A powered medical instrument includes a manually operable foot switch coupled to a motor control unit which in turn is coupled to an autoclavable handpiece containing a brushless sensorless electric motor driving a tool. The motor control arrangement includes a control panel through which a user can select a maximum torque value for the motor, and includes a torque limit circuit which limits the motor torque to the torque limit value selected by the user. The control panel also provides a digital display of actual motor speed and allows the user to digitally specify a maximum motor speed. The output of the foot switch is adjusted by a transfer function and then used to control motor speed, and the transfer function is adjusted as necessary to precisely conform the actual motor speed and thus the displayed speed to the selected maximum speed. The feedback path for the actual motor speed is entirely digital, so that a highly accurate value of actual speed is available for display and for adjustment of the transfer function.

Patent
   5543695
Priority
Dec 15 1993
Filed
Jan 05 1995
Issued
Aug 06 1996
Expiry
Dec 15 2013
Assg.orig
Entity
Large
938
6
all paid
29. A method of regulating the speed of motor of a medical instrument, the medical instrument having a tool attached to the motor, the motor being designed to operate at selected speeds in response the application of a modulated power signal thereto, said method including the steps of:
generating a motor speed signal representative of the speed of the motor;
generating a maximum speed signal representative of a maximum speed at which the motor is to operate;
generating a user speed signal representative of a speed which the user wants the motor to operate at;
comparing said user speed signal to said maximum speed signal;
when said user speed signal-maximum speed signal comparison indicates said motor is to operate below said maximum speed, generating a speed setpoint signal as a function of a said user speed signal and a function ratio;
applying said motor speed signal and said speed setpoint signal to a motor controller, said motor controller comparing said motor speed signal and said speed setpoint signal and, based on said comparison, generating a modulated power signal for application to the motor;
when said user speed-maximum speed comparison indicates the motor is to be operated at the user-selected maximum speed, generating a speed setpoint signal based on said function ratio that is representative of said maximum speed, applying said maximum speed setpoint signal to said motor controller and comparing said motor speed signal to said maximum speed and based on said motor speed signal-maximum speed signal comparison, adjusting said function ratio to cause the generation of a speed setpoint signal that causes said motor to operate at said maximum speed.
18. A medical instrument including:
a tool;
a motor coupled to said tool for driving said tool through a repetitive path of movement at a selected speed, said motor being actuated to operate at said selected speed in response to an application of a variable motor energization signal thereto;
a speed monitor connected to said motor for producing a motor speed signal representative of said speed of said motor;
a motor controller connected to said motor for applying said motor energization signal thereto and to said speed monitor for receiving said motor speed signal therefrom, said motor controller being configured to compare said speed signal to a speed setpoint signal and, in response to said comparison, to vary said motor energization signal to cause said motor to operate at a selected speed; and
an instrument control assembly including:
a maximum speed input device for generating a maximum speed signal in response to the inputting of a user-selected maximum tool speed;
a speed control input device for generating a user speed signal in response to the inputting of a user-selected real time speed command; and
an instrument controller connected to said speed monitor to receive said motor speed signal, to said maximum speed input device for receiving said maximum speed signal, to said speed control input device for receiving said user speed signal and to said motor controller, said instrument controller being configured to generate said speed setpoint signal for application to said motor controller as a function of said user speed signal and a variable function ratio and to compare said user speed signal to said maximum speed signal wherein, when said comparison of said user speed signal to said maximum speed signal indicates said motor is to be operated at the maximum speed, said instrument controller is further configured to compare said motor speed signal to said maximum speed signal and, based on said comparison, to adjust said function ratio.
1. A medical instrument including:
a tool;
a brushless motor coupled to said tool for driving said tool through a selective repetitive path of movement at a selected speed, said motor being actuated in response to an application of a pulse width modulated signal thereto and developing a torque in response to the movement of said tool; and
a control unit connected to said motor for applying said pulse width modulated signal thereto, said control unit including:
a driver for generating a variable frequency pulse width modulated signal for application to said motor, said driver frequency modulating said pulse width modulated signal in response to a driver control signal applied to said driver wherein, said pulse width modulated signal has a current that varies with said torque developed by said motor;
