eluted in the gradient. Although the material in the gradient had considerable PI 4-kinase activity, essentially no PI 4-kinase activity was associated with the PI 3-kinase eluted in the flow-through. Therefore, the MonoS flow-through was concentrated by tangential flow filtration on a Mini-Ultrasette Omega 50K membrane (Filtron, Inc., Northborough, Mass.) and diluted in Buffer C to lower the conductivity. The material was then reloaded onto the MonoS column using the above conditions. The PI 3-kinase bound to the column during the wash and was eluted in the gradient. Two pools of phosphatidylinositol kinase activity were obtained in the gradient; each was assayed for PI 3-kinase and PI 4-kinase activity. Pool I was found to contain 95% PI 3-kinase activity (and 5% PI 4-kinase) while Pool II contained predominantly PI 4-kinase activity.
Pool I from the MonoS column was diluted with Buffer A and chromatographed on MonoQ (1 ml) and eluted with a gradient of 0-0.4M KCl in Buffer A. The final pool was assayed for PI 3-kinase and PI 4-kinase activity. The final product was found to contain greater than 99% PI 3-kinase activity.
PI 3-kinase activity was measured as previously described by Matter, W. F., et al., Biochemical and Biophysical Research Communications, 186: 624-631 (1992). Inhibitor candidates were initially dissolved in DMSO and then diluted 10-fold with 50 mM of HEPES buffer, pH 7.5, containing 15 mM of MgCl2 and 1 mM of EGTA. Ten microliters of this solution were incubated with purified bovine brain PI 3-kinase (9 BL) and phosphatidylinositol (5 μL of a 2 mg/mL stock solution in 50 mM of HEPES buffer, pH 7.5, containing 1 mM of EGTA). The final reaction mixture contained 0.1-5 ng/mL of inhibitor and 3% of DMSO (v:v). This concentration of DMSO had no effect on PI 3-kinase activity; control reaction mixtures contained 3% of DMSO (v:v) without inhibitor. Reactants were preincubated 10 minutes at ambient temperature and then the enzyme reaction was started upon addition of 1 μL γ-32 P!ATP (2 mCi/mL, 500 μM of stock solution; 0.08 mCi/mL, 20 82 M of final concentration; Dupont New England Nuclear, Boston, Mass.). The reaction was allowed to proceed for 10 minutes at ambient temperature with frequent mixing, after which time the reaction was quenched by addition of 40 μL of 1N HCl. Lipids were extracted with addition of 80 μL CHCl3 :MeOH (1:1, v:v). The samples Were mixed and centrifuged, and the lower organic phase was applied to a silica gel TLC plate (EM Science, Gibbstown, N.J.), which was developed in CHCl3 :MeOH:H2 O:NH4 OH (45:35:8.5:1.5, v:v). Plates were dried, and the kinase reaction visualized by autoradiography. The phosphatidylinositol 3-monophosphate region was scraped from the plate and quantitated using liquid scintillation spectroscopy with ReadyProtein (Beckman Instruments, Inc., Fullerton, Calif.) used as the scintillation cocktail. The level of inhibition for wortmannin and analogs was determined as the percentage of 32 P!-counts per minute compared to controls.
Alternatively, products of the PI 3-kinase reaction were confirmed by HPLC as discussed by Whitman, M., Nature, 332: 644-646 (1988). Phospholipids were deacylated in methylamine reagent and separated using a Whatman Partisphere SAX anion exchange column as previously described by Auger, K. R., Cell, 57: 167-175 (t989). A Radiomatic Model A-140 Flo-One/Beta on-line radioactivity detector was used to monitor the deacylated 32 P!-enzyme products; deacylated 3 H!PI 4-monophosphate was added as an internal standard.
