A powered medical instrument includes a manually operable foot switch coupled to a motor control unit which in turn is coupled to an autoclavable handpiece containing a brushless sensorless electric motor driving a tool. The motor control arrangement includes a control panel through which a user can select a maximum torque value for the motor, and includes a torque limit circuit which limits the motor torque to the torque limit value selected by the user. The control panel also provides a digital display of actual motor speed and allows the user to digitally specify a maximum motor speed. The output of the foot switch is adjusted by a transfer function and then used to control motor speed, and the transfer function is adjusted as necessary to precisely conform the actual motor speed and thus the displayed speed to the selected maximum speed. The feedback path for the actual motor speed is entirely digital, so that a highly accurate value of actual speed is available for display and for adjustment of the transfer function.
|
29. A method of regulating the speed of motor of a medical instrument, the medical instrument having a tool attached to the motor, the motor being designed to operate at selected speeds in response the application of a modulated power signal thereto, said method including the steps of:
generating a motor speed signal representative of the speed of the motor; generating a maximum speed signal representative of a maximum speed at which the motor is to operate; generating a user speed signal representative of a speed which the user wants the motor to operate at; comparing said user speed signal to said maximum speed signal; when said user speed signal-maximum speed signal comparison indicates said motor is to operate below said maximum speed, generating a speed setpoint signal as a function of a said user speed signal and a function ratio; applying said motor speed signal and said speed setpoint signal to a motor controller, said motor controller comparing said motor speed signal and said speed setpoint signal and, based on said comparison, generating a modulated power signal for application to the motor; when said user speed-maximum speed comparison indicates the motor is to be operated at the user-selected maximum speed, generating a speed setpoint signal based on said function ratio that is representative of said maximum speed, applying said maximum speed setpoint signal to said motor controller and comparing said motor speed signal to said maximum speed and based on said motor speed signal-maximum speed signal comparison, adjusting said function ratio to cause the generation of a speed setpoint signal that causes said motor to operate at said maximum speed.
18. A medical instrument including:
a tool; a motor coupled to said tool for driving said tool through a repetitive path of movement at a selected speed, said motor being actuated to operate at said selected speed in response to an application of a variable motor energization signal thereto; a speed monitor connected to said motor for producing a motor speed signal representative of said speed of said motor; a motor controller connected to said motor for applying said motor energization signal thereto and to said speed monitor for receiving said motor speed signal therefrom, said motor controller being configured to compare said speed signal to a speed setpoint signal and, in response to said comparison, to vary said motor energization signal to cause said motor to operate at a selected speed; and an instrument control assembly including: a maximum speed input device for generating a maximum speed signal in response to the inputting of a user-selected maximum tool speed; a speed control input device for generating a user speed signal in response to the inputting of a user-selected real time speed command; and an instrument controller connected to said speed monitor to receive said motor speed signal, to said maximum speed input device for receiving said maximum speed signal, to said speed control input device for receiving said user speed signal and to said motor controller, said instrument controller being configured to generate said speed setpoint signal for application to said motor controller as a function of said user speed signal and a variable function ratio and to compare said user speed signal to said maximum speed signal wherein, when said comparison of said user speed signal to said maximum speed signal indicates said motor is to be operated at the maximum speed, said instrument controller is further configured to compare said motor speed signal to said maximum speed signal and, based on said comparison, to adjust said function ratio. 1. A medical instrument including:
a tool; a brushless motor coupled to said tool for driving said tool through a selective repetitive path of movement at a selected speed, said motor being actuated in response to an application of a pulse width modulated signal thereto and developing a torque in response to the movement of said tool; and a control unit connected to said motor for applying said pulse width modulated signal thereto, said control unit including: a driver for generating a variable frequency pulse width modulated signal for application to said motor, said driver frequency modulating said pulse width modulated signal in response to a driver control signal applied to said driver wherein, said pulse width modulated signal has a current that varies with said torque developed by said motor; a speed sensor connected to said motor for monitoring said speed of said motor and producing a motor speed signal representative of said motor speed; a current sensor connected to said driver for producing a current signal representative of said torque developed by said motor; a speed controller connected to said speed sensor for receiving said speed signal, said speed controller being configured to compare said speed signal to a speed setpoint signal representative of a selected motor speed and to produce a speed error signal based on said comparison; a torque controller connected to said speed controller for receiving said speed error signal, said torque controller being configured to compare said speed error signal to a torque limit signal representative of a selected maximum torque and to produce a selectively adjusted speed error signal in response to said comparison; and a driver controller connected to said current sensor for receiving said current signal, to said torque controller for receiving said adjusted speed error signal and to said driver, said driver controller being configured to compare said current signal with said adjusted speed error signal, to produce said driver control signal based on said comparison and to transmit said driver control signal to said driver. 14. A medical instrument including:
a tool; a brushless motor coupled to said tool for driving said tool through a repetitive path of movement at a selected speed, said motor being actuated to operate at said selected speed in response to an application of multi-phase pulse width modulated signals thereto, said motor developing a torque in response to movement of said tool; a driver connected to said motor, said driver including a plurality of transistors that are selectively switched between a voltage source and ground to generate a plurality of pulse width modulated signals for application to said motor, said transistors being switched in response to the application of driver control signals thereto and said transistors having a current flowing therethrough representative of said torque developed by said motor; a speed sensor connected to said motor for monitoring said speed of said motor and producing a speed signal representative of said speed of said motor; a current sensor connected to said driver transistors for producing a transistor current signal representative of said current flowing through said transistors; a speed regulator connected to said speed sensor for receiving said speed signal, said speed regulator being configured to compare said speed signal to a speed setpoint speed signal representative of a selected motor speed and to produce a speed error signal based on said comparison; a torque regulator connected to said speed regulator for receiving said speed error signal, said torque regulator being configured to compare said speed error signal to a torque limit signal representative of a selected maximum torque and to produce a selectively adjusted speed error signal based on said comparison; and a driver controller connected to said current sensor for receiving said transistor current signal and to said torque controller for receiving said adjusted speed error signal and to said driver, said driver controller being configured to compare said transistor current signal with said adjusted speed error and to produce said driver control signals in response to said comparison, wherein said driver control signals are of a sufficient potential so that said transistors alternatively connect said motor between the voltage source and ground.
2. The medical instrument of
3. The medical instrument of
4. The medical instrument of
5. The medical instrument of
6. The medical instrument of
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said reduction ratio; and an instrument controller connected to said gear reduction unit for establishing said selected gear reduction ratio in response to a user selection and said instrument controller being further configured to generate said torque limit signal as a function of the user-selected reduction ratio and to transmit said torque limit signal to said torque controller.
7. The medical instrument of
9. The medical instrument of
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of gear reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said gear reduction ratio; and an instrument controller connected to said gear reduction unit for establishing said selected gear reduction ratio in response to a user selection and said instrument controller being further configured to generate said torque limit signal as a function of the user-selected gear reduction ratio and to transmit said torque limit signal to said torque controller.
10. The medical instrument of
11. The medical instrument of
13. The medical instrument of
15. The medical instrument of
16. The medical instrument of
19. The medical instrument of
said motor develops a torque as a result of the movement of said tool; said instrument further includes a torque monitor connected to said motor for monitoring said motor torque, said torque monitor being configured to generate a motor torque signal representative of said motor torque; said instrument control assembly further includes a torque input device for generating a maximum torque signal in response to a user-selected maximum torque command; and said instrument controller is connected to said torque monitor for receiving said torque signal and to said torque input device for receiving said maximum torque signal and is further configured to compare said motor torque signal to said maximum torque signal, wherein when said comparison indicates said motor torque is greater than said user-selected maximum torque, said instrument controller bypasses said adjustment of said function ratio.
20. The medical instrument of
21. The medical instrument of
22. The medical instrument of
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of gear reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said gear reduction ratio; and said instrument controller is connected to said gear reduction unit for establishing said selected reduction ratio in response to a user selection and said instrument controller is further configured to at least modulate said maximum torque signal as a function of the user-selected gear reduction ratio.
23. The medical instrument of
24. The medical instrument of
27. The medical instrument of
28. The medical instrument of
30. The method of medical instrument motor speed regulation of
generating a maximum torque signal representative of a maximum torque at which the motor is to operate; generating a motor torque signal representative of the torque produced by said motor; comparing said motor torque signal to said maximum torque signal; and when said motor torque signal/maximum torque signal comparison indicates the motor torque exceeds the selected maximum torque, bypassing said adjustment of said transfer function ratio.
|
This is a continuation of Ser. No. 08/167,737, filed Dec. 15, 1993, abandoned.
The present invention relates to a powered medical instrument and, more specifically, to a powered medical instrument having an electric motor which must be subjected to an autoclave, which must run precisely at a maximum speed specified digitally by a user, and which must be capable of having its torque limited to a user-selected value.
One known type of powered medical instrument is a dental drill, including a handpiece containing an electric motor, a separate motor control unit detachably coupled to the handpiece, and a progressively actuatable foot switch used by an operator to vary the motor speed.
Conventional instruments of this type use brushless motors contain Hall sensors which are used to monitor motor operation. However, the handpiece containing the motor must be periodically subjected to high temperatures for purposes of sterilization, for example by being placed in an autoclave. This presents a problem, in that the high temperatures of an autoclave tend to destroy the Hall sensors in the motor. One known approach for protecting the Hall sensors is to hermetically seal them, but the sealed sensors are relatively large and prevent the motor from being relatively compact and lightweight, which is desirable in a handpiece.
Brushless motors which do not have sensors have been developed for other applications, such as rotationally driving the hard disk drive of a personal computer. However, these other applications typically involve a relatively simple motor control situation, because the motor is always operated at a predetermined fixed speed. In contrast, a powered medical instrument such as a dental drill must be capable of operation through a range of motor speeds and loads.
A further consideration is that, as digital technology has improved, the doctor or dentist using a dental drill is typically permitted to manually select a maximum motor speed for a given drilling operation, and during the drilling operation is able to watch the actual motor speed on a digital display. However, manufacturing tolerances of the motor and various components in the motor control arrangement can cause the actual speed to vary somewhat from the specified speed. For example, the motor speed constant, which is a function of manufacturing tolerances, may vary by 10% from motor to motor. While the actual speed may be reasonably close to the specified speed, the precise accuracy inherent in a digital display tends to make even small deviances appear significant, suggesting to the operator that the system is not fulfilling its responsibility of operating the motor exactly at the specified speed. Although it is theoretically possible to minimize such deviances by holding all critical components to very tight manufacturing tolerances, this significantly increases the cost of these components, and thus the cost of the overall system.
Still another consideration is that the electric motor used in a dental drill or similar medical instrument is often capable of producing torques which would break certain components within the drive train of the handpiece, and it is thus important to be able to limit motor torque to a value which avoids breakage. According to the present state of the art, the electric motor is usually operated by a motor control invertor having several pairs of transistors arranged in a totem pole configuration and controlled by complementary pulse width modulated control signals. Torque limiting schemes have previously been developed, but often limit the torque to a predetermined value which cannot be varied, and often have the effect of causing the transistors of the invertor to run in a linear mode rather than a switching mode, causing the transistors to generate more heat and thus necessitating the use of heat sinks and/or larger packages.
In view of the foregoing, one object of the present invention is to provide a powered medical instrument which utilizes a brushless sensorless motor and provides variable speed operation of the motor.
A further object is to provide a powered medical instrument having an arrangement for conforming actual motor speed to a digitally specified speed without requiring the use of strict manufacturing tolerances for the motor and certain components of the motor control arrangement.
A further object is to provide a powered medical instrument having a torque limiting arrangement which permits torque to be limited to a range of values while ensuring that the drive elements of an invertor controlling the motor always run in a switching mode and never in a linear mode, thereby substantially eliminating heat dissipation and avoiding heat sinks, while allowing tighter packaging.
The objects and purposes of the invention, including those set forth above, are met according to one form of the present invention by providing a powered medical instrument which includes a sensorless brushless electric motor, and a motor control arrangement coupled to the motor for operationally controlling the motor.
Another form of the present invention involves a powered medical instrument which includes: an electric motor; an arrangement for indicating a specified motor speed; a manually operable input device generating an output which varies from a first value to a second value as a function of varying manual operation; a motor control arrangement for causing the motor to run at a rotational speed which is a function of the output of the input device as adjusted by a function; an actual speed indicating arrangement for indicating a precise actual speed of the motor; and an adjusting arrangement responsive to the specified motor speed and the precise actual speed for adjusting the function when necessary to cause the motor to run substantially exactly at the specified motor speed when the output of the input device has the second value.
Still another form of the present invention involves an apparatus which includes: an electric motor; an arrangement for indicating a limit value representing a maximum motor torque; and a motor control arrangement for operationally controlling the motor, the motor control arrangement including an arrangement for producing a speed error output representing a difference between a setpoint and an actual speed of the motor, a torque limiting arrangement for producing an adjusted error output which is the lesser of the limit value and the magnitude of the speed error output, and an arrangement for supplying to the motor a quantity of motor current which corresponds to the magnitude of the adjusted error output.
One further form of the present invention involves an apparatus which includes: an electric motor; a limit specifying arrangement for indicating a limit value representing a maximum motor torque, the limit specifying arrangement including an arrangement for facilitating a selective change of the limit value; and a motor control arrangement for operationally controlling the motor, the motor control arrangement including an arrangement responsive to a difference between a setpoint and an actual speed of the motor for controlling motor current to reduce the difference, the motor control arrangement including an arrangement responsive to the limit value for limiting motor current to a value corresponding to the maximum motor torque represented by the limit value.
A preferred embodiment of the invention is described in detail hereinafter with reference to the accompanying drawings, in which:
FIG. 1 is a block diagram of a dental drill system which embodies the present invention;
FIG. 2 is a circuit schematic for a portion of the system of FIG. 1;
FIG. 3 is a flowchart of an interrupt routine which is executed by a microprocessor in the system of FIG. 1 when a button is pressed on a control panel;
FIG. 4 is a flowchart of a further interrupt routine which is executed by the microprocessor at periodic intervals; and
FIG. 5 is a flowchart of a main routine executed by the microprocessor.
FIG. 1 shows a powered medical instrument 10 which is a dental drill system. The dental drill system 10 includes a foot switch unit 12 coupled to a control unit 13 which is in turn coupled to a handpiece 14.
The foot switch unit 12 includes a forward foot switch 17 and a reverse foot switch 18, each of which is detachably electrically coupled to the control unit 13 by a connector 19. The forward foot switch 17 and the reverse foot switch 18 can each manually be operated by a foot, and each produce an output voltage which progressively changes as the foot switch is progressively activated.