a speed sensor connected to said motor for monitoring said speed of said motor and producing a motor speed signal representative of said motor speed;
a current sensor connected to said driver for producing a current signal representative of said torque developed by said motor;
a speed controller connected to said speed sensor for receiving said speed signal, said speed controller being configured to compare said speed signal to a speed setpoint signal representative of a selected motor speed and to produce a speed error signal based on said comparison;
a torque controller connected to said speed controller for receiving said speed error signal, said torque controller being configured to compare said speed error signal to a torque limit signal representative of a selected maximum torque and to produce a selectively adjusted speed error signal in response to said comparison; and
a driver controller connected to said current sensor for receiving said current signal, to said torque controller for receiving said adjusted speed error signal and to said driver, said driver controller being configured to compare said current signal with said adjusted speed error signal, to produce said driver control signal based on said comparison and to transmit said driver control signal to said driver.
14. A medical instrument including:
a tool;
a brushless motor coupled to said tool for driving said tool through a repetitive path of movement at a selected speed, said motor being actuated to operate at said selected speed in response to an application of multi-phase pulse width modulated signals thereto, said motor developing a torque in response to movement of said tool;
a driver connected to said motor, said driver including a plurality of transistors that are selectively switched between a voltage source and ground to generate a plurality of pulse width modulated signals for application to said motor, said transistors being switched in response to the application of driver control signals thereto and said transistors having a current flowing therethrough representative of said torque developed by said motor;
a speed sensor connected to said motor for monitoring said speed of said motor and producing a speed signal representative of said speed of said motor;
a current sensor connected to said driver transistors for producing a transistor current signal representative of said current flowing through said transistors;
a speed regulator connected to said speed sensor for receiving said speed signal, said speed regulator being configured to compare said speed signal to a speed setpoint speed signal representative of a selected motor speed and to produce a speed error signal based on said comparison;
a torque regulator connected to said speed regulator for receiving said speed error signal, said torque regulator being configured to compare said speed error signal to a torque limit signal representative of a selected maximum torque and to produce a selectively adjusted speed error signal based on said comparison; and
a driver controller connected to said current sensor for receiving said transistor current signal and to said torque controller for receiving said adjusted speed error signal and to said driver, said driver controller being configured to compare said transistor current signal with said adjusted speed error and to produce said driver control signals in response to said comparison, wherein said driver control signals are of a sufficient potential so that said transistors alternatively connect said motor between the voltage source and ground.
2. The medical instrument of claim 1, wherein said driver includes at least one transistor for periodically connecting said motor between a voltage source and ground and said current sensor is connected to said at least one transistor for monitoring the current therethrough.
3. The medical instrument of claim 2, wherein said torque controller is configured to selectively attenuate said speed error signal to produce said adjusted speed error signal when said speed error signal exceeds said torque limit signal.
4. The medical instrument of claim 1, wherein said motor is a multi-phase motor to which at least two pulse width modulation signals are applied and said driver produces a plurality of pulse width modulated signals for application to said motor.
5. The medical instrument of claim 4, wherein: said driver includes a plurality of inverters, each said invertor producing one of said pulse width modulated signals for application to said motor and each said invertor includes at least one transistor for periodically connecting said motor between a voltage source and ground; and said current sensor is connected to said invertors for monitoring current through said transistors.
6. The medical instrument of claim 5, further including:
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said reduction ratio; and
an instrument controller connected to said gear reduction unit for establishing said selected gear reduction ratio in response to a user selection and said instrument controller being further configured to generate said torque limit signal as a function of the user-selected reduction ratio and to transmit said torque limit signal to said torque controller.
7. The medical instrument of claim 5, wherein said tool has a longitudinal axis and said motor is coupled to said tool so as to rotate said tool along said longitudinal axis.
8. The medical instrument of claim 7, wherein said tool is a drill.
9. The medical instrument of claim 1, further including:
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of gear reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said gear reduction ratio; and
an instrument controller connected to said gear reduction unit for establishing said selected gear reduction ratio in response to a user selection and said instrument controller being further configured to generate said torque limit signal as a function of the user-selected gear reduction ratio and to transmit said torque limit signal to said torque controller.
10. The medical instrument of claim 1, wherein said torque controller is configured to selectively attenuate said speed error signal to produce said adjusted speed error signal when said speed error signal exceeds said torque limit signal.
11. The medical instrument of claim 1, wherein said tool has a longitudinal axis and said motor is coupled to said tool so as to rotate said tool along said longitudinal axis.
12. The medical instrument of claim 11, wherein said tool is a drill.
13. The medical instrument of claim 1, wherein said current signal produced by said current sensor and applied to said driver controller is a variable voltage signal.
15. The medical instrument of claim 14, wherein said torque controller is configured to selectively attenuate said speed error signal to produce said adjusted speed error signal when said speed error signal exceeds said torque limit signal.
16. The medical instrument of claim 14, wherein said tool has a longitudinal axis and said motor is coupled to said tool so as to rotate said tool along said longitudinal axis.
17. The medical instrument of claim 14, wherein said tool is a drill.
19. The medical instrument of claim 18, wherein:
said motor develops a torque as a result of the movement of said tool;
said instrument further includes a torque monitor connected to said motor for monitoring said motor torque, said torque monitor being configured to generate a motor torque signal representative of said motor torque;
said instrument control assembly further includes a torque input device for generating a maximum torque signal in response to a user-selected maximum torque command; and
said instrument controller is connected to said torque monitor for receiving said torque signal and to said torque input device for receiving said maximum torque signal and is further configured to compare said motor torque signal to said maximum torque signal, wherein when said comparison indicates said motor torque is greater than said user-selected maximum torque, said instrument controller bypasses said adjustment of said function ratio.
20. The medical instrument of claim 19, wherein said motor controller is connected to said torque monitor for receiving said motor torque signal and to said torque input device for receiving said maximum torque signal and said motor control is further configured to compare said motor torque signal to said maximum torque signal and to vary said motor energization signal based on said comparison.
21. The medical instrument of claim 20, wherein said motor controller is connected to said motor to function as said speed monitor and said instrument controller is connected to said motor controller for receiving said motor speed signal and said motor torque signal therefrom.
22. The medical instrument of claim 19, further including:
a gear reduction unit for coupling said tool to said motor, said gear reduction unit being configured to establish one of a plurality of gear reduction ratios between said motor and said tool so that said tool is actuated at a speed relative to said speed of said motor that is representative of a selected said gear reduction ratio; and
said instrument controller is connected to said gear reduction unit for establishing said selected reduction ratio in response to a user selection and said instrument controller is further configured to at least modulate said maximum torque signal as a function of the user-selected gear reduction ratio.
23. The medical instrument of claim 22, wherein said motor controller is connected to said torque monitor for receiving said motor torque signal and to said instrument controller for receiving said modulated maximum torque signal and said motor control is further configured to compare said motor torque signal to said maximum torque signal and to vary said motor energization signal based on said comparison.
24. The medical instrument of claim 19, wherein said tool has a longitudinal axis and said motor is coupled to said tool so as to rotate said tool along said longitudinal axis.
25. The medical instrument of claim 19, wherein said motor is a brushless motor.
26. The medical instrument of claim 18, wherein said motor is a brushless motor.
27. The medical instrument of claim 18, wherein said tool has a longitudinal axis and said motor is coupled to said tool so as to rotate said tool along said longitudinal axis.
28. The medical instrument of claim 18, wherein said motor controller is connected to said motor to function as said speed monitor and said instrument controller is connected to said motor controller for receiving said motor speed signal therefrom.
30. The method of medical instrument motor speed regulation of claim 29, further including the steps of:
generating a maximum torque signal representative of a maximum torque at which the motor is to operate;
generating a motor torque signal representative of the torque produced by said motor;
comparing said motor torque signal to said maximum torque signal; and
when said motor torque signal/maximum torque signal comparison indicates the motor torque exceeds the selected maximum torque, bypassing said adjustment of said transfer function ratio.