When tested on bovine brain purified PI 3-kinase, 17β-hydroxywortmannin, an exceptional IC50 of 0.2 ng/ml (0.46 nM) was recorded. In addition, 17β-hydroxywortmannin has no effect on PI 4-kinase. Thus, the compounds used in the methods of the present invention, particularly 17β-dihydrowartmannin, are potent, highly selective inhibitors of PI 3-kinase.
In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood, however, that these examples are only for illustrative purposes and are not to be construed as limiting the scope of this invention in any manner.
PAC Fermentation of Culture A24603.1A. Shake-Flask
The culture A24603.1, either as a lyophilized pellet or as a suspension maintained in liquid nitrogen, is used to inoculate a vegetative medium having the following composition
______________________________________ |
Vegetative Medium |
Ingredient Amount (g/L) |
______________________________________ |
Glucose 10.0 |
Glycerol 10.0 |
Cottonseed Floura |
25.0 |
______________________________________ |
Unadjusted pH = 6.3; no adjustment |
a PROFLO Flour (Traders Protein, Memphis, TN). |
The inoculated vegatetive medium was incubated in a 250 mL wide-mouth Erlenmeyer flask at 25°C for about 72 hours on a shaker orbiting in a two-inch (5.08 cm) circle at 250 rpm.
Tank Fermentation of Culture A24603.1
In order to provide a larger volume of inoculum, 10 mL of incubated shake-flask medium, prepared as described in Section A, was used to inoculate 400 mL of a second-stage vegetative medium having the same composition as described above. This second-stage medium was incubated in a 2-L wide-mouth Erlenmeyer flask at 25°C for about 23 hours on a shaker orbiting in a two-inch (5.08 cm) circle at 250 rpm.
This second-stage medium (400 mL) was used to inoculate 115 L of sterile production medium having the following composition.
______________________________________ |
Production Medium |
Ingredient Amount (g/L) |
______________________________________ |
Glucose 25.0 |
Corn Starch 10.0 |
Lexein 10.0 |
Enzyme-hydrolyzed casein |
4.0 |
Blackstrap molasses |
5.0 |
MgSO4 (anhydrous) |
5.0 |
CaCO3 2.0 |
Deionized H2 O |
q.s. to 115 L |
______________________________________ |
Unadjusted pH = 6.8; no adjustment. |
Antifoam agent added: SAG 471b (0.2 gm/L). |
a NZ Amine A (Sheffield Chemical Co., Norwich, NY). |
b SAG 471 (Union Carbide, Sistersville, WV). |
The inoculated production medium was allowed to ferment in a 115-L stirred fermentation tank for 4-5 days at a temperature of about 25°C A dissolved oxygen level of about 45% of air saturation was maintained, as was a low rpm (180-330) in the stirred vessel.
PAC Isolation and Purification of WortmanninFermentation broth from Example 1 was filtered through a ceramic filter (Membralox Systems, Illinois Water Treatment, Rockford, Ill.) to yield 175 L of filtrate containing wortmannin. The pH of the filtrate was adjusted to about 3.9 with 5N HCl. The filtrate was then eluted three times with one-half volumes of ethyl acetate to give a combined volume of 207 L which was concentrated to 6 L in Vacuo.
The 6 L of ethyl acetate concentrate was further concentrated in vacuo to form a dark brown viscous oil to which 500 mL of methanol was added. The mixture was swirled until the resulting crystallization was complete, filtered, briefly washed with cold methanol and dried in vacuo to give 20.4 g of wortmannin.
The methanol supernatant was reconcentrated in vacuo to form a viscous oil, dissolved in 180 mL of chloroform and applied to a 12×20 cm column of Woelm Grade 62 silica in chloroform. 5.0 L of chloroform wash was concentrated in vacuo to form a brown oil which was then dissolved in 250 mL of warm methanol. The resulting crystals were collected after 18 hours, via filtration, giving 4.2 g of wortmannin. The crystallization procedure was repeated on the remaining supernatant, yielding an additional 1.9 g of wortmannin. The identity of wortmannin was confirmed by HPLC.