The handpiece 14 includes a motor portion 22 having therein a brushless sensorless three-phase AC electric motor 23 of conventional design. The motor 23 is detachably electrically coupled to the control unit 13 through a three-wire cable 25 and a connector 24. The motor has a rotatably supported shaft 26.
The handpiece 14 also includes a gear reduction portion 27 which is detachably coupled to the motor portion 22 and which includes a gear reduction mechanism 28. The gear reduction mechanism 28 is driven by the rotating motor shaft 26, and has an output shaft 31 that rotates at a slower speed than the motor shaft 26. The output shaft 31 has mounted on it a tool 32, which in FIG. 1 is a dental drill. There are actually six different gear reduction portions 27 which can be interchangeably coupled to the motor portion 14. The only difference between them is that each has a different gear reduction ratio, and therefore only one of the gear reduction portions 27 is illustrated in FIG. 1.
The control unit 13 includes a control panel which has a push-button section 36 and a display section 37. The push-button section 36 includes four push buttons, namely a GEAR RATIO push button 41, a SPEED/TORQUE push button 42, an UP push button 43, and a DOWN push button 44. The display section 37 includes several light emitting diodes (LEDs), including a SPEED LED 46, a TORQUE LED 47, and six RATIO LEDs 48. Each of the six RATIO LEDs 48 corresponds to the gear reduction ratio of a respective one of the six gear reduction portions 27. The display section 37 also includes a character display 49, which in the preferred embodiment is a conventional multi-digit LED display.
The control unit 13 also includes a microcontroller 61, which in the preferred embodiment is based on a conventional and commercially available microcontroller available from Signetics of Sunnyvale, Calif., as Part No. S80C552-AN68, and includes associated support circuitry. Those of ordinary skill in the art will recognize that the microcontroller 61 could also be based on other conventional and commercially available integrated circuits. The major components of the microcontroller 61 will be briefly described to facilitate a thorough understanding of the present invention, but those skilled in the art will readily recognize how to implement a suitable microcontroller. Therefore, and since the microcontroller 61 is not in and of itself the focus of the present invention, the microcontroller 61 is not described in extensive detail.
As shown in FIG. 1, the microcontroller 61 includes a microprocessor 62, which is coupled to a read only memory (ROM) 63 storing a program executed by the microprocessor 62, a random access memory (RAM) 64 where the microprocessor can store variables and other data utilized by its program, and an electrically erasable programmable read only memory (EEPROM) 67. The contents of the EEPROM 67 can be changed by the program in the RAM 63 but are retained through a power outage, and the EEPROM thus be used to store data which changes but which must be maintained when power is off.
The microcontroller 61 has an input port 68 which receives the output of each of the push-button switches 41-44. It also has an output port 71 which drives each of the elements 46-49 of the display, an output port 72 which produces a signal FORWARD/REVERSE indicating whether the motor 23 should rotate in a forward direction or a reverse direction, an output port 73 which outputs several motor control signals at 76, output ports 74 which output a multi-bit digital speed setpoint at 77 and a multi-bit torque limit value at 78, and an output port 75 which controls a conventional tone generator 79 that can produce audible beeps through a small loudspeaker 80.
The microcontroller 61 also includes an analog-to-digital (A/D) converter 81 that receives the analog output voltages from each of the foot switches 17 and 18 and converts each to a digital value, and an A/D converter 82 that receives on a line 84 a signal ISENSE, which is an analog voltage having a magnitude corresponding to the prevailing magnitude of the motor current, the A/D converter 82 converting the analog voltage of the ISENSE signal into a digital value. The microcontroller 61 also has a frequency sensing circuit 83 that receives a TACH signal on line 86. The TACH signal on line 86 is a square wave pulse of 50% duty cycle, the frequency of the TACH signal representing the present speed of the motor 23. The frequency sensing circuit 83 detects a leading edge of the TACH signal, measures the time until a trailing edge occurs, and stores the measured time interval in a predetermined location of the RAM 64 for subsequent use by the processor, as described later.
The digital speed setpoint value 77 from the output port 74 is coupled to a conventional digital-to-analog (D/A) converter 87, which converts the digital value into an analog signal on line 88 that has a voltage corresponding in magnitude to the magnitude of the digital value at 77. Similarly, the digital torque limit value 78 is supplied to a D/A converter 89, which outputs a torque limit signal 90 with a voltage corresponding in magnitude to the magnitude of the digital torque limit value 78.
The control unit 13 includes a six FET invertor, which is a conventional circuit having three pairs of FETs, each pair being arranged in a totem pole configuration between a DC voltage and ground. The node between the transistors of each totem pole pair is connected to the motor 23 through the connector 24 by a respective one of three conductors 92. The transistors of each totem pole pair are switched in a complementary manner, so that the node between the transistors of each pair alternates between the DC voltage and ground so as to generate AC square wave signals which are supplied to the motor 23 by lines 92 and 25 in order to commutate the motor windings 23 in a manner causing the motor shaft 26 to rotate.
The conductors 92 that extend between the inverter 91 and the motor controller 24 have a set of branch conductors 92a that are connected to a motor controller 96 through a multiplexer 93. The motor controller 96 outputs six switching control signals at 95 to a multiplexer 97, which then forwards them to a three-phase gate driver 98, which in turns supplies the six signals to the invertor 91, where each of the six signals is applied to the gate input of a respective FET. The motor controller 96 is based on a conventional and commercially available integrated circuit, which in the preferred embodiment is available from Micro Linear of San Jose, Calif., as Part No. ML4411. The motor controller 96 was designed primarily for applications such as operating the motor of a conventional hard disk drive in a computer system, where the motor runs at a constant speed, and in such a conventional application the six output lines 95 of the motor controller 96 are directly connected to the gates of respective FETs in a conventional invertor of the type shown at 91.
However, the motor for a computer hard disk drive is relatively small in comparison to the motor 23 utilized in the preferred embodiment, as a result of which the six FETs in the invertor 91 must be components capable of handling a larger amount of current than the components in a motor for a disk drive, which in turn means that the amount of current required to control switching of the FETs in the invertor 91 is more than the motor controller 96 is designed to output at 95. Accordingly, the three-phase gate driver circuit 98 is provided to amplify or boost the driving power of these six signals, so that they can comfortably drive the six FETs of the invertor 91. The three-phase gate driver circuit 98 is also conventional, and in the preferred embodiment is an IR2130 chip available commercially from International Rectifier of El Segundo, Calif.
The motor controller 96 is designed to run a motor in only one rotational direction. The multiplexers 93 and 97 are provided so that the control unit 13 can selectively control the motor 23 for both forward and reverse operation. In particular, the multiplexers 93 and 97 each supply all input signals directly to corresponding output lines when the microcontroller 61 has set the FORWARD/REVERSE line to select forward operation, and swap selected signals between the multiplexer inputs and multiplexer outputs when the microcontroller 61 sets the FORWARD/REVERSE line to select reverse operation. Thus, the motor controller 96 thinks that it is always operating the motor 23 in a forward direction, whereas in fact the motor is operated in either a forward or reverse direction in dependence on how the multiplexers 93 and 97 are currently controlled by the FORWARD/REVERSE line from microcontroller 61.
A conventional current sensing circuit 101 is coupled to the invertor at 91, and provides to the motor controller 96 a signal representative of the amount of current flowing through the invertor 91, which in turn corresponds to the amount of current flowing through motor 23. The motor controller 96 then outputs on line 84 the ISENSE signal, which is based on the output of sense circuit 101 and which is an analog voltage having a magnitude representing the magnitude of the motor current, the magnitude of the motor current being, in turn, proportional to motor torque. The motor controller 96 also outputs a square wave signal on line 102 which has a 50% duty cycle and which has a frequency corresponding to the magnitude of the rotational speed of the motor 23. In particular, the frequency increases and decreases as the speed increases and decreases. The frequency of the signal on line 102 is divided down by a conventional frequency divider circuit 103, the output of the circuit 103 being the TACH signal supplied on line 86 to the frequency sensing circuit 83.
The motor controller 96 generates at 106 an analog signal having a voltage representing actual motor speed by monitoring the back EMF pulses generated by the motor and transmitted through cable 25, connector 24 and conductors 92 and 92a. A current mode control circuit 107, which is described in more detail later with reference to FIG. 2, receives the analog actual speed signal 106 from motor controller 96 and the analog speed setpoint signal 88 from D/A converter 87, and produces an output 108 which is coupled to one input of a torque limit circuit 111, the other input of torque limit circuit 111 being coupled to the analog torque limit value produced on line 90 by the D/A converter 89. The output of the torque limit circuit 111 is a FEEDBACK signal 112, which is coupled to an input of the motor controller 96.
The current mode control circuit 107 and torque limit circuit 111 are shown in more detail in FIG. 2. The current mode control circuit 107 is itself substantially conventional, and in a conventional system the output 108 of the current mode control circuit would be connected directly back to the FEEDBACK input of the motor controller 96. The current mode control circuit 107 includes a filter section 116 which filters the actual speed signal 106 from the motor controller 96, a buffer section 117 which amplifies the output of the filter section 116, and an error section 118 which has a differential error amplifier 121. The error amplifier 121 compares the filtered and buffered version of signal 106 to the speed setpoint signal 88 from the microcontroller 61, and generates at 108 an output signal which represents the magnitude of the difference between the motor controller output 106 and the speed setpoint 88. The speed setpoint 88 is an analog voltage representing a desired or target speed for the motor. If the motor is running at the desired speed, then the inputs to the error amplifier 121 will have approximately the same voltage, and the output of the error amplifier 121 will be stable and at a voltage level causing the motor to run at the appropriate speed. On the other hand, if the actual speed deviates from the target speed, the error amplifier 121 will increase or decrease its output voltage level by an amount corresponding to the deviation of the actual motor speed from the target motor speed.
In a conventional system, the torque limit circuit 111 would not be present, and the error signal 108 would be connected directly back to the FEEDBACK input of the motor controller 96. Depending on the sign and magnitude of the FEEDBACK signal, the motor controller 96 increases and decreases the widths of the pulses output at 95 to control the invertor 91. As is known by those of ordinary skill in the motor control art, this pulse width modulation (PWM) has the effect of varying the amount of current supplied to the motor, in particular by respectively increasing and decreasing the amount of current supplied to the motor as the pulse widths increase and decrease. The motor torque necessarily increases and decreases as the amount of current supplied to it increases and decreases, thereby causing the motor to tend to speed up or slow down.
If the dental drill 32 is engaging a tooth and applying a load to the motor, the motor will tend to slow down from its target speed, as a result of which the error amplifier 121 will produce an output voltage with a magnitude indicating that current to the motor should be increased in order to increase torque and return the motor to the target speed. However, a typical motor 23 will have the capability to produce significantly more torque than certain components in the drive train can withstand, and it is thus desirable to limit the motor torque in order to avoid breaking these drive train components. Limiting the torque, of course, would mean that the motor would not be generating enough torque to rotate the motor shaft to its target speed, and thus the motor would continue to run at a speed less than the target speed, or would progressively slow down.
A further consideration is that, depending on the particular gear reduction portion 27 which happens to be attached to the motor portion 22, different levels of torque limiting are appropriate. In order to allow different levels of torque limiting, the programmable torque limit circuit 111 (FIG. 2) is provided. The torque limit circuit 111 includes an operational amplifier 126, which has JFET inputs. In the preferred embodiment, the operational amplifier 126 is an LT1055 commercially available from Linear Technology Corporation of Milpitas, Calif. The error signal 108 from the current mode control circuit 107 is connected directly to the output 112 and to the negative input of the operational amplifier 126. The torque limit signal 90 from the D/A circuit 89 and microcontroller 61 is connected through a resistor 127 to the positive input of the operational amplifier 126, the positive input also being connected through a capacitor 128 to ground. The output of the operational amplifier 126 is connected through a resistor 131 to the base of a transistor 132, which has an emitter connected to the signals 108 and 112, and a collector connected to ground. The transistor 132 is selected so that it always operates in a linear mode, and in the preferred embodiment is a 2N3906. A Schottky diode 133 has its cathode and anode respectively connected to the emitter and collector of the transistor 132.
When the voltage of the error signal 108 has a magnitude indicating that motor torque should be increased, the operational amplifier 126 compares the error signal to the torque limit value 90. So long as the error signal does not exceed the torque limit value 90, the error signal is forwarded without change to the motor controller 96, which in turn uses PWM to increase the motor current and thus the motor torque in order to speed the motor back up to its setpoint speed. On the other hand, if the operational amplifier 126 determines that the error signal 108 has a magnitude which exceeds the torque limit value 90, the operational amplifier 126 turns on the transistor 132 in order to clamp or limit the magnitude of the signal at 108 to a value corresponding to the torque limit value. Thus, even if the error amplifier 121 is outputting a voltage of greater magnitude, the transistor 132 will limit the magnitude of the error signal at 108 so that the PWM carried out by the motor controller 96 is limited in a manner which in turn limits the current supplied to motor 23, and thus the torque of motor 23. As the motor continues to slow down, the error amplifier 121 will increase the magnitude of its output, but the torque limit circuit 111 will keep the signal 112 clamped at the magnitude corresponding to torque limit value 90, and thus the motor torque will be limited to a value which avoids breakage of drive train components. The microcontroller 61 can, of course, selectively change the torque limit value 90, causing the programmable torque limit circuit 111 to change the magnitude at which the error signal 108 is clamped and thus change the maximum torque permitted for motor 23.
Before explaining the flowcharts of FIGS. 3 to 5 in detail, it will be helpful to provide an overview of one aspect of system operation. More specifically, the foot switches 17 and 18 each output an analog voltage that progressively changes from an initial value to a maximum value as the foot switch is progressively manually actuated. The maximum value may vary somewhat from foot switch to foot switch as a result of component tolerances, and a predetermined constant output somewhat less than the typical maximum output value is therefore selected to represent 100% actuation of the foot switch. Depending on its tolerances, a foot switch will usually be capable of producing a maximum output value which exceeds the arbitrary 100% value, and which may for example be 115% of the predetermined constant output for one foot switch, 125% for another, and so forth.
Further, as mentioned above, an operator can use the UP and DOWN push buttons 43 and 44 to specify a maximum motor speed, up to 40,000 rpm. If the operator selects a maximum motor speed of 30,000 rpm, then when the operator fully depresses one of the foot switches, the operator expects that the digital display 49 will show the actual motor speed as precisely 30,000 rpm. Those skilled in the art will recognize that various system components have manufacturing tolerances which, in a conventional system, would cause the motor 23 to run at a speed slightly above or slightly below the preferred value of 30,000 rpm. For example, the maximum output from any foot switch may vary from one foot switch to another (as discussed above), the components used within the current mode control circuit 107 controlling motor speed will have small variations from part to part as a result of manufacturing tolerances, and the speed constant of the motor 23 (a function of manufacturing tolerances) may vary from motor to motor by more than 10%. These effects could in theory be reduced to some extent by purchasing only components manufactured to strict tolerances, but such components would be significantly more expensive, and would still not entirely eliminate the problem. The present invention includes an approach which permits use of relatively inexpensive components manufactured to relatively loose tolerances, while ensuring that full actuation of the foot switch causes operation of the motor 23 at substantially precisely the maximum speed selected by the user, in particular to within 0.05% of the maximum speed selected by the user.