This is a continuation of Ser. No. 08/167,737, filed Dec. 15, 1993, abandoned.

The present invention relates to a powered medical instrument and, more specifically, to a powered medical instrument having an electric motor which must be subjected to an autoclave, which must run precisely at a maximum speed specified digitally by a user, and which must be capable of having its torque limited to a user-selected value.

One known type of powered medical instrument is a dental drill, including a handpiece containing an electric motor, a separate motor control unit detachably coupled to the handpiece, and a progressively actuatable foot switch used by an operator to vary the motor speed.

Conventional instruments of this type use brushless motors contain Hall sensors which are used to monitor motor operation. However, the handpiece containing the motor must be periodically subjected to high temperatures for purposes of sterilization, for example by being placed in an autoclave. This presents a problem, in that the high temperatures of an autoclave tend to destroy the Hall sensors in the motor. One known approach for protecting the Hall sensors is to hermetically seal them, but the sealed sensors are relatively large and prevent the motor from being relatively compact and lightweight, which is desirable in a handpiece.

Brushless motors which do not have sensors have been developed for other applications, such as rotationally driving the hard disk drive of a personal computer. However, these other applications typically involve a relatively simple motor control situation, because the motor is always operated at a predetermined fixed speed. In contrast, a powered medical instrument such as a dental drill must be capable of operation through a range of motor speeds and loads.

A further consideration is that, as digital technology has improved, the doctor or dentist using a dental drill is typically permitted to manually select a maximum motor speed for a given drilling operation, and during the drilling operation is able to watch the actual motor speed on a digital display. However, manufacturing tolerances of the motor and various components in the motor control arrangement can cause the actual speed to vary somewhat from the specified speed. For example, the motor speed constant, which is a function of manufacturing tolerances, may vary by 10% from motor to motor. While the actual speed may be reasonably close to the specified speed, the precise accuracy inherent in a digital display tends to make even small deviances appear significant, suggesting to the operator that the system is not fulfilling its responsibility of operating the motor exactly at the specified speed. Although it is theoretically possible to minimize such deviances by holding all critical components to very tight manufacturing tolerances, this significantly increases the cost of these components, and thus the cost of the overall system.

Still another consideration is that the electric motor used in a dental drill or similar medical instrument is often capable of producing torques which would break certain components within the drive train of the handpiece, and it is thus important to be able to limit motor torque to a value which avoids breakage. According to the present state of the art, the electric motor is usually operated by a motor control invertor having several pairs of transistors arranged in a totem pole configuration and controlled by complementary pulse width modulated control signals. Torque limiting schemes have previously been developed, but often limit the torque to a predetermined value which cannot be varied, and often have the effect of causing the transistors of the invertor to run in a linear mode rather than a switching mode, causing the transistors to generate more heat and thus necessitating the use of heat sinks and/or larger packages.

In view of the foregoing, one object of the present invention is to provide a powered medical instrument which utilizes a brushless sensorless motor and provides variable speed operation of the motor.

A further object is to provide a powered medical instrument having an arrangement for conforming actual motor speed to a digitally specified speed without requiring the use of strict manufacturing tolerances for the motor and certain components of the motor control arrangement.

