A method for preparing certain 4-alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-ones, which employs the following reaction scheme: ##STR1##

Patent
   5532358
Priority
Oct 12 1994
Filed
Oct 12 1994
Issued
Jul 02 1996
Expiry
Oct 12 2014
Assg.orig
Entity
Large
14
2
all paid
#2# 4. A method for preparing nevirapine, which is also known by the chemical name 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazep in-6-one and by the following chemical structure ##STR27## which method comprises the steps of: a) reacting a compound having the formula ii ##STR28## wherein r3 is alkyl of from one to 3 carbon atoms, with a compound of the formula iii ##STR29## wherein r4 is an alkyl group of from one to 5 carbon atoms, in an aprotic, organic solvent, and in the presence of two equivalents of a base, to produce a compound of the formula iv ##STR30## wherein r3 and r4 are as hereinbefore defined; b) reacting the compound of formula iv with two equivalents of a strong base, in a polar, aprotic, organic solvent containing a strongly polar, aprotic cosolvent, to generate an intermediate dianionic species, and further reacting the intermediate dianionic species, which is not isolated from the reaction mixture, with an electrophile of the formula ch3 --X, wherein X is a leaving group, to generate a compound of the formula; ##STR31## c) removing the protecting group (--COOR4) from the compound produced in the prior step by cleavage of the carbamate, to yield a compound of the formula ##STR32## d) reacting the compound produced in the prior step with a compound of the formula vii ##STR33## wherein X1 and X2 may be the same or different and are each a halogen atom, in an aprotic, organic solvent in the presence of a hydrogen halide scavenger, to produce a compound of the formula ##STR34## wherein r3 and X2 are as hereinbefore defined; e) reacting the compound produced in the prior step with an amine of the formula ##STR35## in the presence of a hydrogen chloride scavenger, to produce a compound of the formula ##STR36## and, f) reacting the compound produced in the prior step with 2 equivalents of a base, in a polar, aprotic, organic solvent, to produce nevirapine.
#2# 1. A method for preparing 4-alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-ones of the formula I ##STR18## wherein r1 is alkyl of 1 to 6 carbon atoms, trihalomethyl, alkyloxyalkyl or alkylthioalkyl of 2 to 5 carbon atoms, alkylthio of 1 to 5 carbon atoms, or arylalkyl (wherein the aryl moiety is phenyl,thienyl, furanyl, or pyridyl, which is either unsubstituted or substituted by alkyl or alkoxy of 1 to 3 carbon atoms, or halogen, and the alkyl moiety contains 1 to 2 carbon atoms which may be unsubstituted or substituted with a methyl group);
and,
r2 is alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
which comprises the steps of:
a) reacting a compound having the formula ii ##STR19## wherein r3 is alkyl of from one to 3 carbon atoms, with a compound of the formula iii ##STR20## wherein r4 is an alkyl group of from one to 5 carbon atoms, in an aprotic, organic solvent, and in the presence of two equivalents of a base, to produce a compound of the formula iv ##STR21## wherein r3 and r4 are as hereinbefore defined; b) reacting the compound of formula iv with two equivalents of a strong base, in a polar, aprotic, organic solvent containing a strongly polar, aprotic cosolvent, to generate an intermediate dianionic species, and further reacting the intermediate dianionic species, which is not isolated from the reaction mixture, with an electrophile of the formula r1 --X, wherein r1 is as described above, and X is a leaving group, to generate a compound of the formula v; ##STR22## c) removing the protecting group (--COOR4) from the compound of the formula v by cleavage of the carbamate, to yield a compound of the formula vi ##STR23## d) reacting the compound of formula vi with a compound of the formula vii ##STR24## wherein X1 and X2 may be the same or different and are each a halogen atom, in an aprotic, organic solvent in the presence of a hydrogen halide scavenger, to produce a compound of the formula viii ##STR25## wherein r1, r3 and X2 are as hereinbeforedefined; e) reacting the compound of formula viii with an amine of the formula r2 --NH2, wherein r2 is as hereinbefore defined, in the presence of a hydrogen chloride scavenger, to produce a compound of the formula IX ##STR26## and, f) reacting the compound of formula IX with 2 equivalents of a base, in a polar, aprotic, organic solvent, to produce the compound of formula I.