PAC 17β-hydroxywortmanninTo a solution of wortmannin (100 mg) stirring in THF at -78°C was added diisobutylaluminum hydride (0.4 mL of a 1.0M solution in toluene, 0.4 mmol). After 0.5 hour, the reaction was quenched with saturated aqueous NaHCO3. The mixture was then warmed to room temperature and extracted with CH2 Cl2. The combined organic extracts were washed with brine and dried (MgSO4). The crude material was purified by radial chromatography (SiO2, 4 mm, 9:1 EtOAc/Hexanes) to give a 70% yield of 17β-hydroxywortmannin as an off-white powder.
1 H NMR (300 MHz, CDCl3) 8.22 (S, 1H), 6.10 (m, 1H), 4.76 (dd, 1H), 3.88 (5, 1H), 3.44 (dd, 1H), 3.20 (s, 3H), 2.95 (1/2 ABq. 1H), 2.75 (m, 1H), 2.65 (1/2 ABq, 1H), 2.52 (m, H), 2.10-2.30 (m, 4H), 1.4-1.7 (m), 0.85 (2, 3H), FD MS M+ 431, IR (Cell, CDCl3), 1751, 1680 cm-1).
PAC 11-Desacetoxy- 17β-hydroxywortmanninTo a solution of 11-desacetoxywortmannin prepared via the method of Haeflinger, W.; Hauser, D., Helv. Chim. Acta, 56, 2901, (1973)! stirring in THF at -78°C was added diisobutylaluminum hydride (0.1 mL of a 1.0M solution in toluene). After 1 hour, the reaction was quenched with saturated aqueous NaHCO3. The mixture was then warmed to room temperature and extracted with CH2 Cl2. The combined organic extracts were washed with brine and dried (MgSO4). The crude material was purified by radial chromatography (SiO2, 1 mm, 9:1 EtOAc/Hexanes) to give a 45% yield of the titled product as a tan powder.
1 H-NMR (300 MHz, CDCl3) 8.19 (s, 1H), 4.81 (5, 1H), 3.80 (t, 1H), 3.15 (s, 3H), 1.7 (s, 3H), 0.7 (s, 3H). FAB MS (M+ H)+ 373.3.
Dodge, Jeffrey A., Bonjouklian, Rosanne, Vlahos, Chris J.
Patent | Priority | Assignee | Title |
10047345, | Feb 13 2012 | Gamida-Cell Ltd. | Culturing of mesenchymal stem cells with FGF4 and nicotinamide |
10160761, | Sep 14 2015 | TWELVE THERAPEUTICS, INC | Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same |
10253047, | Oct 03 2014 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
10329299, | Oct 04 2013 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
10550122, | Jan 10 2011 | Infinity Pharmaceuticals, Inc. | Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one and methods of use thereof |
10675286, | Mar 19 2014 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
10759806, | Mar 17 2016 | TWELVE THERAPEUTICS, INC | Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors |
10919914, | Jun 08 2016 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
10941162, | Oct 03 2014 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
11110096, | Apr 16 2014 | Infinity Pharmaceuticals, Inc. | Combination therapies |
11147818, | Jun 24 2016 | INFINITY PHARMACEUTICALS, INC | Combination therapies |
11247995, | Sep 14 2015 | TWELVE THERAPEUTICS, INC | Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same |
11312718, | Jan 10 2011 | Infinity Pharmaceuticals, Inc. | Formulations of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one |
11433065, | Jan 04 2008 | Intellikine LLC | Certain chemical entities, compositions and methods |
11541059, | Mar 19 2014 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
11939333, | Sep 14 2015 | TWELVE THERAPEUTICS, INC | Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same |
11944631, | Apr 16 2014 | Infinity Pharmaceuticals, Inc. | Combination therapies |
12152032, | Oct 04 2013 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
6632789, | Apr 29 1994 | NAVY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE | Methods for modulating T cell responses by manipulating intracellular signal transduction |
6703414, | Sep 14 2001 | The Burnham Institute for Medical Research | Device and method for treating restenosis |