A further object is to provide a powered medical instrument having a torque limiting arrangement which permits torque to be limited to a range of values while ensuring that the drive elements of an invertor controlling the motor always run in a switching mode and never in a linear mode, thereby substantially eliminating heat dissipation and avoiding heat sinks, while allowing tighter packaging.

The objects and purposes of the invention, including those set forth above, are met according to one form of the present invention by providing a powered medical instrument which includes a sensorless brushless electric motor, and a motor control arrangement coupled to the motor for operationally controlling the motor.

Another form of the present invention involves a powered medical instrument which includes: an electric motor; an arrangement for indicating a specified motor speed; a manually operable input device generating an output which varies from a first value to a second value as a function of varying manual operation; a motor control arrangement for causing the motor to run at a rotational speed which is a function of the output of the input device as adjusted by a function; an actual speed indicating arrangement for indicating a precise actual speed of the motor; and an adjusting arrangement responsive to the specified motor speed and the precise actual speed for adjusting the function when necessary to cause the motor to run substantially exactly at the specified motor speed when the output of the input device has the second value.

Still another form of the present invention involves an apparatus which includes: an electric motor; an arrangement for indicating a limit value representing a maximum motor torque; and a motor control arrangement for operationally controlling the motor, the motor control arrangement including an arrangement for producing a speed error output representing a difference between a setpoint and an actual speed of the motor, a torque limiting arrangement for producing an adjusted error output which is the lesser of the limit value and the magnitude of the speed error output, and an arrangement for supplying to the motor a quantity of motor current which corresponds to the magnitude of the adjusted error output.

One further form of the present invention involves an apparatus which includes: an electric motor; a limit specifying arrangement for indicating a limit value representing a maximum motor torque, the limit specifying arrangement including an arrangement for facilitating a selective change of the limit value; and a motor control arrangement for operationally controlling the motor, the motor control arrangement including an arrangement responsive to a difference between a setpoint and an actual speed of the motor for controlling motor current to reduce the difference, the motor control arrangement including an arrangement responsive to the limit value for limiting motor current to a value corresponding to the maximum motor torque represented by the limit value.

A preferred embodiment of the invention is described in detail hereinafter with reference to the accompanying drawings, in which:

FIG. 1 is a block diagram of a dental drill system which embodies the present invention;

FIG. 2 is a circuit schematic for a portion of the system of FIG. 1;

FIG. 3 is a flowchart of an interrupt routine which is executed by a microprocessor in the system of FIG. 1 when a button is pressed on a control panel;

FIG. 4 is a flowchart of a further interrupt routine which is executed by the microprocessor at periodic intervals; and

FIG. 5 is a flowchart of a main routine executed by the microprocessor.

FIG. 1 shows a powered medical instrument 10 which is a dental drill system. The dental drill system 10 includes a foot switch unit 12 coupled to a control unit 13 which is in turn coupled to a handpiece 14.

The foot switch unit 12 includes a forward foot switch 17 and a reverse foot switch 18, each of which is detachably electrically coupled to the control unit 13 by a connector 19. The forward foot switch 17 and the reverse foot switch 18 can each manually be operated by a foot, and each produce an output voltage which progressively changes as the foot switch is progressively activated.

The handpiece 14 includes a motor portion 22 having therein a brushless sensorless three-phase AC electric motor 23 of conventional design. The motor 23 is detachably electrically coupled to the control unit 13 through a three-wire cable 25 and a connector 24. The motor has a rotatably supported shaft 26.

The handpiece 14 also includes a gear reduction portion 27 which is detachably coupled to the motor portion 22 and which includes a gear reduction mechanism 28. The gear reduction mechanism 28 is driven by the rotating motor shaft 26, and has an output shaft 31 that rotates at a slower speed than the motor shaft 26. The output shaft 31 has mounted on it a tool 32, which in FIG. 1 is a dental drill. There are actually six different gear reduction portions 27 which can be interchangeably coupled to the motor portion 14. The only difference between them is that each has a different gear reduction ratio, and therefore only one of the gear reduction portions 27 is illustrated in FIG. 1.