This invention relates to a novel method for preparing certain 4-alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-ones.

4-Alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one, and their use in the treatment of HIV-1 infection are known in the prior art. These compounds are, for example, described in copending U.S. patent application Ser. No. 08/091,418 filed Jul. 13, 1993, European Patent Application No. 90 121 954.3 (publication No. 0 429 987), and by Karl D. Hargrave et al., "Novel Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. 1. Tricyclic Pyridobenzo- and Dipyridodiazepinones", J. Med. Chem, 34, 2231 (1991). Copending U.S. patent application Ser. No. 08/063,592, filed on May 18, 1993 describes one of several possible methods for preparing 5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepines, and U.S. Pat. No. 5,200,522 describes methods for preparing 4-alkyl-3-amino-2-chloropyridines useful as intermediates in the synthesis of 5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepines.

4-Alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-ones prepared by the novel process of this invention have the formula: ##STR2## wherein,

R1 is alkyl of 1 to 6 carbon atoms, trihalomethyl, alkyloxyalkyl or alkylthioalkyl of 2 to 5 carbon atoms, or arylalkyl (wherein the aryl moiety is phenyl, thienyl, furanyl, or pyridyl, which is either unsubstituted or substituted by alkyl or alkoxy of 1 to 3 carbon atoms, or halogen, and the alkyl moiety contains 1 to 2 carbon atoms which may be unsubstituted or substituted with a methyl group); and,

R2 is alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms.

The process of the invention for the preparation of the compound of formula I is depicted by the following reaction scheme. ##STR3##

The process of this invention for preparing the 4-alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-ones of formula I comprises the following steps:

Step 1: A compound of the formula II ##STR4## wherein R3 is alkyl of from 1 to 3 carbon atoms, is reacted with a compound of the formula III ##STR5## wherein R4 is an alkyl group of from one to 5 carbon atoms, in an aprotic, organic solvent such as, but not limited to, tetrahydrofuran (THF), with two equivalents of a base such as, but not limited to, sodium hexamethyldisilazane (NaHMDS), at room temperature for about 15 minutes to two hours, to produce a compound of the formula IV ##STR6##

Step 2: The compound of formula IV, produced in Step 1, is reacted with two equivalents of a strong base, such as, for example, n-butyllithium (nBuLi), at between about -78° and -10°C in a polar, aprotic solvent, such as, for example, diethyl ether, containing a strongly polar, aprotic cosolvent, such as, for example, tetramethylethylenediamine (TMEDA), to generate an intermediate dianionic species. The dianionic species need not be isolated from the reaction mixture. The reaction mixture, containing the dianionic species is then cooled to below about -30°C and treated with an electrophile of the form R1 --X, wherein R1 is as described above, and X is a leaving group, such as, for example, halogen, to generate a compound of formula V upon stirring at between about 0° and 30°C for about 1 to 12 hours. ##STR7##

Step 3: The protecting group (--COOR4) is removed from the compound of formula V, produced in Step 2, using known per se techniques, such as those described by Greene in "Protective Groups in Organic Synthesis" (J. Wiley & Sons, 1981) to yield a compound of the formula VI. ##STR8##

For example, when R4 is tert-butyl, the reaction proceeds using dry hydrogen chloride in ethyl acetate at about room temperature. The free base of the amine may be liberated using a base, such as, for example, NaHCO3. When R4 is methyl, base catalyzed hydrolysis may be used.