In general terms, and as previously discussed, a foot switch output with a magnitude in excess of the arbitrary 100% value is limited within the processor to the 100% value in order to eliminate the effect of variations in actual maximum output from one foot switch to another. The processor 62 then adjusts the foot switch output using a function, which is described below, and outputs the result to the speed setpoint lines 77 through output ports 74.
When the processor detects that the foot switch is fully actuated, or in other words has an output at or above the 100% level, then it is desirable that the motor 23 be running at a speed which is exactly the maximum speed selected by the user, and the processor therefore compares the user-selected speed to the actual speed determined using TACH signal 86. In this regard, it is important to note that the entire speed feedback path from the motor controller 96 to D/A converter 87 through line 102, frequency divider 103, line 108, frequency sensing circuit 83 and micro controller 61 is digital, and thus highly accurate. If the processor determines that the actual motor speed is not substantially exactly the user-selected speed, the processor adjusts the function used between the output of foot switch unit 12 and speed setpoint lines 77, until the motor 23 is in fact running substantially precisely at the user-selected speed. Stated differently, the function is dynamically adjusted to compensate for manufacturing tolerances which may be present in various system components.
If the operator reduces the pressure on the foot switch in order to slow the motor down, then after the foot switch output drops below the 100% value, the processor continues to use the adjusted function but without making any further adjustments until such time as the foot switch output is again at or above 100%.
With respect to adjustment of the function, there is one further factor which must be taken into account. In particular, in a situation where the motor is operating at a specified maximum torque and the torque limiting circuit 111 is preventing any increase in motor torque, the motor 23 needs to compensate by reducing its speed regardless of whether the foot switch is fully depressed. Therefore, even if the foot switch output is at or above the 100% level, the function is not adjusted unless the actual motor torque is less than a predetermined maximum torque constant (which does not change).
One specific function which is used in the preferred embodiment is represented by the following equations: ##EQU1##
In these equations, FSO represents the foot switch output from 10% to 100% in the form of a fraction from 0.1 to 1.0, VARIABLE is a number representing the function itself, and SSP is the speed setpoint value output on lines 77. The value VARIABLE is the product of a predetermined constant setpoint CSP (which if output at 77 would cause the motor 23 to run at approximately its highest allowable speed of 40,000 rpm), the user-selected maximum motor speed value MMS divided by the top allowable speed of 40,000 rpm, and a number called RATIO. The value of RATIO is set to an initial value of 1.0 each time the system is turned on, and is thereafter increased or decreased by the processor where necessary to adjust the function so that the actual maximum motor speed is substantially precisely the selected maximum motor speed MMS.
Turning now to the flowcharts, each time one of the push buttons 41-44 is pressed, the microprocessor 62 in the microcontroller 61 is interrupted, and executes the interrupt routine shown as a flowchart in FIG. 3. In particular, execution of the interrupt routine starts at 141, and at 142 the processor reads the states of all four push buttons 41-44 and stores these states in the RAM 64. Then, the processor sets a software interrupt flag in the RAM 64 to indicate that a push button has been pressed. The processor then returns to execution of the interrupted program at 143.
The microcontroller 61 also includes a hardware timer which interrupts the processor 62 every 3.2 milliseconds, and this interrupt is serviced by the interrupt routine shown as a flowchart in FIG. 4. The timer interrupt can be selectively enabled and disabled by the software. The software enables the timer interrupt when the motor 23 is running, and disables the timer interrupt when the motor 23 is off. Since the timer interrupt is enabled only if the motor is running, the routine of FIG. 4 is entered only if the motor is running, which necessarily means that the user has manually operated one of the foot switches 17 and 18.
Execution of the timer interrupt routine of FIG. 4 begins at block 146, and control proceeds to block 147, where the processor reads and stores the actual speed and torque of the running motor 23. In particular, and as mentioned above, the TACH signal 86 is a digital signal in the form of a square wave having a frequency which varies with the speed of motor 23. Due to the fact that the motor controller 96 uses PWM techniques to control motor speed through the invertor 91, the TACH signal 86 from the motor controller 96 is an extremely accurate indication of the precise actual speed of motor 23. As already explained, the frequency sensing circuit 83 measures the width of each pulse of the TACH signal 86, the pulse width varying directly with variations in frequency, and stores the measured pulse width in a location of the RAM 64 to serve as a value representing the actual speed of the motor. In the interrupt routine of FIG. 4, the processor 62 reads this value from the location in the RAM 64, and then stores the value in a different location of the RAM 64 (where it is not subject to further change by the frequency sensing circuit 83). The ISENSE signal 84 from the motor controller 96 is an analog voltage which represents the current presently being supplied to motor 23 and which thus also represents motor torque, and the A/D converter 82 provides a digital output representing the magnitude of this voltage. The processor reads this digital output from the A/D converter 82, and stores it in a location of the RAM 64 as an indication of the actual torque presently being generated by the motor 23.
Control then proceeds to block 148, where the processor checks the foot switch 17 or 18 which has been manually actuated in order to see if the magnitude of the output from it has dropped below 10% (or in other words one-tenth of the arbitrary 100% value). If less than 10%, then it is assumed that the user is taking his foot off the foot switch and that the motor is to be stopped, and so at block 149 the timer interrupt is disabled, which will prevent another entry to the interrupt routine of FIG. 4. Then, control proceeds to block 150, where the processor 62 sets the control lines 76 so as to instruct the motor controller 96 to stop the motor. Control then proceeds to block 151, where the processor returns to the program which was interrupted.
On the other hand, if it was determined at block 148 that the actuated foot switch is producing an output greater than or equal to the 10% level, then at block 152 a check is made to see if the foot switch output is greater than 100%. If above 100%, then at block 153 the processor internally limits the foot switch reading to the 100% value. In either case, the foot switch reading is multiplied in block 154 by the above-described quantity called VARIABLE which represents the function, and then the resulting value is output through output ports 74 to the line 77 in order to serve as the speed setpoint. The processor then returns to the interrupted program at block 151.
FIG. 5 is a flowchart of the main routine executed by the processor 62. When power to the system is first turned on, or in the case of a reset, the processor begins program execution at 161, and performs at block 162 some initialization of a conventional type, such as system diagnostics and set-up.
Following initialization, control proceeds to block 163, where the processor checks to see whether the interrupt flag is set or whether one of the UP and DOWN push buttons 43 and 44 has been pressed. As explained above, the interrupt flag is set by the routine of FIG. 3 whenever one of the four push buttons 41-44 is initially pressed. This will include the UP and DOWN push buttons 43 and 44 when either is first pressed, but as to these two buttons a user may hold one of them down in order to cause continuous scrolling through available selections of a parameter such as motor torque. Therefore, a separate check of these two push buttons is made in block 163 in case one is still pressed even after its initial actuation was detected and serviced by setting of the interrupt flag. If it is determined at block 163 that any button is pressed and needs to be serviced, then control proceeds to block 164, where the processor checks to see whether the motor is running, in particular by checking to see whether the timer interrupt (associated with the interrupt routine of FIG. 4) is enabled. If the motor is running, then push buttons other than the UP and DOWN buttons 43 and 44 are ignored, and in particular any indication that the GEAR RATIO button 41 or SPEED/TORQUE button 42 has been pressed is discarded at 166. From block 166, or from block 164 if the motor is not running, control proceeds to block 167. In block 167, the processor services any push-button operation which has occurred and which was not discarded at block 166.
More specifically, the character display 49 of the control unit can display the speed of the motor or the torque of the motor, but can only display one of them at any given time. Accordingly, the SPEED/TORQUE push button 42 is used to toggle between display of speed and display of torque. In particular, in a situation where torque is presently selected, the processor keeps the TORQUE LED 47 lit, and displays a torque value in the character display 49 in a manner described later. If the operator then presses the SPEED/TORQUE push button 42, the processor 61 turns off the TORQUE LED 47 and turns on the SPEED LED 46, and will display a speed value in the character display 49 in a manner described later. If the SPEED/TORQUE push button 42 is pressed again, the processor will revert to the state where torque is displayed. When the motor is not running, the character display 49 is used to display a maximum motor speed or a maximum motor torque, whereas if the motor is running the display 49 is used to display actual motor speed or actual motor torque, as will be described later.
As previously mentioned, the system 10 includes six interchangeable gear reduction portions 27, each having a different gear ratio. The six ratio LEDs 48 on the display each correspond to a respective gear ratio, and one of the LEDs 48 representing the gear ratio of the gear reduction portion 27 currently installed on the handpiece is normally illuminated. If the operator replaces the gear reduction portion 27 with another gear reduction portion having a different ratio, the operator presses the GEAR RATIO push button 41. Each time the GEAR RATIO push button 41 is pressed, the processor 62 turns off one of the LEDs which had been lit and illuminates the next successive LED 48, and records in the RAM 64 a number representing the ratio associated with the newly-lit LED. By pressing the GEAR RATIO push button 41 one or more times, the operator ultimately lights the LED 48 corresponding to the ratio of the gear reduction portion 27 currently installed on the handpiece. Each of the LEDs 48 has next to it a label indicating the associated gear ratio, but these labels have been omitted in FIG. 1 for clarity and because the invention is not limited to any particular ratio values.
Each of the six gear ratios has associated with it a set of predetermined maximum torque values from which the user can select. The maximum torque values in each set typically differ from those in other sets. When the user has selected torque for display on the character display 49, and when the motor is not running, the processor 62 will display the currently-selected maximum torque value for the selected gear ratio. If the operator repeatedly presses the UP or DOWN push button 43 or 44, the processor will cycle through the available selections by successively displaying them, and the last selected maximum torque value for the current gear ratio is stored in the RAM 64, and is output through output ports 74 to the lines 78 to serve as the torque limit value supplied through D/A converter 89 to the torque limit circuit 111.
If motor speed is selected for display then the UP and DOWN push buttons are used to change the user-selected maximum motor speed, whereas if torque is selected for display they are used to change the user-selected maximum motor torque. More specifically, if speed is selected and one of the UP and DOWN push buttons is pressed, then the maximum speed is incremented or decremented by a specific amount when the block 167 is executed. If the button is pressed and held, then the maximum speed is incremented or decremented by the specific amount each time block 167 is executed while the button is held. However, the UP and DOWN push buttons 43 and 44 are not permitted to increment or decrement the maximum motor speed beyond certain values representing physical limitations of the system components. For example, the fastest speed at which the system will operate the motor 23 is the speed of 40,000 rpm, and the processor 62 will therefore not permit the user to increment the maximum motor speed above 40,000 rpm. The user can, of course, select a maximum motor speed which is less than 40,000 rpm.
If torque is selected, the processor selects the next successive value in the current set each time one of the UP and DOWN push buttons is pressed. If the button is pressed and held, the processor scrolls successively through the torque values in the current set, in particular by periodically scrolling to the next torque value during a succession of executions of block 167 while the UP or DOWN button is held.
The maximum motor speed and maximum motor torque values selected by the user are stored in the RAM 64, and the maximum torque value is also output through output port 74 to lines 78 to serve as the torque limit value supplied through D/A converter 89 to torque limit circuit 111. In block 167, the processor also clears the interrupt flag which was set in block 142 of FIG. 3, to reflect the fact that it has serviced the button or buttons which resulted in setting of the flag.
From block 167, and from block 163 if the interrupt flag was not set and the UP and DOWN buttons were not pressed, control proceeds to block 171. In block 171, the processor checks to see if the motor is running, in particular by checking to whether the timer interrupt is enabled in the same manner as in block 164. If the timer interrupt is not enabled, control proceeds to block 173, where the processor checks to see whether the user has indicated that the character display 49 is to be used to display speed or torque. If the user has selected speed for display, then at block 174 the processor outputs to the character display 49 the maximum motor speed, which the user selects in the manner described above in association with block 167. Alternatively, if the user has selected torque for display, then the processor outputs to the character display 49 the maximum motor torque, which the user selects in the manner described above in association with block 167. In either case, control then proceeds to block 177.
In blocks 177 and 178, the processor essentially checks to see whether either of the foot switches 17 and 18 has been manually actuated by an amount sufficient to justify restarting the motor 23. In particular, at block 177 the processor checks to see whether the forward foot switch is producing an output representing at least 10% actuation, and at block 178 checks to see whether the reverse foot switch 18 is producing an output representing at least 10% actuation. If neither foot switch is actuated by at least 10%, control proceeds through each of blocks 177 and 178 and then returns at 179 to block 163. So long as the motor is stopped, the processor will repeatedly execute a loop which includes blocks 171-178.
Eventually, the user will press one of the foot switches in order to start the motor, and for purposes of example it will be assumed that the user presses the forward foot switch. The first time thereafter that the processor reaches block 177, the processor will detect that the forward foot switch is more than 10% actuated, and will proceed to block 181, where it records an internal indication in the RAM 64 that the motor is to be operated in a forward direction, and then uses output port 72 to output a voltage level on the FORWARD/REVERSE line which causes the multiplexers 93 and 97 to select forward motor rotation. Then, the processor enables the timer interrupt so that periodic execution of the interrupt routine of FIG. 4 will resume. Since the motor presently has a speed of 0 rpm, closed loop control of the motor based on feedback of the actual motor speed is not practical until the motor is actually rotating at some relatively low speed, and the processor therefore uses the control lines 76 to instruct the motor controller 96 to carry out open loop control of the motor in a manner intended to cause the motor to start rotating, The manner in which this is carried out is conventional and not itself a part of the present invention, and is therefore not described in detail. The processor then waits a predetermined period of time during which the motor shaft should begin to rotate and should reach substantially the speed at which closed loop control can be utilized, at which point the processor adjusts control lines 76 to instruct the motor controller 96 to switch to closed loop control, where the signals received through multiplexer 93 and on FEEDBACK line 112 are taken into account in formulating control signals for the invertor 91. Control then returns at 182 to block 163.
If the operator had operated the reverse foot switch rather than the forward foot switch, control would have proceeded through blocks 177 and 178 to block 183, where the processor would carry out essentially the same sequence of activity as in block 181, except that the FORWARD/REVERSE output would be set to an opposite logic level to cause the multiplexers 93 and 97 to effect motor rotation in a reverse direction.