The control unit 13 includes a control panel which has a push-button section 36 and a display section 37. The push-button section 36 includes four push buttons, namely a GEAR RATIO push button 41, a SPEED/TORQUE push button 42, an UP push button 43, and a DOWN push button 44. The display section 37 includes several light emitting diodes (LEDs), including a SPEED LED 46, a TORQUE LED 47, and six RATIO LEDs 48. Each of the six RATIO LEDs 48 corresponds to the gear reduction ratio of a respective one of the six gear reduction portions 27. The display section 37 also includes a character display 49, which in the preferred embodiment is a conventional multi-digit LED display.

The control unit 13 also includes a microcontroller 61, which in the preferred embodiment is based on a conventional and commercially available microcontroller available from Signetics of Sunnyvale, Calif., as Part No. S80C552-AN68, and includes associated support circuitry. Those of ordinary skill in the art will recognize that the microcontroller 61 could also be based on other conventional and commercially available integrated circuits. The major components of the microcontroller 61 will be briefly described to facilitate a thorough understanding of the present invention, but those skilled in the art will readily recognize how to implement a suitable microcontroller. Therefore, and since the microcontroller 61 is not in and of itself the focus of the present invention, the microcontroller 61 is not described in extensive detail.

As shown in FIG. 1, the microcontroller 61 includes a microprocessor 62, which is coupled to a read only memory (ROM) 63 storing a program executed by the microprocessor 62, a random access memory (RAM) 64 where the microprocessor can store variables and other data utilized by its program, and an electrically erasable programmable read only memory (EEPROM) 67. The contents of the EEPROM 67 can be changed by the program in the RAM 63 but are retained through a power outage, and the EEPROM thus be used to store data which changes but which must be maintained when power is off.

The microcontroller 61 has an input port 68 which receives the output of each of the push-button switches 41-44. It also has an output port 71 which drives each of the elements 46-49 of the display, an output port 72 which produces a signal FORWARD/REVERSE indicating whether the motor 23 should rotate in a forward direction or a reverse direction, an output port 73 which outputs several motor control signals at 76, output ports 74 which output a multi-bit digital speed setpoint at 77 and a multi-bit torque limit value at 78, and an output port 75 which controls a conventional tone generator 79 that can produce audible beeps through a small loudspeaker 80.

The microcontroller 61 also includes an analog-to-digital (A/D) converter 81 that receives the analog output voltages from each of the foot switches 17 and 18 and converts each to a digital value, and an A/D converter 82 that receives on a line 84 a signal ISENSE, which is an analog voltage having a magnitude corresponding to the prevailing magnitude of the motor current, the A/D converter 82 converting the analog voltage of the ISENSE signal into a digital value. The microcontroller 61 also has a frequency sensing circuit 83 that receives a TACH signal on line 86. The TACH signal on line 86 is a square wave pulse of 50% duty cycle, the frequency of the TACH signal representing the present speed of the motor 23. The frequency sensing circuit 83 detects a leading edge of the TACH signal, measures the time until a trailing edge occurs, and stores the measured time interval in a predetermined location of the RAM 64 for subsequent use by the processor, as described later.

The digital speed setpoint value 77 from the output port 74 is coupled to a conventional digital-to-analog (D/A) converter 87, which converts the digital value into an analog signal on line 88 that has a voltage corresponding in magnitude to the magnitude of the digital value at 77. Similarly, the digital torque limit value 78 is supplied to a D/A converter 89, which outputs a torque limit signal 90 with a voltage corresponding in magnitude to the magnitude of the digital torque limit value 78.