Step 4: The compound of formula VI, produced in step 3, is reacted with a compound of the formula VII ##STR9## wherein X1 and X2 are halogen atoms, such as, for example, chlorine, in an aprotic organic solvent such as, for example, ethyl acetate, in the presence of a hydrogen halide (HX) scavenger such as, for example, triethylamine, to produce a compound of the formula VIII. ##STR10##

Step 5: The compound of formula VIII, produced in step 4, is reacted with an amine of the formula R2 --NH2 wherein R2 is as described above, at a temperature of between about 90° and 120°C for about 3 to 24 hours, in the presence of a hydrogen halide scavenger (HX), such as, for example, R2 --NH2, to produce a compound of the formulaIX. ##STR11##

Step 6: The compound of formula IX, produced in step 5, is reacted with 2 equivalents of a base such as, for example, NaH, in a highly polar, aprotic organic solvent, such as, for example, pyridine, at between about 80° and 110°C for about 2 to 24 hours, to produce a compound of formula I.

Example I illustrates the preparation of a 4-alkyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one, a compound of formula I wherein R1 is methyl, using the synthetic method provided by the present invention.

PAC A) Preparation of 3-(tert-Butoxycarbonylamino)-2-methoxypyridine ##STR12##

To a stirred solution of 2.48 g (20 mmol) of 3-amino-2-methoxypyridine and 4.37 g (20 mmol) of di-tert-butyldicarbonate (Boc2 O) in 10 mL of THF was added at 0°C 40 mL of a 1M solution of NaHMDS in THF. The mixture was then stirred at room temperature for 2 hours. The THF was removed by rotary evaporation and the residue was dissolved in EtOAc and washed twice with an equal volume of 0.1N HCl. The EtOAc layer was dried (MgSO4) and concentrated to give 3.9 g (87%) of the desired material as an oil after purification further by flash chromatography on silica gel using 95:5 hexane:EtOAc as the eluant.

To a stirred solution of 1.12 g (5 mmol) of 3-(tert-butoxycarbonylamino)-2-methoxypyridine in 25 mL of dry ether containing 1.8 mL, (12 mmol) of TMEDA at -78°C under an argon atmosphere was added 4.8 mL (12 mmol) of a 2.5M solution of nBuLi in hexanes. The mixture was then warmed to -10°C for 2 h. Recooling to -78°C and treatment with iodomethane (0.99 g, 7 mmol) followed by warming to room temperature for 1 h produced the desired product which was purified by quenching with water, washing the ether layer with 0.1N HCl, drying (MgSO4), concentration and flash chromatography (9:1 hexanes:EtOAc). Yield: 1.00 g (84%). Recrystallization from heptane provided further purification. m.p.: 93°-95°C

3-(tert-Butoxycarbonylamino)-2-methoxy-4-methylpyridine (0.7 g, 2.9 mmol) was treated with 25 mL of 4M HCl in EtOAc at room temperature overnight. The resulting suspension was carefully washed with sat. NaHCO3, dried (MgSO4) and concentrated to give 0.4 g of the free amine as an oil (100%). m.p. (HCl salt): 199°C (d).

D) Preparation of 2-Chloro-N-(2-methoxy-4-methyl-3-pyridinyl)-3-pyridinecarboxamide ##STR15##

To a solution of 0.4 g (2.9 mmol) of 3-amino-2-methoxy-4-methylpyridine and 0.5 g (2.9 mmol) of 2-chloronicotinoyl chloride in EtOAc at 0°C was added 0.4 g (3.0 mmol) of N,N-diisopropylethylamine. Stirring was continued for 10 h at which point the mixture was washed with 0.1N HCl , dried (MgSO4), concentrated and purified by flash chromatography on silica gel (1:1 EtOAc:hexanes) to yield 0.7 g (88%) of the desired material. m.p.: 145°-146°C (Recrystallized from ethyl acetate).

E) Preparation of 2-(Cyclopropylamino)-N-(2-methoxy-4-methyl-3-pyridinyl)-3-pyridinecarboxam ide ##STR16##

2-Chloro-N-(2-methoxy-4-methyl-3-pyridinyl)-3-pyridinecarboxamide (0.55 g, 2 mmol) was placed in a sealed tube containing cyclopropylamine (0.5 mL, 7 mmol) and heated to 110°C overnight. Removal of the cyclopropylamine by rotary evaporation followed by flash chromatography of the residue on silica gel (1:1 EtOAc:hexanes) gave the desired compound in 86% yield (0.51 g). m.p.: 151°-152°C (Recrystallized from heptane).