After control is returned to block 163 from either of blocks 181 and 183, and then eventually reaches block 171 again, it will be determined in block 171 that the motor is now running (because the timer interrupt has been enabled), and control will proceed to block 191 rather than block 172. In block 191, the processor retrieves from the RAM 64 the speed and torque values which were stored in block 147 of FIG. 4, and then carries out software filtering using conventional techniques which are not pertinent to the present invention. The torque value is also adjusted by the selected gear ratio, to compensate for the effects of the gear reduction portion 27. Control then proceeds to block 192, where the processor checks to see whether the user has selected speed or torque for display. If speed is selected, the actual motor speed as determined from the TACH signal 86 (FIG. 1) is displayed on character display 49 at block 193, whereas if torque is selected, the actual torque as determined from the ISENSE signal 84 and as adjusted for the selected gear reduction ratio is displayed on the character display 49. The software implements a small amount of hysteresis in displaying actual speed or actual torque, in order to avoid flickering of the display. For example, if the actual speed was between 29,999 RPM and 30,000 RPM, and speed readings were alternating rapidly between these two values, the character display 49 would be an unreadable blur. Therefore, the software will continue to display a given value of actual speed even if the measured speed changes very slightly from the given value, and only if the measured actual speed changes from the displayed actual speed by a predetermined small amount will the processor update the display with the newly-measured actual speed. Hysteresis for the actual torque is handled in a similar manner.
From each of blocks 193 and 194, control proceeds to block 196. Blocks 196-199 represent the logic involved with deciding whether the function needs to be adjusted in order to bring actual motor speed into conformity with the user-selected maximum speed in the manner broadly outlined above. In particular, at block 196, the processor checks to see if the active foot switch has an actuation level at or above 100%. If not, then the motor is not supposed to be running at its maximum speed and no adjustment is necessary, so blocks 197-199 are skipped. Otherwise, the processor proceeds to block 197, where it checks to see if actual torque is less than the predetermined maximum torque constant. If actual torque is at the maximum level, then in order to facilitate torque limiting the actual speed should be allowed to drop below the specified maximum speed despite the fact that the foot switch is fully actuated. Accordingly, blocks 198 and 199 are skipped. On the other hand, if it is found that actual torque is less than the maximum torque constant, the processor proceeds to block 198 where it checks to see if the actual speed is equal to the user-selected maximum speed. If the speeds are effectively equal, then there is no need to adjust the function, and block 199 is skipped. Otherwise, the processor proceeds to block 199, where it either increments or decrements the value of RATIO, as appropriate to adjust the function in a manner bringing actual speed into conformity with the users-elected speed. Each time the processor executes the main loop and reaches block 199, the value of RATIO will be incremented or decremented by a small preset amount, until it is found at block 198 that actual speed has in fact been conformed to the user-selected speed, at which point block 199 will be skipped and RATIO will be maintained at the value which causes actual speed to conform to the user-selected speed.
Control ultimately reaches block 201, where the processor actually calculates the current value of the function, or in other words the current value of VARIABLE, according to the mathematical equation (2) set forth above. The resulting value of VARIABLE is stored in the RAM 64 for later use. In particular, and with reference to the foregoing discussion of FIG. 4, the next time the timer interrupt occurs and causes execution of the interrupt routine of FIG. 4, at block 154 the processor will multiply the foot switch reading by the value of VARIABLE according to the mathematical equation (1) set forth above, and output the result on line 77 as the speed setpoint.
From block 201 in FIG. 5, control proceeds to block 202, where the processor checks to see if operation of the motor in a reverse direction has just started. If so, then at 203 the processor uses output port 75, tone generator 79 and speaker 80 to generate three short beeps, in order to ensure that the operator realizes the motor is rotating in a reverse direction. When the motor is operating in a forward direction, or when it is operating in a reverse direction but the three beeps have already been emitted, block 203 is skipped. In any case, control ultimately returns to the beginning of the main loop at block 163.
Although a single preferred embodiment of the invention has been disclosed in detail for illustrative purposes, it will be recognized that there are variations and modifications of the disclosed apparatus which lie within the scope of the present invention.
Culp, Jerry A., Schemansky, Kevin J.
Patent | Priority | Assignee | Title |
10034723, | Oct 29 2016 | Tooth bracket extraction device and methods for extracting a bracket section from teeth | |
10085751, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having temperature-based motor control |
10149680, | Apr 16 2013 | Cilag GmbH International | Surgical instrument comprising a gap setting system |
10149682, | Sep 30 2010 | Cilag GmbH International | Stapling system including an actuation system |
10159483, | Feb 27 2015 | Cilag GmbH International | Surgical apparatus configured to track an end-of-life parameter |
10162312, | Oct 23 2012 | Covidien LP | Surgical instrument with rapid post event detection |
10166010, | Oct 23 1998 | Devicor Medical Products, Inc. | Surgical device for the collection of soft tissue |
10172616, | Sep 29 2006 | Cilag GmbH International | Surgical staple cartridge |
10172620, | Sep 30 2015 | Cilag GmbH International | Compressible adjuncts with bonding nodes |
10180463, | Feb 27 2015 | Cilag GmbH International | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
10182816, | Feb 27 2015 | Cilag GmbH International | Charging system that enables emergency resolutions for charging a battery |
10182819, | Sep 30 2010 | Cilag GmbH International | Implantable layer assemblies |
10188385, | Dec 18 2014 | Cilag GmbH International | Surgical instrument system comprising lockable systems |
10201349, | Aug 23 2013 | Cilag GmbH International | End effector detection and firing rate modulation systems for surgical instruments |
10201363, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical instrument |
10201364, | Mar 26 2014 | Cilag GmbH International | Surgical instrument comprising a rotatable shaft |
10206605, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
10206676, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument |
10206677, | Sep 26 2014 | Cilag GmbH International | Surgical staple and driver arrangements for staple cartridges |
10206678, | Oct 03 2006 | Cilag GmbH International | Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument |
10206731, | Jul 19 2013 | Pro-Dex, Inc. | Torque-limiting screwdrivers |
10211586, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with watertight housings |
10213201, | Mar 31 2015 | Cilag GmbH International | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
10213262, | Mar 23 2006 | Cilag GmbH International | Manipulatable surgical systems with selectively articulatable fastening device |
10226249, | Mar 01 2013 | Cilag GmbH International | Articulatable surgical instruments with conductive pathways for signal communication |
10231794, | May 27 2011 | Cilag GmbH International | Surgical stapling instruments with rotatable staple deployment arrangements |
10238385, | Feb 14 2008 | Cilag GmbH International | Surgical instrument system for evaluating tissue impedance |
10238386, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
10238387, | Feb 14 2008 | Cilag GmbH International | Surgical instrument comprising a control system |
10238391, | Mar 14 2013 | Cilag GmbH International | Drive train control arrangements for modular surgical instruments |
10245027, | Dec 18 2014 | Cilag GmbH International | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
10245028, | Feb 27 2015 | Cilag GmbH International | Power adapter for a surgical instrument |
10245029, | Feb 09 2016 | Cilag GmbH International | Surgical instrument with articulating and axially translatable end effector |
10245030, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with tensioning arrangements for cable driven articulation systems |
10245032, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
10245033, | Mar 06 2015 | Cilag GmbH International | Surgical instrument comprising a lockable battery housing |
10245035, | Aug 31 2005 | Cilag GmbH International | Stapling assembly configured to produce different formed staple heights |
10258330, | Sep 30 2010 | Cilag GmbH International | End effector including an implantable arrangement |
10258331, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10258332, | Sep 30 2010 | Cilag GmbH International | Stapling system comprising an adjunct and a flowable adhesive |
10258333, | Jun 28 2012 | Cilag GmbH International | Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system |
10258418, | Jun 29 2017 | Cilag GmbH International | System for controlling articulation forces |
10265067, | Feb 14 2008 | Cilag GmbH International | Surgical instrument including a regulator and a control system |
10265068, | Dec 30 2015 | Cilag GmbH International | Surgical instruments with separable motors and motor control circuits |
10265072, | Sep 30 2010 | Cilag GmbH International | Surgical stapling system comprising an end effector including an implantable layer |
10265074, | Sep 30 2010 | Cilag GmbH International | Implantable layers for surgical stapling devices |
10271845, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a cam and driver arrangement |
10271846, | Aug 31 2005 | Cilag GmbH International | Staple cartridge for use with a surgical stapler |
10271849, | Sep 30 2015 | Cilag GmbH International | Woven constructs with interlocked standing fibers |
10278697, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
10278702, | Jul 28 2004 | Cilag GmbH International | Stapling system comprising a firing bar and a lockout |
10278722, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
10278780, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with robotic system |
10285695, | Mar 01 2013 | Cilag GmbH International | Articulatable surgical instruments with conductive pathways |
10285699, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct |
10292704, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
10292707, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a firing mechanism |
10293100, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument having a medical substance dispenser |
10299787, | Jun 04 2007 | Cilag GmbH International | Stapling system comprising rotary inputs |
10299792, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
10299817, | Jan 31 2006 | Cilag GmbH International | Motor-driven fastening assembly |
10299878, | Sep 25 2015 | Cilag GmbH International | Implantable adjunct systems for determining adjunct skew |
10307160, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct assemblies with attachment layers |
10307163, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10307170, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
10314589, | Jun 27 2006 | Cilag GmbH International | Surgical instrument including a shifting assembly |
10314590, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
10314661, | Aug 03 2012 | Stryker Corporation | Surgical robotic system and method for controlling an instrument feed rate |
10321909, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple including deformable members |
10327764, | Sep 26 2014 | Cilag GmbH International | Method for creating a flexible staple line |
10327765, | Jun 04 2007 | Cilag GmbH International | Drive systems for surgical instruments |
10327767, | Jun 20 2017 | Cilag GmbH International | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
10327769, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on a drive system component |
10327776, | Apr 16 2014 | Cilag GmbH International | Surgical stapling buttresses and adjunct materials |
10327777, | Sep 30 2015 | Cilag GmbH International | Implantable layer comprising plastically deformed fibers |
10335145, | Apr 15 2016 | Cilag GmbH International | Modular surgical instrument with configurable operating mode |
10335148, | Sep 30 2010 | Cilag GmbH International | Staple cartridge including a tissue thickness compensator for a surgical stapler |
10335150, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising an implantable layer |
10335151, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10342541, | Oct 03 2006 | Cilag GmbH International | Surgical instruments with E-beam driver and rotary drive arrangements |
10350017, | Aug 03 2012 | Stryker Corporation | Manipulator and method for controlling the manipulator based on joint limits |
10357247, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
10357333, | Nov 14 2016 | Imam Abdulrahman Bin Faisal University | Endodontic file system for cleaning and shaping a root canal |
10363031, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensators for surgical staplers |
10363033, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled surgical instruments |
10363036, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having force-based motor control |
10363037, | Apr 18 2016 | Cilag GmbH International | Surgical instrument system comprising a magnetic lockout |
10368863, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
10368864, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displaying motor velocity for a surgical instrument |
10368865, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10368867, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a lockout |
10376263, | Apr 01 2016 | Cilag GmbH International | Anvil modification members for surgical staplers |
10383630, | Jun 28 2012 | Cilag GmbH International | Surgical stapling device with rotary driven firing member |
10383633, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical assembly |
10383634, | Jul 28 2004 | Cilag GmbH International | Stapling system incorporating a firing lockout |
10383674, | Jun 07 2016 | PRO-DEX, INC | Torque-limiting screwdriver devices, systems, and methods |
10390823, | Feb 15 2008 | Cilag GmbH International | End effector comprising an adjunct |
10390841, | Jun 20 2017 | Cilag GmbH International | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
10398433, | Mar 28 2007 | Cilag GmbH International | Laparoscopic clamp load measuring devices |
10398434, | Jun 29 2017 | Cilag GmbH International | Closed loop velocity control of closure member for robotic surgical instrument |
10398436, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising staples positioned within a compressible portion thereof |
10405857, | Apr 16 2013 | Cilag GmbH International | Powered linear surgical stapler |
10405859, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with adjustable stop/start control during a firing motion |
10413291, | Feb 09 2016 | Cilag GmbH International | Surgical instrument articulation mechanism with slotted secondary constraint |
10413294, | Jun 28 2012 | Cilag GmbH International | Shaft assembly arrangements for surgical instruments |
10420549, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10420550, | Feb 06 2009 | Cilag GmbH International | Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated |
10420553, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
10420555, | Jun 28 2012 | Cilag GmbH International | Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes |
10420560, | Jun 27 2006 | Cilag GmbH International | Manually driven surgical cutting and fastening instrument |
10420561, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10420577, | Mar 31 2014 | Covidien LP | Apparatus and method for tissue thickness sensing |
10420619, | Aug 03 2012 | Stryker Corporation | Surgical manipulator and method for transitioning between operating modes |
10426463, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having a feedback system |
10426467, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
10426469, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a primary firing lockout and a secondary firing lockout |
10426471, | Dec 21 2016 | Cilag GmbH International | Surgical instrument with multiple failure response modes |
10426476, | Sep 26 2014 | Cilag GmbH International | Circular fastener cartridges for applying radially expandable fastener lines |
10426477, | Sep 26 2014 | Cilag GmbH International | Staple cartridge assembly including a ramp |
10426478, | May 27 2011 | Cilag GmbH International | Surgical stapling systems |
10426481, | Feb 24 2014 | Cilag GmbH International | Implantable layer assemblies |
10426560, | Aug 03 2012 | Stryker Corporation | Robotic system and method for reorienting a surgical instrument moving along a tool path |
10433837, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with multiple link articulation arrangements |
10433840, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a replaceable cartridge jaw |
10433844, | Mar 31 2015 | Cilag GmbH International | Surgical instrument with selectively disengageable threaded drive systems |
10433846, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
10433918, | Jan 10 2007 | Cilag GmbH International | Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke |
10441279, | Mar 06 2015 | Cilag GmbH International | Multiple level thresholds to modify operation of powered surgical instruments |
10441281, | Aug 23 2013 | Cilag GmbH International | surgical instrument including securing and aligning features |
10441285, | Mar 28 2012 | Cilag GmbH International | Tissue thickness compensator comprising tissue ingrowth features |
10448948, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10448950, | Dec 21 2016 | Cilag GmbH International | Surgical staplers with independently actuatable closing and firing systems |
10448952, | Sep 29 2006 | Cilag GmbH International | End effector for use with a surgical fastening instrument |
10456133, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10456137, | Apr 15 2016 | Cilag GmbH International | Staple formation detection mechanisms |
10463369, | Aug 31 2005 | Cilag GmbH International | Disposable end effector for use with a surgical instrument |
10463370, | Feb 14 2008 | Ethicon LLC | Motorized surgical instrument |
10463372, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising multiple regions |
10463383, | Jan 31 2006 | Cilag GmbH International | Stapling instrument including a sensing system |
10463384, | Jan 31 2006 | Cilag GmbH International | Stapling assembly |
10463440, | Aug 03 2012 | Stryker Corporation | Surgical manipulator and method for resuming semi-autonomous tool path position |
10470762, | Mar 14 2013 | Cilag GmbH International | Multi-function motor for a surgical instrument |