The control unit 13 includes a six FET invertor, which is a conventional circuit having three pairs of FETs, each pair being arranged in a totem pole configuration between a DC voltage and ground. The node between the transistors of each totem pole pair is connected to the motor 23 through the connector 24 by a respective one of three conductors 92. The transistors of each totem pole pair are switched in a complementary manner, so that the node between the transistors of each pair alternates between the DC voltage and ground so as to generate AC square wave signals which are supplied to the motor 23 by lines 92 and 25 in order to commutate the motor windings 23 in a manner causing the motor shaft 26 to rotate.

The conductors 92 that extend between the inverter 91 and the motor controller 24 have a set of branch conductors 92a that are connected to a motor controller 96 through a multiplexer 93. The motor controller 96 outputs six switching control signals at 95 to a multiplexer 97, which then forwards them to a three-phase gate driver 98, which in turns supplies the six signals to the invertor 91, where each of the six signals is applied to the gate input of a respective FET. The motor controller 96 is based on a conventional and commercially available integrated circuit, which in the preferred embodiment is available from Micro Linear of San Jose, Calif., as Part No. ML4411. The motor controller 96 was designed primarily for applications such as operating the motor of a conventional hard disk drive in a computer system, where the motor runs at a constant speed, and in such a conventional application the six output lines 95 of the motor controller 96 are directly connected to the gates of respective FETs in a conventional invertor of the type shown at 91.

However, the motor for a computer hard disk drive is relatively small in comparison to the motor 23 utilized in the preferred embodiment, as a result of which the six FETs in the invertor 91 must be components capable of handling a larger amount of current than the components in a motor for a disk drive, which in turn means that the amount of current required to control switching of the FETs in the invertor 91 is more than the motor controller 96 is designed to output at 95. Accordingly, the three-phase gate driver circuit 98 is provided to amplify or boost the driving power of these six signals, so that they can comfortably drive the six FETs of the invertor 91. The three-phase gate driver circuit 98 is also conventional, and in the preferred embodiment is an IR2130 chip available commercially from International Rectifier of El Segundo, Calif.

The motor controller 96 is designed to run a motor in only one rotational direction. The multiplexers 93 and 97 are provided so that the control unit 13 can selectively control the motor 23 for both forward and reverse operation. In particular, the multiplexers 93 and 97 each supply all input signals directly to corresponding output lines when the microcontroller 61 has set the FORWARD/REVERSE line to select forward operation, and swap selected signals between the multiplexer inputs and multiplexer outputs when the microcontroller 61 sets the FORWARD/REVERSE line to select reverse operation. Thus, the motor controller 96 thinks that it is always operating the motor 23 in a forward direction, whereas in fact the motor is operated in either a forward or reverse direction in dependence on how the multiplexers 93 and 97 are currently controlled by the FORWARD/REVERSE line from microcontroller 61.

A conventional current sensing circuit 101 is coupled to the invertor at 91, and provides to the motor controller 96 a signal representative of the amount of current flowing through the invertor 91, which in turn corresponds to the amount of current flowing through motor 23. The motor controller 96 then outputs on line 84 the ISENSE signal, which is based on the output of sense circuit 101 and which is an analog voltage having a magnitude representing the magnitude of the motor current, the magnitude of the motor current being, in turn, proportional to motor torque. The motor controller 96 also outputs a square wave signal on line 102 which has a 50% duty cycle and which has a frequency corresponding to the magnitude of the rotational speed of the motor 23. In particular, the frequency increases and decreases as the speed increases and decreases. The frequency of the signal on line 102 is divided down by a conventional frequency divider circuit 103, the output of the circuit 103 being the TACH signal supplied on line 86 to the frequency sensing circuit 83.

The motor controller 96 generates at 106 an analog signal having a voltage representing actual motor speed by monitoring the back EMF pulses generated by the motor and transmitted through cable 25, connector 24 and conductors 92 and 92a. A current mode control circuit 107, which is described in more detail later with reference to FIG. 2, receives the analog actual speed signal 106 from motor controller 96 and the analog speed setpoint signal 88 from D/A converter 87, and produces an output 108 which is coupled to one input of a torque limit circuit 111, the other input of torque limit circuit 111 being coupled to the analog torque limit value produced on line 90 by the D/A converter 89. The output of the torque limit circuit 111 is a FEEDBACK signal 112, which is coupled to an input of the motor controller 96.