F) Preparation of 5,11-dihydro-4-Methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one ##STR17##

A solution of 2-(cyclopropylamino)-N-(2-methoxy-4-methyl-3-pyridinyl)-3-pyridinecarboxam ide (0.3 g, 1 mmol) in 2 mL of dry pyridine under an argon atmosphere was treated with 2.2 mL of a 1.0M solution of NaHMDS. The solution was then warmed to 90°C for 6 h. Upon cooling, the mixture was partitioned between EtOAc and 0.5N HCl. The EtOAc layer was then washed further with 0.5N HCl, dried (MgSO4) and concentrated. The residue was purified by flash chromatography on silica gel (1:1 EtOAc:Hexanes) to give 5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one in 91% yield (0.24 g).

Kelly, Terence A.

Patent Priority Assignee Title
6864255, Apr 11 2001 Amgen Inc Substituted triazinyl amide derivatives and methods of use
6878714, Jan 12 2001 Amgen Inc Substituted alkylamine derivatives and methods of use
6995162, Jan 12 2001 Amgen Inc Substituted alkylamine derivatives and methods of use
7101868, Jan 12 2001 Amgen Inc Substituted arylamine derivatives and methods of use
7102009, Jan 12 2001 Amgen Inc Substituted amine derivatives and methods of use
7105682, Jan 12 2001 Amgen Inc Substituted amine derivatives and methods of use
7307088, Jul 09 2002 Amgen Inc Substituted anthranilic amide derivatives and methods of use
7507748, Jul 22 2004 Amgen Inc Substituted aryl-amine derivatives and methods of use
7514564, Jan 12 2001 Amgen Inc. Substituted amine derivatives and methods of use
7687643, Jan 12 2001 Amgen Inc Process for preparing 3,3-dimethylindolines
8058445, Jan 12 2001 Amgen Inc. Substituted pyridinecarboxamides for the treatment of cancer
8247430, Jul 22 2004 Amgen Inc. Substituted aryl-amine derivatives and methods of use
8247556, Oct 21 2005 Amgen Inc Method for preparing 6-substituted-7-aza-indoles
8642624, Jan 12 2001 Amgen Inc. Substituted alkylamine derivatives and methods of use
Patent Priority Assignee Title
5087625, Apr 20 1989 BOEHRINGER INGELEHEIM PHARMACEUTICALS, INC ; DR KARL THOMAE GMBH Pyridodiazepines and their use in the prevention or treatment of HIV infection
5366972, Apr 20 1989 Boehringer Ingelheim Pharmaceuticals, Inc. 5,11-dihydro-6H-dipyrido(3,2-B:2',3'-E)(1,4)diazepines and their use in the prevention or treatment of HIV infection
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 12 1994Boehringer Ingelheim Pharmaceuticals, Inc.(assignment on the face of the patent)
Mar 26 1996KELLY, TERENCE ALFREDBEOHRINGER INGELHEIM PHARMACEUTICALS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079120547 pdf
Date Maintenance Fee Events
Dec 29 1999M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 31 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 15 2005ASPN: Payor Number Assigned.
Dec 31 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 02 19994 years fee payment window open
Jan 02 20006 months grace period start (w surcharge)
Jul 02 2000patent expiry (for year 4)
Jul 02 20022 years to revive unintentionally abandoned end. (for year 4)
Jul 02 20038 years fee payment window open
Jan 02 20046 months grace period start (w surcharge)
Jul 02 2004patent expiry (for year 8)
Jul 02 20062 years to revive unintentionally abandoned end. (for year 8)
Jul 02 200712 years fee payment window open
Jan 02 20086 months grace period start (w surcharge)
Jul 02 2008patent expiry (for year 12)
Jul 02 20102 years to revive unintentionally abandoned end. (for year 12)