10470763, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument including a sensing system |
10470764, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with closure stroke reduction arrangements |
10470768, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge including a layer attached thereto |
10478181, | Apr 18 2016 | Cilag GmbH International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
10478188, | Sep 30 2015 | Cilag GmbH International | Implantable layer comprising a constricted configuration |
10485536, | Sep 30 2010 | Cilag GmbH International | Tissue stapler having an anti-microbial agent |
10485537, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10485539, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
10485541, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
10485543, | Dec 21 2016 | Cilag GmbH International | Anvil having a knife slot width |
10485546, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical assembly |
10485547, | Jul 28 2004 | Cilag GmbH International | Surgical staple cartridges |
10492783, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with improved stop/start control during a firing motion |
10492785, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a lockout |
10499914, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangements |
10517577, | Dec 13 2006 | Devicor Medical Products, Inc. | Presentation of biopsy sample by biopsy device |
10517590, | Jan 10 2007 | Cilag GmbH International | Powered surgical instrument having a transmission system |
10517594, | Oct 29 2014 | Cilag GmbH International | Cartridge assemblies for surgical staplers |
10517595, | Dec 21 2016 | Cilag GmbH International | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
10517596, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical instruments with articulation stroke amplification features |
10517682, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
10524787, | Mar 06 2015 | Cilag GmbH International | Powered surgical instrument with parameter-based firing rate |
10524788, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with attachment regions |
10524789, | Dec 21 2016 | Cilag GmbH International | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
10524790, | May 27 2011 | Cilag GmbH International | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
10531887, | Mar 06 2015 | Cilag GmbH International | Powered surgical instrument including speed display |
10537325, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangement to accommodate different types of staples |
10542974, | Feb 14 2008 | Cilag GmbH International | Surgical instrument including a control system |
10542982, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising first and second articulation lockouts |
10542988, | Apr 16 2014 | Cilag GmbH International | End effector comprising an anvil including projections extending therefrom |
10548504, | Mar 06 2015 | Cilag GmbH International | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
10548600, | Sep 30 2010 | Cilag GmbH International | Multiple thickness implantable layers for surgical stapling devices |
10561420, | Sep 30 2015 | Cilag GmbH International | Tubular absorbable constructs |
10561422, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising deployable tissue engaging members |
10568624, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
10568625, | Dec 21 2016 | Cilag GmbH International | Staple cartridges and arrangements of staples and staple cavities therein |
10568626, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with jaw opening features for increasing a jaw opening distance |
10568629, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument |
10568652, | Sep 29 2006 | Cilag GmbH International | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
10575868, | Mar 01 2013 | Cilag GmbH International | Surgical instrument with coupler assembly |
10582928, | Dec 21 2016 | Cilag GmbH International | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
10588623, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
10588625, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with off-axis firing beam arrangements |
10588626, | Mar 26 2014 | Cilag GmbH International | Surgical instrument displaying subsequent step of use |
10588630, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with closure stroke reduction features |
10588631, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with positive jaw opening features |
10588632, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors and firing members thereof |
10588633, | Jun 28 2017 | Cilag GmbH International | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
10595831, | May 30 2012 | Devicor Medical Products, Inc. | Control for biopsy device |
10595862, | Sep 29 2006 | Cilag GmbH International | Staple cartridge including a compressible member |
10595882, | Jun 20 2017 | Cilag GmbH International | Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument |
10603036, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock |
10603039, | Sep 30 2015 | Cilag GmbH International | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
10610224, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
10617412, | Mar 06 2015 | Cilag GmbH International | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
10617413, | Apr 01 2016 | Cilag GmbH International | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
10617414, | Dec 21 2016 | Cilag GmbH International | Closure member arrangements for surgical instruments |
10617416, | Mar 14 2013 | Cilag GmbH International | Control systems for surgical instruments |
10617417, | Nov 06 2014 | Cilag GmbH International | Staple cartridge comprising a releasable adjunct material |
10617418, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
10617420, | May 27 2011 | Cilag GmbH International | Surgical system comprising drive systems |
10624633, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
10624634, | Aug 23 2013 | Cilag GmbH International | Firing trigger lockout arrangements for surgical instruments |
10624635, | Dec 21 2016 | Cilag GmbH International | Firing members with non-parallel jaw engagement features for surgical end effectors |
10624861, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator configured to redistribute compressive forces |
10631859, | Jun 27 2017 | Cilag GmbH International | Articulation systems for surgical instruments |
10639034, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
10639035, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and replaceable tool assemblies thereof |
10639036, | Feb 14 2008 | Cilag GmbH International | Robotically-controlled motorized surgical cutting and fastening instrument |
10639037, | Jun 28 2017 | Cilag GmbH International | Surgical instrument with axially movable closure member |
10639115, | Jun 28 2012 | Cilag GmbH International | Surgical end effectors having angled tissue-contacting surfaces |
10646220, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displacement member velocity for a surgical instrument |
10653413, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly |
10653417, | Jan 31 2006 | Cilag GmbH International | Surgical instrument |
10653435, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
10660640, | Feb 14 2008 | Cilag GmbH International | Motorized surgical cutting and fastening instrument |
10667808, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising an absorbable adjunct |
10667809, | Dec 21 2016 | Cilag GmbH International | Staple cartridge and staple cartridge channel comprising windows defined therein |
10667810, | Dec 21 2016 | Cilag GmbH International | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
10667811, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and staple-forming anvils |
10675025, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising separately actuatable and retractable systems |
10675026, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
10675028, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
10682134, | Dec 21 2017 | Cilag GmbH International | Continuous use self-propelled stapling instrument |
10682138, | Dec 21 2016 | Cilag GmbH International | Bilaterally asymmetric staple forming pocket pairs |
10682141, | Feb 14 2008 | Cilag GmbH International | Surgical device including a control system |
10682142, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus including an articulation system |
10687806, | Mar 06 2015 | Cilag GmbH International | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
10687809, | Dec 21 2016 | Cilag GmbH International | Surgical staple cartridge with movable camming member configured to disengage firing member lockout features |
10687812, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
10687813, | Dec 15 2017 | Cilag GmbH International | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
10687817, | Jul 28 2004 | Cilag GmbH International | Stapling device comprising a firing member lockout |
10695055, | Dec 21 2016 | Cilag GmbH International | Firing assembly comprising a lockout |
10695057, | Jun 28 2017 | Cilag GmbH International | Surgical instrument lockout arrangement |
10695058, | Dec 18 2014 | Cilag GmbH International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
10695062, | Oct 01 2010 | Cilag GmbH International | Surgical instrument including a retractable firing member |
10695063, | Feb 13 2012 | Cilag GmbH International | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
10702266, | Apr 16 2013 | Cilag GmbH International | Surgical instrument system |
10702267, | Jun 29 2007 | Cilag GmbH International | Surgical stapling instrument having a releasable buttress material |
10709468, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
10716563, | Jul 28 2004 | Cilag GmbH International | Stapling system comprising an instrument assembly including a lockout |
10716565, | Dec 19 2017 | Cilag GmbH International | Surgical instruments with dual articulation drivers |
10716568, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus with control features operable with one hand |
10716614, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
10722232, | Feb 14 2008 | Cilag GmbH International | Surgical instrument for use with different cartridges |
10729432, | Mar 06 2015 | Cilag GmbH International | Methods for operating a powered surgical instrument |
10729436, | Aug 31 2005 | Cilag GmbH International | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
10729501, | Sep 29 2017 | Cilag GmbH International | Systems and methods for language selection of a surgical instrument |
10729509, | Dec 19 2017 | Cilag GmbH International | Surgical instrument comprising closure and firing locking mechanism |
10736628, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
10736629, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
10736630, | Oct 13 2014 | Cilag GmbH International | Staple cartridge |
10736633, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with looping members |
10736634, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument including a drive system |
10736636, | Dec 10 2014 | Cilag GmbH International | Articulatable surgical instrument system |
10743849, | Jan 31 2006 | Cilag GmbH International | Stapling system including an articulation system |
10743851, | Feb 14 2008 | Cilag GmbH International | Interchangeable tools for surgical instruments |
10743868, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a pivotable distal head |
10743870, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus with interlockable firing system |
10743872, | Sep 29 2017 | Cilag GmbH International | System and methods for controlling a display of a surgical instrument |
10743873, | Dec 18 2014 | Cilag GmbH International | Drive arrangements for articulatable surgical instruments |
10743874, | Dec 15 2017 | Cilag GmbH International | Sealed adapters for use with electromechanical surgical instruments |
10743875, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
10743877, | Sep 30 2010 | Cilag GmbH International | Surgical stapler with floating anvil |
10751051, | Jan 14 2013 | Intuitive Surgical Operations, Inc. | Torque compensation |
10751053, | Sep 26 2014 | Cilag GmbH International | Fastener cartridges for applying expandable fastener lines |
10751076, | Dec 24 2009 | Cilag GmbH International | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
10751138, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with a robotic system |
10758229, | Dec 21 2016 | Cilag GmbH International | Surgical instrument comprising improved jaw control |
10758230, | Dec 21 2016 | Cilag GmbH International | Surgical instrument with primary and safety processors |
10758232, | Jun 28 2017 | Cilag GmbH International | Surgical instrument with positive jaw opening features |
10765425, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10765427, | Jun 28 2017 | Cilag GmbH International | Method for articulating a surgical instrument |
10765429, | Sep 29 2017 | Cilag GmbH International | Systems and methods for providing alerts according to the operational state of a surgical instrument |
10765432, | Feb 14 2008 | Cilag GmbH International | Surgical device including a control system |
10772625, | Mar 06 2015 | Cilag GmbH International | Signal and power communication system positioned on a rotatable shaft |
10772629, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10779820, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
10779821, | Aug 20 2018 | Cilag GmbH International | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
10779822, | Feb 14 2008 | Cilag GmbH International | System including a surgical cutting and fastening instrument |
10779823, | Dec 21 2016 | Cilag GmbH International | Firing member pin angle |
10779824, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system lockable by a closure system |
10779825, | Dec 15 2017 | Cilag GmbH International | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
10779826, | Dec 15 2017 | Cilag GmbH International | Methods of operating surgical end effectors |
10779903, | Oct 31 2017 | Cilag GmbH International | Positive shaft rotation lock activated by jaw closure |
10780539, | May 27 2011 | Cilag GmbH International | Stapling instrument for use with a robotic system |
10786253, | Jun 28 2017 | Cilag GmbH International | Surgical end effectors with improved jaw aperture arrangements |
10796471, | Sep 29 2017 | Cilag GmbH International | Systems and methods of displaying a knife position for a surgical instrument |
10799240, | Jul 28 2004 | Cilag GmbH International | Surgical instrument comprising a staple firing lockout |
10806448, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
10806449, | Nov 09 2005 | Cilag GmbH International | End effectors for surgical staplers |
10806450, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument having a control system |
10806479, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
10813638, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors with expandable tissue stop arrangements |
10813639, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
10813641, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10828028, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
10828032, | Aug 23 2013 | Cilag GmbH International | End effector detection systems for surgical instruments |
10828033, | Dec 15 2017 | Cilag GmbH International | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
10835245, | Dec 21 2016 | Cilag GmbH International | Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot |
10835247, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors |
10835249, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
10835251, | Sep 30 2010 | Cilag GmbH International | Surgical instrument assembly including an end effector configurable in different positions |
10835330, | Dec 19 2017 | Cilag GmbH International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
10838372, | Oct 23 2012 | Covidien LP | Surgical instrument with rapid post event detection |
10842488, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
10842489, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a cam and driver arrangement |
10842490, | Oct 31 2017 | Cilag GmbH International | Cartridge body design with force reduction based on firing completion |
10842491, | Jan 31 2006 | Cilag GmbH International | Surgical system with an actuation console |
10842492, | Aug 20 2018 | Cilag GmbH International | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
10856866, | Feb 15 2008 | Cilag GmbH International | Surgical end effector having buttress retention features |
10856868, | Dec 21 2016 | Cilag GmbH International | Firing member pin configurations |
10856869, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10856870, | Aug 20 2018 | Cilag GmbH International | Switching arrangements for motor powered articulatable surgical instruments |
10863981, | Mar 26 2014 | Cilag GmbH International | Interface systems for use with surgical instruments |
10863986, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
10869664, | Aug 31 2005 | Cilag GmbH International | End effector for use with a surgical stapling instrument |
10869665, | Aug 23 2013 | Cilag GmbH International | Surgical instrument system including a control system |
10869666, | Dec 15 2017 | Cilag GmbH International | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
10869669, | Sep 30 2010 | Cilag GmbH International | Surgical instrument assembly |
10874391, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
10874396, | Feb 14 2008 | Cilag GmbH International | Stapling instrument for use with a surgical robot |
10881396, | Jun 20 2017 | Cilag GmbH International | Surgical instrument with variable duration trigger arrangement |
10881399, | Jun 20 2017 | Cilag GmbH International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
10881401, | Dec 21 2016 | Cilag GmbH International | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
10888318, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
10888321, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
10888322, | Dec 21 2016 | Cilag GmbH International | Surgical instrument comprising a cutting member |
10888328, | Sep 30 2010 | Cilag GmbH International | Surgical end effector |
10888329, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10888330, | Feb 14 2008 | Cilag GmbH International | Surgical system |
10893853, | Jan 31 2006 | Cilag GmbH International | Stapling assembly including motor drive systems |
10893864, | Dec 21 2016 | Cilag GmbH International | Staple cartridges and arrangements of staples and staple cavities therein |
10893867, | Mar 14 2013 | Cilag GmbH International | Drive train control arrangements for modular surgical instruments |
10898183, | Jun 29 2017 | Cilag GmbH International | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
10898184, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
10898185, | Mar 26 2014 | Cilag GmbH International | Surgical instrument power management through sleep and wake up control |
10898186, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
10898190, | Aug 23 2013 | Cilag GmbH International | Secondary battery arrangements for powered surgical instruments |
10898193, | Sep 30 2010 | Cilag GmbH International | End effector for use with a surgical instrument |
10898194, | May 27 2011 | Cilag GmbH International | Detachable motor powered surgical instrument |
10898195, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10903685, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