7235523, | Apr 13 2001 | Children's Hospital Medical Center; CHILDREN S HOSPITAL MEDICAL CENTER | Methods for the treatment of hepatic disorders |
7655225, | Jan 25 2002 | Gamida Cell, Ltd. | Methods of expanding stem and progenitor cells and expanded cell populations obtained thereby |
7713943, | Aug 14 2002 | Silence Therapeutics GMBH | Further use of protein kinase N beta |
7855075, | Feb 17 1998 | Gamida Cell Ltd.; Hadasit Medical Research Services and Development Ltd. | Methods of controlling proliferation and differentiation of stem and progenitor cells |
7943594, | Jul 10 2002 | Massachusetts Institute of Technology | Solid-phase and solution-phase synthesis of glycosylphosphatidylinositol glycans |
7955852, | Jan 24 2002 | GAMIDA CELL LTD | Expansion of renewable stem cell populations |
8080417, | Sep 16 2004 | Gamida-Cell Ltd. | Methods of ex vivo hematopoietic stem cell expansion by co-culture with mesenchymal cells |
8202724, | Feb 17 1998 | Gamida Cell Ltd.; Hadasit Medical Research Services and Development Ltd. | Methods of controlling proliferation and differentiation of stem and progenitor cells |
8232256, | Jul 21 2006 | Silence Therapeutics GMBH | Means for inhibiting the expression of protein kinase 3 |
8569323, | Jul 15 2009 | Intellikine LLC | Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
8604032, | May 21 2010 | INFINITY PHARMACEUTICALS, INC | Chemical compounds, compositions and methods for kinase modulation |
8637553, | Jul 23 2003 | Bayer HealthCare LLC | Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions |
8703777, | Jan 04 2008 | Intellikine LLC | Certain chemical entities, compositions and methods |
8703778, | Sep 26 2008 | Intellikine LLC | Heterocyclic kinase inhibitors |
8785454, | May 07 2009 | Intellikine LLC | Heterocyclic compounds and uses thereof |
8785456, | Jan 04 2008 | Intellikine LLC | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
8785470, | Aug 29 2011 | INFINITY PHARMACEUTICALS, INC | Heterocyclic compounds and uses thereof |
8809349, | Jan 10 2011 | INFINITY PHARMACEUTICALS, INC | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
8828998, | Jun 25 2012 | INFINITY PHARMACEUTICALS, INC | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
8846393, | Nov 29 2005 | GAMIDA CELL LTD | Methods of improving stem cell homing and engraftment |
8901133, | Nov 10 2010 | INFINITY PHARMACEUTICALS, INC | Heterocyclic compounds and uses thereof |
8940742, | Apr 10 2012 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
8969363, | Jul 19 2011 | INFINITY PHARMACEUTICALS, INC | Heterocyclic compounds and uses thereof |
9056877, | Jul 19 2011 | INFINITY PHARMACEUTICALS, INC | Heterocyclic compounds and uses thereof |
9078855, | Aug 14 2002 | Silence Therapeutics GMBH | Further use of protein kinase N beta |
9115141, | Aug 29 2011 | Infinity Pharmaceuticals, Inc. | Substituted isoquinolinones and methods of treatment thereof |
9175266, | Jul 23 2012 | GAMIDA CELL LTD | Enhancement of natural killer (NK) cell proliferation and activity |
9181221, | May 21 2010 | Infinity Pharmaceuticals, Inc. | Chemical compounds, compositions and methods for kinase modulation |
9206182, | Jul 15 2009 | Intellikine LLC | Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
9216982, | Jan 04 2008 | Intellikine LLC | Certain chemical entities, compositions and methods |
9255108, | Apr 10 2012 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
9290497, | Jan 10 2011 | Infinity Pharmaceuticals, Inc. | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
9296742, | Sep 26 2008 | Intellikine LLC | Heterocyclic kinase inhibitors |
9315505, | May 07 2009 | Intellikine LLC | Heterocyclic compounds and uses thereof |
9359365, | Oct 04 2013 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