10905403, | Dec 13 2006 | Devicor Medical Products, Inc. | Presentation of biopsy sample by biopsy device |
10905418, | Oct 16 2014 | Cilag GmbH International | Staple cartridge comprising a tissue thickness compensator |
10905422, | Dec 21 2016 | Cilag GmbH International | Surgical instrument for use with a robotic surgical system |
10905423, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
10905426, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10905427, | Feb 14 2008 | Cilag GmbH International | Surgical System |
10912559, | Aug 20 2018 | Cilag GmbH International | Reinforced deformable anvil tip for surgical stapler anvil |
10912575, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device having supports for a flexible drive mechanism |
10918380, | Jan 31 2006 | Cilag GmbH International | Surgical instrument system including a control system |
10918385, | Dec 21 2016 | Cilag GmbH International | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
10918386, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
10925605, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system |
10932772, | Jun 29 2017 | Cilag GmbH International | Methods for closed loop velocity control for robotic surgical instrument |
10932774, | Aug 30 2005 | Cilag GmbH International | Surgical end effector for forming staples to different heights |
10932775, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
10932778, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
10932779, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
10945728, | Dec 18 2014 | Cilag GmbH International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
10945729, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
10945731, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising controlled release and expansion |
10952727, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for assessing the state of a staple cartridge |
10952728, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
10959722, | Jan 31 2006 | Cilag GmbH International | Surgical instrument for deploying fasteners by way of rotational motion |
10959725, | Jun 15 2012 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
10959727, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical end effector with asymmetric shaft arrangement |
10966627, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
10966718, | Dec 15 2017 | Cilag GmbH International | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
10973516, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors and adaptable firing members therefor |
10980534, | May 27 2011 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10980535, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument with an end effector |
10980536, | Dec 21 2016 | Cilag GmbH International | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
10980537, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
10980539, | Sep 30 2015 | Cilag GmbH International | Implantable adjunct comprising bonded layers |
10987102, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising a plurality of layers |
10993713, | Nov 09 2005 | Cilag GmbH International | Surgical instruments |
10993716, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10993717, | Jan 31 2006 | Cilag GmbH International | Surgical stapling system comprising a control system |
11000274, | Aug 23 2013 | Cilag GmbH International | Powered surgical instrument |
11000275, | Jan 31 2006 | Cilag GmbH International | Surgical instrument |
11000277, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
11000279, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system ratio |
11006951, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and sensor transponders |
11006955, | Dec 15 2017 | Cilag GmbH International | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
11007004, | Jun 28 2012 | Cilag GmbH International | Powered multi-axial articulable electrosurgical device with external dissection features |
11007022, | Jun 29 2017 | Cilag GmbH International | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
11013511, | Jun 22 2007 | Cilag GmbH International | Surgical stapling instrument with an articulatable end effector |
11020112, | Dec 19 2017 | Cilag GmbH International | Surgical tools configured for interchangeable use with different controller interfaces |
11020113, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having force feedback capabilities |
11020114, | Jun 28 2017 | Cilag GmbH International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
11020115, | Feb 12 2014 | Cilag GmbH International | Deliverable surgical instrument |
11026678, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
11026680, | Aug 23 2013 | Cilag GmbH International | Surgical instrument configured to operate in different states |
11026684, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
11033267, | Dec 15 2017 | Cilag GmbH International | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
11039834, | Aug 20 2018 | Cilag GmbH International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
11039836, | Jan 11 2007 | Cilag GmbH International | Staple cartridge for use with a surgical stapling instrument |
11039837, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
11045189, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11045192, | Aug 20 2018 | Cilag GmbH International | Fabricating techniques for surgical stapler anvils |
11045270, | Dec 19 2017 | Cilag GmbH International | Robotic attachment comprising exterior drive actuator |
11045958, | Aug 03 2012 | Stryker Corporation | Surgical robotic system and method for commanding instrument position based on iterative boundary evaluation |
11051807, | Jun 28 2019 | Cilag GmbH International | Packaging assembly including a particulate trap |
11051810, | Apr 15 2016 | Cilag GmbH International | Modular surgical instrument with configurable operating mode |
11051811, | Jan 31 2006 | Cilag GmbH International | End effector for use with a surgical instrument |
11051813, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
11058418, | Feb 15 2008 | Cilag GmbH International | Surgical end effector having buttress retention features |
11058420, | Jan 31 2006 | Cilag GmbH International | Surgical stapling apparatus comprising a lockout system |
11058422, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
11058423, | Jun 28 2012 | Cilag GmbH International | Stapling system including first and second closure systems for use with a surgical robot |
11058424, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an offset articulation joint |
11058425, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
11064998, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
11071543, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
11071545, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11071554, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
11071575, | Jun 07 2016 | Pro-Dex, Inc. | Torque-limiting screwdriver devices, systems, and methods |
11076853, | Dec 21 2017 | Cilag GmbH International | Systems and methods of displaying a knife position during transection for a surgical instrument |
11076854, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11076929, | Sep 25 2015 | Cilag GmbH International | Implantable adjunct systems for determining adjunct skew |
11083452, | Sep 30 2010 | Cilag GmbH International | Staple cartridge including a tissue thickness compensator |
11083453, | Dec 18 2014 | Cilag GmbH International | Surgical stapling system including a flexible firing actuator and lateral buckling supports |
11083454, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11083455, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system ratio |
11083456, | Jul 28 2004 | Cilag GmbH International | Articulating surgical instrument incorporating a two-piece firing mechanism |
11083457, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11083458, | Aug 20 2018 | Cilag GmbH International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
11090045, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11090046, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
11090048, | Dec 21 2016 | Cilag GmbH International | Method for resetting a fuse of a surgical instrument shaft |
11090049, | Jun 27 2017 | Cilag GmbH International | Staple forming pocket arrangements |
11090075, | Oct 30 2017 | Cilag GmbH International | Articulation features for surgical end effector |
11090128, | Aug 20 2018 | PRO-DEX, INC | Torque-limiting devices, systems, and methods |
11096689, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a lockout |
11103241, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11103269, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11109858, | Aug 23 2012 | Cilag GmbH International | Surgical instrument including a display which displays the position of a firing element |
11109859, | Mar 06 2015 | Cilag GmbH International | Surgical instrument comprising a lockable battery housing |
11109860, | Jun 28 2012 | Cilag GmbH International | Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems |
11116502, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument incorporating a two-piece firing mechanism |
11129613, | Dec 30 2015 | Cilag GmbH International | Surgical instruments with separable motors and motor control circuits |
11129615, | Feb 05 2009 | Cilag GmbH International | Surgical stapling system |
11129616, | May 27 2011 | Cilag GmbH International | Surgical stapling system |
11129680, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a projector |
11133106, | Aug 23 2013 | Cilag GmbH International | Surgical instrument assembly comprising a retraction assembly |
11134938, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11134940, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including a variable speed firing member |
11134942, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and staple-forming anvils |
11134943, | Jan 10 2007 | Cilag GmbH International | Powered surgical instrument including a control unit and sensor |
11134944, | Oct 30 2017 | Cilag GmbH International | Surgical stapler knife motion controls |
11134947, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a camming sled with variable cam arrangements |
11135352, | Jul 28 2004 | Cilag GmbH International | End effector including a gradually releasable medical adjunct |
11141153, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11141154, | Jun 27 2017 | Cilag GmbH International | Surgical end effectors and anvils |
11141155, | Jun 28 2012 | Cilag GmbH International | Drive system for surgical tool |
11141156, | Jun 28 2012 | Cilag GmbH International | Surgical stapling assembly comprising flexible output shaft |
11147549, | Jun 04 2007 | Cilag GmbH International | Stapling instrument including a firing system and a closure system |
11147551, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11147553, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11147554, | Apr 18 2016 | Cilag GmbH International | Surgical instrument system comprising a magnetic lockout |
11154296, | Mar 28 2012 | Cilag GmbH International | Anvil layer attached to a proximal end of an end effector |
11154297, | Feb 15 2008 | Cilag GmbH International | Layer arrangements for surgical staple cartridges |
11154298, | Jun 04 2007 | Cilag GmbH International | Stapling system for use with a robotic surgical system |
11154299, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a firing lockout |
11154301, | Feb 27 2015 | Cilag GmbH International | Modular stapling assembly |
11160551, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical stapling instruments |
11160553, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11166717, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
11166720, | Jan 10 2007 | Cilag GmbH International | Surgical instrument including a control module for assessing an end effector |
11172927, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11172929, | Mar 25 2019 | Cilag GmbH International | Articulation drive arrangements for surgical systems |
11179141, | Dec 13 2006 | Devicor Medical Products, Inc. | Biopsy system |
11179150, | Apr 15 2016 | Cilag GmbH International | Systems and methods for controlling a surgical stapling and cutting instrument |
11179151, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a display |
11179152, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a tissue grasping system |
11179153, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11179155, | Dec 21 2016 | Cilag GmbH International | Anvil arrangements for surgical staplers |
11179210, | Aug 03 2012 | Stryker Corporation | Surgical manipulator and method for controlling pose of an instrument based on virtual rigid body modelling |
11185325, | Oct 16 2014 | Cilag GmbH International | End effector including different tissue gaps |
11185330, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge assemblies and staple retainer cover arrangements |
11191539, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
11191540, | Dec 21 2016 | Cilag GmbH International | Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument |
11191543, | Dec 21 2016 | Cilag GmbH International | Assembly comprising a lock |
11191545, | Apr 15 2016 | Cilag GmbH International | Staple formation detection mechanisms |
11197670, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
11197671, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a lockout |
11202631, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a firing lockout |
11202633, | Sep 26 2014 | Cilag GmbH International | Surgical stapling buttresses and adjunct materials |
11202682, | Dec 16 2016 | MAKO Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
11207064, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
11207065, | Aug 20 2018 | Cilag GmbH International | Method for fabricating surgical stapler anvils |
11213293, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with single articulation link arrangements |
11213302, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
11219455, | Jun 28 2019 | Cilag GmbH International | Surgical instrument including a lockout key |
11224423, | Mar 06 2015 | Cilag GmbH International | Smart sensors with local signal processing |
11224426, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11224427, | Jan 31 2006 | Cilag GmbH International | Surgical stapling system including a console and retraction assembly |
11224428, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11224454, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11224497, | Jun 28 2019 | Cilag GmbH International | Surgical systems with multiple RFID tags |
11229437, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11234698, | Dec 19 2019 | Cilag GmbH International | Stapling system comprising a clamp lockout and a firing lockout |
11241229, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11241230, | Jun 28 2012 | Cilag GmbH International | Clip applier tool for use with a robotic surgical system |
11241235, | Jun 28 2019 | Cilag GmbH International | Method of using multiple RFID chips with a surgical assembly |
11246590, | Aug 31 2005 | Cilag GmbH International | Staple cartridge including staple drivers having different unfired heights |
11246592, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system lockable to a frame |
11246616, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11246618, | Mar 01 2013 | Cilag GmbH International | Surgical instrument soft stop |
11246678, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having a frangible RFID tag |
11253254, | Apr 30 2019 | Cilag GmbH International | Shaft rotation actuator on a surgical instrument |
11253256, | Aug 20 2018 | Cilag GmbH International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
11259799, | Mar 26 2014 | Cilag GmbH International | Interface systems for use with surgical instruments |
11259803, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having an information encryption protocol |
11259805, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising firing member supports |
11266405, | Jun 27 2017 | Cilag GmbH International | Surgical anvil manufacturing methods |
11266406, | Mar 14 2013 | Cilag GmbH International | Control systems for surgical instruments |
11266409, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
11266410, | May 27 2011 | Cilag GmbH International | Surgical device for use with a robotic system |
11272927, | Feb 15 2008 | Cilag GmbH International | Layer arrangements for surgical staple cartridges |
11272928, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11272938, | Jun 27 2006 | Cilag GmbH International | Surgical instrument including dedicated firing and retraction assemblies |
11278279, | Jan 31 2006 | Cilag GmbH International | Surgical instrument assembly |
11278284, | Jun 28 2012 | Cilag GmbH International | Rotary drive arrangements for surgical instruments |
11284891, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
11284898, | Sep 18 2014 | Cilag GmbH International | Surgical instrument including a deployable knife |
11284953, | Dec 19 2017 | Cilag GmbH International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
11291440, | Aug 20 2018 | Cilag GmbH International | Method for operating a powered articulatable surgical instrument |
11291441, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
11291447, | Dec 19 2019 | Cilag GmbH International | Stapling instrument comprising independent jaw closing and staple firing systems |
11291449, | Dec 24 2009 | Cilag GmbH International | Surgical cutting instrument that analyzes tissue thickness |
11291451, | Jun 28 2019 | Cilag GmbH International | Surgical instrument with battery compatibility verification functionality |
11298125, | Sep 30 2010 | Cilag GmbH International | Tissue stapler having a thickness compensator |
11298127, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
11298132, | Jun 28 2019 | Cilag GmbH International | Staple cartridge including a honeycomb extension |
11298134, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
11304695, | Aug 03 2017 | Cilag GmbH International | Surgical system shaft interconnection |
11304696, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a powered articulation system |
11311290, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising an end effector dampener |
11311292, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11311294, | Sep 05 2014 | Cilag GmbH International | Powered medical device including measurement of closure state of jaws |
11317910, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11317913, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
11317917, | Apr 18 2016 | Cilag GmbH International | Surgical stapling system comprising a lockable firing assembly |
11324501, | Aug 20 2018 | Cilag GmbH International | Surgical stapling devices with improved closure members |
11324503, | Jun 27 2017 | Cilag GmbH International | Surgical firing member arrangements |
11324506, | Feb 27 2015 | Cilag GmbH International | Modular stapling assembly |
11337691, | Dec 21 2017 | Cilag GmbH International | Surgical instrument configured to determine firing path |
11337693, | Jun 29 2007 | Cilag GmbH International | Surgical stapling instrument having a releasable buttress material |
11337698, | Nov 06 2014 | Cilag GmbH International | Staple cartridge comprising a releasable adjunct material |
11344299, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
11344303, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11350843, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
11350916, | Jan 31 2006 | Cilag GmbH International | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
11350928, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a tissue thickness lockout and speed control system |
11350929, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and sensor transponders |
11350932, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with improved stop/start control during a firing motion |
11350934, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangement to accommodate different types of staples |
11350935, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with closure stroke reduction features |
11350938, | Jun 28 2019 | Cilag GmbH International | Surgical instrument comprising an aligned rfid sensor |
11364027, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising speed control |
11364046, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11369368, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising synchronized drive systems |
11369376, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11373755, | Aug 23 2012 | Cilag GmbH International | Surgical device drive system including a ratchet mechanism |
11376001, | Aug 23 2013 | Cilag GmbH International | Surgical stapling device with rotary multi-turn retraction mechanism |
11376098, | Jun 28 2019 | Cilag GmbH International | Surgical instrument system comprising an RFID system |
11382625, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
11382626, | Oct 03 2006 | Cilag GmbH International | Surgical system including a knife bar supported for rotational and axial travel |
11382627, | Apr 16 2014 | Cilag GmbH International | Surgical stapling assembly comprising a firing member including a lateral extension |
11382628, | Dec 10 2014 | Cilag GmbH International | Articulatable surgical instrument system |
11382638, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
11389160, | Aug 23 2013 | Cilag GmbH International | Surgical system comprising a display |
11389161, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
11389162, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11395651, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11395652, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11399828, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
11399829, | Sep 29 2017 | Cilag GmbH International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
11399831, | Dec 18 2014 | Cilag GmbH International | Drive arrangements for articulatable surgical instruments |
11399837, | Jun 28 2019 | Cilag GmbH International | Mechanisms for motor control adjustments of a motorized surgical instrument |
11406377, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11406378, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising a compressible tissue thickness compensator |
11406380, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
11406381, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11406386, | Sep 05 2014 | Cilag GmbH International | End effector including magnetic and impedance sensors |
11419606, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
11426160, | Mar 06 2015 | Cilag GmbH International | Smart sensors with local signal processing |
11426167, | Jun 28 2019 | Cilag GmbH International | Mechanisms for proper anvil attachment surgical stapling head assembly |
11426251, | Apr 30 2019 | Cilag GmbH International | Articulation directional lights on a surgical instrument |
11432816, | Apr 30 2019 | Cilag GmbH International | Articulation pin for a surgical instrument |
11439470, | May 27 2011 | Cilag GmbH International | Robotically-controlled surgical instrument with selectively articulatable end effector |
11446029, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising projections extending from a curved deck surface |
11446034, | Feb 14 2008 | Cilag GmbH International | Surgical stapling assembly comprising first and second actuation systems configured to perform different functions |
11452526, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a staged voltage regulation start-up system |
11452528, | Apr 30 2019 | Cilag GmbH International | Articulation actuators for a surgical instrument |
11457918, | Oct 29 2014 | Cilag GmbH International | Cartridge assemblies for surgical staplers |
11464512, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a curved deck surface |
11464513, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11464514, | Feb 14 2008 | Cilag GmbH International | Motorized surgical stapling system including a sensing array |
11464601, | Jun 28 2019 | Cilag GmbH International | Surgical instrument comprising an RFID system for tracking a movable component |
11464602, | Mar 23 2017 | Device and method for controlling an endodontic motor | |
11471155, | Aug 03 2017 | Cilag GmbH International | Surgical system bailout |
11471157, | Apr 30 2019 | Cilag GmbH International | Articulation control mapping for a surgical instrument |
11471232, | Aug 03 2012 | Stryker Corporation | Surgical system and method utilizing impulse modeling for controlling an instrument |
11478241, | Jun 28 2019 | Cilag GmbH International | Staple cartridge including projections |
11478242, | Jun 28 2017 | Cilag GmbH International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
11478244, | Oct 31 2017 | Cilag GmbH International | Cartridge body design with force reduction based on firing completion |
11478247, | Jul 30 2010 | Cilag GmbH International | Tissue acquisition arrangements and methods for surgical stapling devices |
11484307, | Feb 14 2008 | Cilag GmbH International | Loading unit coupleable to a surgical stapling system |
11484309, | Dec 30 2015 | Cilag GmbH International | Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence |
11484310, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising a shaft including a closure tube profile |
11484311, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
11484312, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
11490889, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
11497488, | Mar 26 2014 | Cilag GmbH International | Systems and methods for controlling a segmented circuit |
11497492, | Jun 28 2019 | Cilag GmbH International | Surgical instrument including an articulation lock |
11497499, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical stapling instruments |
11504116, | Mar 28 2012 | Cilag GmbH International | Layer of material for a surgical end effector |
11504119, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including an electronic firing lockout |
11504122, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a nested firing member |
11510671, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
11517304, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11517306, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11517311, | Dec 18 2014 | Cilag GmbH International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
11517315, | Apr 16 2014 | Cilag GmbH International | Fastener cartridges including extensions having different configurations |
11517325, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
11517390, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a limited travel switch |
11523821, | Sep 26 2014 | Cilag GmbH International | Method for creating a flexible staple line |
11523822, | Jun 28 2019 | Cilag GmbH International | Battery pack including a circuit interrupter |
11523823, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with non-symmetrical articulation arrangements |
11529137, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising driver retention members |
11529138, | Mar 01 2013 | Cilag GmbH International | Powered surgical instrument including a rotary drive screw |
11529139, | Dec 19 2019 | Cilag GmbH International | Motor driven surgical instrument |
11529140, | Jun 28 2017 | Cilag GmbH International | Surgical instrument lockout arrangement |
11529142, | Oct 01 2010 | Cilag GmbH International | Surgical instrument having a power control circuit |
11534162, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
11534259, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an articulation indicator |
11540824, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator |
11540829, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11547403, | Dec 18 2014 | Cilag GmbH International | Surgical instrument having a laminate firing actuator and lateral buckling supports |
11547404, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
11553911, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
11553916, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11553919, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11553971, | Jun 28 2019 | Cilag GmbH International | Surgical RFID assemblies for display and communication |
11559302, | Jun 04 2007 | Cilag GmbH International | Surgical instrument including a firing member movable at different speeds |
11559303, | Apr 18 2016 | Cilag GmbH International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
11559304, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a rapid closure mechanism |
11559496, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator configured to redistribute compressive forces |
11564679, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11564682, | Jun 04 2007 | Cilag GmbH International | Surgical stapler device |
11564686, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with flexible interfaces |
11564688, | Dec 21 2016 | Cilag GmbH International | Robotic surgical tool having a retraction mechanism |
11571207, | Dec 18 2014 | Cilag GmbH International | Surgical system including lateral supports for a flexible drive member |
11571210, | Dec 21 2016 | Cilag GmbH International | Firing assembly comprising a multiple failed-state fuse |
11571212, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system including an impedance sensor |
11571215, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11571231, | Sep 29 2006 | Cilag GmbH International | Staple cartridge having a driver for driving multiple staples |
11576668, | Dec 21 2017 | Cilag GmbH International | Staple instrument comprising a firing path display |
11576672, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
11576673, | Aug 31 2005 | Cilag GmbH International | Stapling assembly for forming staples to different heights |
11583274, | Dec 21 2017 | Cilag GmbH International | Self-guiding stapling instrument |
11583277, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11583278, | May 27 2011 | Cilag GmbH International | Surgical stapling system having multi-direction articulation |
11583279, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
11596406, | Apr 16 2014 | Cilag GmbH International | Fastener cartridges including extensions having different configurations |
11602340, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11602346, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
11607219, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a detachable tissue cutting knife |
11607239, | Apr 15 2016 | Cilag GmbH International | Systems and methods for controlling a surgical stapling and cutting instrument |
11612393, | Jan 31 2006 | Cilag GmbH International | Robotically-controlled end effector |
11612394, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
11612395, | Feb 14 2008 | Cilag GmbH International | Surgical system including a control system having an RFID tag reader |
11617575, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11617576, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11617577, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
11622763, | Apr 16 2013 | Cilag GmbH International | Stapling assembly comprising a shiftable drive |
11622766, | Jun 28 2012 | Cilag GmbH International | Empty clip cartridge lockout |
11622785, | Sep 29 2006 | Cilag GmbH International | Surgical staples having attached drivers and stapling instruments for deploying the same |
11627959, | Jun 28 2019 | Cilag GmbH International | Surgical instruments including manual and powered system lockouts |
11627960, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
11633183, | Apr 16 2013 | Cilag International GmbH | Stapling assembly comprising a retraction drive |
11638581, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11638582, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with torsion spine drive arrangements |
11638583, | Feb 14 2008 | Cilag GmbH International | Motorized surgical system having a plurality of power sources |
11638587, | Jun 28 2019 | Cilag GmbH International | RFID identification systems for surgical instruments |
11639001, | Aug 03 2012 | Stryker Corporation | Robotic system and method for reorienting a surgical instrument |
11642125, | Apr 15 2016 | Cilag GmbH International | Robotic surgical system including a user interface and a control circuit |
11642128, | Jun 28 2017 | Cilag GmbH International | Method for articulating a surgical instrument |
11648005, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11648006, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11648008, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having force feedback capabilities |
11648009, | Apr 30 2019 | Cilag GmbH International | Rotatable jaw tip for a surgical instrument |
11648024, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with position feedback |
11653914, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
11653915, | Dec 02 2020 | Cilag GmbH International | Surgical instruments with sled location detection and adjustment features |
11653917, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11653918, | Sep 05 2014 | Cilag GmbH International | Local display of tissue parameter stabilization |
11653920, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with communication interfaces through sterile barrier |
11660090, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with segmented flexible drive arrangements |
11660110, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11660163, | Jun 28 2019 | Cilag GmbH International | Surgical system with RFID tags for updating motor assembly parameters |
11666332, | Jan 10 2007 | Cilag GmbH International | Surgical instrument comprising a control circuit configured to adjust the operation of a motor |
11672531, | Jun 04 2007 | Cilag GmbH International | Rotary drive systems for surgical instruments |
11672532, | Jun 20 2017 | Cilag GmbH International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
11672536, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11672620, | Aug 03 2012 | Stryker Corporation | Robotic system and method for removing a volume of material from a patient |
11678877, | Dec 18 2014 | Cilag GmbH International | Surgical instrument including a flexible support configured to support a flexible firing member |
11678880, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising a shaft including a housing arrangement |
11678882, | Dec 02 2020 | Cilag GmbH International | Surgical instruments with interactive features to remedy incidental sled movements |
11684360, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising a variable thickness compressible portion |
11684361, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11684365, | Jul 28 2004 | Cilag GmbH International | Replaceable staple cartridges for surgical instruments |
11684369, | Jun 28 2019 | Cilag GmbH International | Method of using multiple RFID chips with a surgical assembly |
11684434, | Jun 28 2019 | Cilag GmbH International | Surgical RFID assemblies for instrument operational setting control |
11690615, | Apr 16 2013 | Cilag GmbH International | Surgical system including an electric motor and a surgical instrument |
11690623, | Sep 30 2015 | Cilag GmbH International | Method for applying an implantable layer to a fastener cartridge |
11696757, | Feb 26 2021 | Cilag GmbH International | Monitoring of internal systems to detect and track cartridge motion status |
11696759, | Jun 28 2017 | Cilag GmbH International | Surgical stapling instruments comprising shortened staple cartridge noses |
11696761, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11697220, | Apr 16 2015 | BOHNERT EQUIPMENT COMPANY, INC | Barrel hoop driving apparatus and electric drive |
11701110, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including a drive assembly movable in a non-motorized mode of operation |
11701111, | Dec 19 2019 | Cilag GmbH International | Method for operating a surgical stapling instrument |
11701113, | Feb 26 2021 | Cilag GmbH International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
11701114, | Oct 16 2014 | Cilag GmbH International | Staple cartridge |
11701115, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
11707273, | Jun 15 2012 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
11712244, | Sep 30 2015 | Cilag GmbH International | Implantable layer with spacer fibers |
11717285, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument having RF electrodes |
11717289, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
11717291, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising staples configured to apply different tissue compression |
11717294, | Apr 16 2014 | Cilag GmbH International | End effector arrangements comprising indicators |
11717297, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11723657, | Feb 26 2021 | Cilag GmbH International | Adjustable communication based on available bandwidth and power capacity |
11723658, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising a firing lockout |
11723662, | May 28 2021 | Cilag GmbH International | Stapling instrument comprising an articulation control display |
11730471, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with single articulation link arrangements |
11730473, | Feb 26 2021 | Cilag GmbH International | Monitoring of manufacturing life-cycle |
11730474, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement |
11730477, | Oct 10 2008 | Cilag GmbH International | Powered surgical system with manually retractable firing system |
11737748, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with double spherical articulation joints with pivotable links |
11737749, | Mar 22 2021 | Cilag GmbH International | Surgical stapling instrument comprising a retraction system |
11737751, | Dec 02 2020 | Cilag GmbH International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
11737754, | Sep 30 2010 | Cilag GmbH International | Surgical stapler with floating anvil |
11744581, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with multi-phase tissue treatment |
11744583, | Feb 26 2021 | Cilag GmbH International | Distal communication array to tune frequency of RF systems |
11744588, | Feb 27 2015 | Cilag GmbH International | Surgical stapling instrument including a removably attachable battery pack |
11744593, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11744603, | Mar 24 2021 | Cilag GmbH International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
11749877, | Feb 26 2021 | Cilag GmbH International | Stapling instrument comprising a signal antenna |
11751867, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising sequenced systems |
11751869, | Feb 26 2021 | Cilag GmbH International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
11759202, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising an implantable layer |
11759208, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