9387262, | Dec 27 2004 | Silence Therapeutics GMBH | Coated lipid complexes and their use |
9388183, | Nov 10 2010 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
9481667, | Mar 15 2013 | INFINITY PHARMACEUTICALS, INC | Salts and solid forms of isoquinolinones and composition comprising and methods of using the same |
9522146, | Jul 15 2009 | Intellikine LLC | Substituted Isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
9527847, | Jun 25 2012 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
9546180, | Aug 29 2011 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
9567569, | Jul 23 2012 | GAMIDA CELL LTD | Methods of culturing and expanding mesenchymal stem cells |
9605003, | Jul 19 2011 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
9655892, | Jan 04 2008 | Intellikine LLC | Certain chemical entities, compositions and methods |
9708348, | Oct 03 2014 | TWELVE THERAPEUTICS, INC | Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof |
9718815, | Jul 19 2011 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
9738644, | May 21 2010 | Infinity Pharmaceuticals, Inc. | Chemical compounds, compositions and methods for kinase modulation |
9751888, | Oct 04 2013 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
9775844, | Mar 19 2014 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
9790228, | Sep 26 2008 | Intellikine LLC | Heterocyclic kinase inhibitors |
9822131, | Jan 04 2008 | Intellikine LLC | Certain chemical entities, compositions and methods |
9828377, | Oct 04 2013 | TWELVE THERAPEUTICS, INC | Heterocyclic compounds and uses thereof |
9840505, | Jan 10 2011 | Infinity Pharmaceuticals, Inc. | Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1 (2H)-one and methods of use thereof |
RE46621, | Jan 10 2011 | Infinity Pharmaceuticals, Inc. | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
Patent | Priority | Assignee | Title |
3668222, | |||
4515722, | Mar 30 1982 | Merck & Co., Inc. | Phosphatidyl inositol analogs useful as anti-inflammatory/analgesic agents |
4988682, | Feb 03 1989 | University of Pittsburgh | Myo-inositol analogs and method for their use |
5145842, | Jun 11 1986 | PKC PHARMACEUTICALS INC | Protein kinase c. modulators. d. |
5378725, | Jul 19 1993 | Arizona Board of Regents on Behalf of the University of Arizona | Inhibition of phosphatidylinositol 3-kinase with wortmannin and analogs thereof |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 25 1993 | Eli Lilly and Company | (assignment on the face of the patent) | / | |||
Aug 25 1993 | BONJOUKLIAN, ROSANNE | Eli Lilly and Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007769 | /0604 | |
Aug 25 1993 | DODGE, JEFFREY A | Eli Lilly and Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007769 | /0604 | |
Aug 25 1993 | VLAHOS, CHRIS J | Eli Lilly and Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007769 | /0604 |
Date | Maintenance Fee Events |
Aug 30 1999 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 22 2003 | REM: Maintenance Fee Reminder Mailed. |
Apr 02 2004 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 02 1999 | 4 years fee payment window open |
Oct 02 1999 | 6 months grace period start (w surcharge) |
Apr 02 2000 | patent expiry (for year 4) |
Apr 02 2002 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 02 2003 | 8 years fee payment window open |
Oct 02 2003 | 6 months grace period start (w surcharge) |
Apr 02 2004 | patent expiry (for year 8) |
Apr 02 2006 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 02 2007 | 12 years fee payment window open |
Oct 02 2007 | 6 months grace period start (w surcharge) |
Apr 02 2008 | patent expiry (for year 12) |
Apr 02 2010 | 2 years to revive unintentionally abandoned end. (for year 12) |