11766258, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
11766259, | Dec 21 2016 | Cilag GmbH International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
11766260, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
11771419, | Jun 28 2019 | Cilag GmbH International | Packaging for a replaceable component of a surgical stapling system |
11771425, | Aug 31 2005 | Cilag GmbH International | Stapling assembly for forming staples to different formed heights |
11771426, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication |
11771454, | Apr 15 2016 | Cilag GmbH International | Stapling assembly including a controller for monitoring a clamping laod |
11777375, | Oct 04 2019 | Gyrus ACMI, Inc. | Handheld surgical instrument with heat management |
11779330, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a jaw alignment system |
11779336, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11779420, | Jun 28 2012 | Cilag GmbH International | Robotic surgical attachments having manually-actuated retraction assemblies |
11786239, | Mar 24 2021 | Cilag GmbH International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
11786243, | Mar 24 2021 | Cilag GmbH International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
11793509, | Mar 28 2012 | Cilag GmbH International | Staple cartridge including an implantable layer |
11793511, | Nov 09 2005 | Cilag GmbH International | Surgical instruments |
11793512, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11793513, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
11793514, | Feb 26 2021 | Cilag GmbH International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
11793516, | Mar 24 2021 | Cilag GmbH International | Surgical staple cartridge comprising longitudinal support beam |
11793518, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
11793521, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
11793522, | Sep 30 2015 | Cilag GmbH International | Staple cartridge assembly including a compressible adjunct |
11801047, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor |
11801051, | Jan 31 2006 | Cilag GmbH International | Accessing data stored in a memory of a surgical instrument |
11806011, | Mar 22 2021 | Cilag GmbH International | Stapling instrument comprising tissue compression systems |
11806013, | Jun 28 2012 | Cilag GmbH International | Firing system arrangements for surgical instruments |
11811253, | Apr 18 2016 | Cilag GmbH International | Surgical robotic system with fault state detection configurations based on motor current draw |
11812954, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11812958, | Dec 18 2014 | Cilag GmbH International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
11812960, | Jul 28 2004 | Cilag GmbH International | Method of segmenting the operation of a surgical stapling instrument |
11812961, | Jan 10 2007 | Cilag GmbH International | Surgical instrument including a motor control system |
11812964, | Feb 26 2021 | Cilag GmbH International | Staple cartridge comprising a power management circuit |
11812965, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11826012, | Mar 22 2021 | Cilag GmbH International | Stapling instrument comprising a pulsed motor-driven firing rack |
11826013, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with firing member closure features |
11826042, | Mar 22 2021 | Cilag GmbH International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
11826045, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11826047, | May 28 2021 | Cilag GmbH International | Stapling instrument comprising jaw mounts |
11826048, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
11826132, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
11832816, | Mar 24 2021 | Cilag GmbH International | Surgical stapling assembly comprising nonplanar staples and planar staples |
11839352, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device with an end effector |
11839375, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising an anvil and different staple heights |
11844518, | Oct 29 2020 | Cilag GmbH International | Method for operating a surgical instrument |
11844520, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising driver retention members |
11844521, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with a robotic system |
11849939, | Dec 21 2017 | Cilag GmbH International | Continuous use self-propelled stapling instrument |
11849941, | Jun 29 2007 | Cilag GmbH International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
11849943, | Dec 02 2020 | Cilag GmbH International | Surgical instrument with cartridge release mechanisms |
11849944, | Mar 24 2021 | Cilag GmbH International | Drivers for fastener cartridge assemblies having rotary drive screws |
11849945, | Mar 24 2021 | Cilag GmbH International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
11849946, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
11849947, | Jan 10 2007 | Cilag GmbH International | Surgical system including a control circuit and a passively-powered transponder |
11849948, | Dec 21 2016 | Cilag GmbH International | Method for resetting a fuse of a surgical instrument shaft |
11849952, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising staples positioned within a compressible portion thereof |
11850011, | Dec 16 2016 | MAKO Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
11850310, | Sep 30 2010 | INTERNATIONAL, CILAG GMBH; Cilag GmbH International | Staple cartridge including an adjunct |
11857181, | May 27 2011 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11857182, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with combination function articulation joint arrangements |
11857183, | Mar 24 2021 | Cilag GmbH International | Stapling assembly components having metal substrates and plastic bodies |
11857187, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising controlled release and expansion |
11857189, | Jun 28 2012 | Cilag GmbH International | Surgical instrument including first and second articulation joints |
11864756, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with flexible ball chain drive arrangements |
11864760, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11871923, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
11871925, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with dual spherical articulation joint arrangements |
11871939, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
11877745, | Oct 18 2021 | Cilag GmbH International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
11877748, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument with E-beam driver |
11882987, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
11882991, | Aug 20 2018 | Pro-Dex, Inc. | Torque-limiting devices, systems, and methods |
11883019, | Dec 21 2017 | Cilag GmbH International | Stapling instrument comprising a staple feeding system |
11883020, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having a feedback system |
11883024, | Jul 28 2020 | Cilag GmbH International | Method of operating a surgical instrument |
11883025, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising a plurality of layers |
11883026, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge assemblies and staple retainer cover arrangements |
11890005, | Jun 29 2017 | Cilag GmbH International | Methods for closed loop velocity control for robotic surgical instrument |
11890008, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
11890010, | Dec 02 2020 | Cilag GmbH International | Dual-sided reinforced reload for surgical instruments |
11890012, | Jul 28 2004 | Cilag GmbH International | Staple cartridge comprising cartridge body and attached support |
11890015, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11890029, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
11890144, | Jun 07 2016 | Pro-Dex, Inc. | Torque-limiting screwdriver devices, systems, and methods |
11896217, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an articulation lock |
11896218, | Mar 24 2021 | Cilag GmbH International; INTERNATIONAL, CILAG GMBH | Method of using a powered stapling device |
11896219, | Mar 24 2021 | Cilag GmbH International | Mating features between drivers and underside of a cartridge deck |
11896222, | Dec 15 2017 | Cilag GmbH International | Methods of operating surgical end effectors |
11896225, | Jul 28 2004 | Cilag GmbH International | Staple cartridge comprising a pan |
11903581, | Apr 30 2019 | Cilag GmbH International | Methods for stapling tissue using a surgical instrument |
11903582, | Mar 24 2021 | Cilag GmbH International | Leveraging surfaces for cartridge installation |
11903586, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11911027, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11911028, | Jun 04 2007 | Cilag GmbH International | Surgical instruments for use with a robotic surgical system |
11911032, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a seating cam |
5980248, | Jul 28 1995 | Kabushiki Kaisha Morita Seisakusho | Motor controller for a dental handpiece |
6017354, | Aug 15 1996 | Stryker Corporation | Integrated system for powered surgical tools |
6086544, | Mar 31 1999 | DEVICOR MEDICAL PRODUCTS, INC | Control apparatus for an automated surgical biopsy device |
6090123, | Feb 12 1999 | Stryker Corporation | Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly |
6120462, | Mar 31 1999 | DEVICOR MEDICAL PRODUCTS, INC | Control method for an automated surgical biopsy device |
6273862, | Oct 23 1998 | DEVICOR MEDICAL PRODUCTS, INC | Surgical device for the collection of soft tissue |
6329778, | Aug 15 1996 | Stryker Corporation | Integrated system for powered surgical tools |
6352532, | Dec 14 1999 | Ethicon Endo-Surgery, Inc | Active load control of ultrasonic surgical instruments |
6428487, | Dec 17 1999 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy system with remote control for selecting an operational mode |
6432064, | Apr 09 2001 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy instrument with tissue marking element |
6432065, | Dec 17 1999 | DEVICOR MEDICAL PRODUCTS, INC | Method for using a surgical biopsy system with remote control for selecting and operational mode |
6536402, | May 04 2001 | Caterpillar Inc | Programmable torque limit |
6610020, | Oct 13 2000 | DEVICOR MEDICAL PRODUCTS, INC | Fork assembly for a surgical biopsy device |
6616446, | May 10 1999 | Working device for drilling, cutting and screwdriver instruments used for medical purposes | |
6620111, | Apr 20 2001 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy device having automatic rotation of the probe for taking multiple samples |
6656133, | Oct 13 2000 | DEVICOR MEDICAL PRODUCTS, INC | Transmission assembly for a surgical biopsy device |
6752768, | Dec 17 1999 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy system with remote control for selecting an operational mode |
6752816, | Aug 15 1996 | Stryker Corporation | Powered surgical handpiece with removable control switch |
6904813, | Sep 05 2003 | Ford Global Technologies, LLC | System and method for monitoring torque in an electric motor |
6955536, | Sep 24 2002 | Motor control system for endodontic handpiece providing dynamic torque limit tracking of specific file fatigue | |
7060039, | Oct 13 2000 | DEVICOR MEDICAL PRODUCTS, INC | Fork assembly for a surgical biopsy device |
7108660, | Apr 20 2001 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy device having automatic rotation of the probe for taking multiple samples |
7177533, | Sep 24 2000 | Medtronic, Inc.; Medtronic, Inc | Motor control system for a surgical handpiece |
7369757, | May 24 2006 | Covidien LP | Systems and methods for regulating power in a medical device |
7517351, | Aug 15 1996 | Stryker Corporation | Surgical tool system including plural powered handpieces and a console to which the handpieces are simultaneously attached, the console able to energize each handpiece based on data stored in a memory integral with each handpiece |
7806835, | Nov 20 2007 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with sharps reduction feature |
7858038, | Nov 20 2007 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with illuminated tissue holder |
7914464, | Jun 18 2002 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy system with control unit for selecting an operational mode |
7938786, | Dec 13 2006 | DEVICOR MEDICAL PRODUCTS, INC | Vacuum timing algorithm for biopsy device |
7981049, | Dec 13 2006 | DEVICOR MEDICAL PRODUCTS, INC | Engagement interface for biopsy system vacuum module |
7994746, | May 25 2007 | Delta Electronics, Inc. | Motor control method and apparatus thereof |
7998157, | Aug 15 1996 | Stryker Corporation | Surgical tool system with a powred handpiece and a console, the console able to provide energization signals to the handpiece in either a motor drive mode or a direct drive mode |
8016844, | Oct 23 1998 | DEVICOR MEDICAL PRODUCTS, INC | Surgical device for the collection of soft tissue |
8052616, | Nov 20 2007 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with fine pitch drive train |
8187204, | Oct 01 2007 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Surgical device and method for using same |
8197501, | Mar 20 2008 | Medtronic Xomed, Inc. | Control for a powered surgical instrument |
8202229, | Oct 01 2007 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Surgical device |
8206409, | Oct 23 1998 | Devicor Medical Products, Inc. | Surgical device for the collection of soft tissue |
8251916, | Dec 13 2006 | DEVICOR MEDICAL PRODUCTS, INC | Revolving tissue sample holder for biopsy device |
8454531, | Nov 20 2007 | DEVICOR MEDICAL PRODUCTS, INC | Icon-based user interface on biopsy system control module |
8460207, | Dec 17 1999 | Devicor Medical Products, Inc. | Surgical biopsy system with remote control for selecting an operational mode |
8480595, | Dec 13 2006 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with motorized needle cocking |
8545527, | Mar 20 2008 | Medtronic Xomed, Inc. | Control for a powered surgical instrument |
8653919, | Aug 15 1996 | Stryker Corporation | Removable hand switch for attachment to a powered surgical tool |
8702623, | Dec 18 2008 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with discrete tissue chambers |
8729845, | Feb 25 2011 | Siemens Aktiengesellschaft | Method and device for controlling an electric motor |
8808200, | Oct 01 2007 | Suros Surgical Systems, Inc. | Surgical device and method of using same |
8932233, | May 21 2004 | DEVICOR MEDICAL PRODUCTS, INC | MRI biopsy device |
8968212, | Dec 13 2006 | Devicor Medical Products, Inc. | Biopsy device with motorized needle cocking |
8979768, | Oct 23 1998 | Devicor Medical Products, Inc. | Surgical device for the collection of soft tissue |
9039634, | Nov 20 2007 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device tissue sample holder rotation control |
9039635, | Dec 17 1999 | Devicor Medical Products, Inc. | Surgical biopsy system with remote control for selecting an operational mode |
9077276, | Jul 02 2010 | NAKANISHI INC | Motor control method and motor control apparatus for dental handpiece |
9199552, | May 30 2012 | RENAULT S A S | System and method for monitoring the torque of a motor vehicle engine |
9265551, | Jul 19 2013 | PRO-DEX, INC | Torque-limiting screwdrivers |
9265585, | Oct 23 2012 | Covidien LP | Surgical instrument with rapid post event detection |
9345457, | Dec 13 2006 | DEVICOR MEDICAL PRODUCTS, INC | Presentation of biopsy sample by biopsy device |
9392999, | May 21 2004 | Devicor Medical Products, Inc. | MRI biopsy device |
9433402, | Oct 23 1998 | Devicor Medical Products, Inc. | Surgical device for the collection of soft tissue |
9433403, | Nov 20 2007 | Devicor Medical Products, Inc. | Icon-based user interface on biopsy system control module |
9504453, | May 21 2004 | Devicor Medical Products, Inc. | MRI biopsy device |
9638770, | May 21 2004 | DEVICOR MEDICAL PRODUCTS, INC | MRI biopsy apparatus incorporating an imageable penetrating portion |
9675354, | Jan 14 2013 | Intuitive Surgical Operations, Inc | Torque compensation |
9795365, | May 21 2004 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating a sleeve and multi-function obturator |
D851762, | Jun 28 2017 | Cilag GmbH International | Anvil |
D854151, | Jun 28 2017 | Cilag GmbH International | Surgical instrument shaft |
D869655, | Jun 28 2017 | Cilag GmbH International | Surgical fastener cartridge |
D879808, | Jun 20 2017 | Cilag GmbH International | Display panel with graphical user interface |
D879809, | Jun 20 2017 | Cilag GmbH International | Display panel with changeable graphical user interface |
D890784, | Jun 20 2017 | Cilag GmbH International | Display panel with changeable graphical user interface |
D906355, | Jun 28 2017 | Cilag GmbH International | Display screen or portion thereof with a graphical user interface for a surgical instrument |
D907647, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with animated graphical user interface |
D907648, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with animated graphical user interface |
D910847, | Dec 19 2017 | Cilag GmbH International | Surgical instrument assembly |
D914878, | Aug 20 2018 | Cilag GmbH International | Surgical instrument anvil |
D917500, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with graphical user interface |
D966512, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D967421, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D974560, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975278, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975850, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975851, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D976401, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D980425, | Oct 29 2020 | Cilag GmbH International | Surgical instrument assembly |
ER1904, |
Patent | Priority | Assignee | Title |
4486176, | Oct 08 1981 | Kollmorgen Technologies Corporation | Hand held device with built-in motor |
4568283, | Dec 22 1983 | Kabushiki Kaisha Morita Seisaksuho | Medical handpiece |
4760317, | Jul 23 1986 | Bien-Air SA | Electrical arrangement for driving a rotary tool fitted in a handpiece |
4870334, | Aug 22 1986 | Otis Elevator Company | Motor control apparatus |
5469215, | Aug 02 1993 | Okuma Corporation | Method and apparatus for controlling an electric motor with compensation or torque ripple |
RE30356, | Jun 16 1978 | Hand drilling |
Date | Maintenance Fee Events |
Jan 26 2000 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 04 2000 | ASPN: Payor Number Assigned. |
Feb 04 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 13 2007 | ASPN: Payor Number Assigned. |
Aug 13 2007 | RMPN: Payer Number De-assigned. |
Jan 11 2008 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 06 1999 | 4 years fee payment window open |
Feb 06 2000 | 6 months grace period start (w surcharge) |
Aug 06 2000 | patent expiry (for year 4) |
Aug 06 2002 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 06 2003 | 8 years fee payment window open |
Feb 06 2004 | 6 months grace period start (w surcharge) |
Aug 06 2004 | patent expiry (for year 8) |
Aug 06 2006 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 06 2007 | 12 years fee payment window open |
Feb 06 2008 | 6 months grace period start (w surcharge) |
Aug 06 2008 | patent expiry (for year 12) |
Aug 06 2010 | 2 years to revive unintentionally abandoned end. (for year 12) |