The current mode control circuit 107 and torque limit circuit 111 are shown in more detail in FIG. 2. The current mode control circuit 107 is itself substantially conventional, and in a conventional system the output 108 of the current mode control circuit would be connected directly back to the FEEDBACK input of the motor controller 96. The current mode control circuit 107 includes a filter section 116 which filters the actual speed signal 106 from the motor controller 96, a buffer section 117 which amplifies the output of the filter section 116, and an error section 118 which has a differential error amplifier 121. The error amplifier 121 compares the filtered and buffered version of signal 106 to the speed setpoint signal 88 from the microcontroller 61, and generates at 108 an output signal which represents the magnitude of the difference between the motor controller output 106 and the speed setpoint 88. The speed setpoint 88 is an analog voltage representing a desired or target speed for the motor. If the motor is running at the desired speed, then the inputs to the error amplifier 121 will have approximately the same voltage, and the output of the error amplifier 121 will be stable and at a voltage level causing the motor to run at the appropriate speed. On the other hand, if the actual speed deviates from the target speed, the error amplifier 121 will increase or decrease its output voltage level by an amount corresponding to the deviation of the actual motor speed from the target motor speed.

In a conventional system, the torque limit circuit 111 would not be present, and the error signal 108 would be connected directly back to the FEEDBACK input of the motor controller 96. Depending on the sign and magnitude of the FEEDBACK signal, the motor controller 96 increases and decreases the widths of the pulses output at 95 to control the invertor 91. As is known by those of ordinary skill in the motor control art, this pulse width modulation (PWM) has the effect of varying the amount of current supplied to the motor, in particular by respectively increasing and decreasing the amount of current supplied to the motor as the pulse widths increase and decrease. The motor torque necessarily increases and decreases as the amount of current supplied to it increases and decreases, thereby causing the motor to tend to speed up or slow down.

If the dental drill 32 is engaging a tooth and applying a load to the motor, the motor will tend to slow down from its target speed, as a result of which the error amplifier 121 will produce an output voltage with a magnitude indicating that current to the motor should be increased in order to increase torque and return the motor to the target speed. However, a typical motor 23 will have the capability to produce significantly more torque than certain components in the drive train can withstand, and it is thus desirable to limit the motor torque in order to avoid breaking these drive train components. Limiting the torque, of course, would mean that the motor would not be generating enough torque to rotate the motor shaft to its target speed, and thus the motor would continue to run at a speed less than the target speed, or would progressively slow down.

A further consideration is that, depending on the particular gear reduction portion 27 which happens to be attached to the motor portion 22, different levels of torque limiting are appropriate. In order to allow different levels of torque limiting, the programmable torque limit circuit 111 (FIG. 2) is provided. The torque limit circuit 111 includes an operational amplifier 126, which has JFET inputs. In the preferred embodiment, the operational amplifier 126 is an LT1055 commercially available from Linear Technology Corporation of Milpitas, Calif. The error signal 108 from the current mode control circuit 107 is connected directly to the output 112 and to the negative input of the operational amplifier 126. The torque limit signal 90 from the D/A circuit 89 and microcontroller 61 is connected through a resistor 127 to the positive input of the operational amplifier 126, the positive input also being connected through a capacitor 128 to ground. The output of the operational amplifier 126 is connected through a resistor 131 to the base of a transistor 132, which has an emitter connected to the signals 108 and 112, and a collector connected to ground. The transistor 132 is selected so that it always operates in a linear mode, and in the preferred embodiment is a 2N3906. A Schottky diode 133 has its cathode and anode respectively connected to the emitter and collector of the transistor 132.

When the voltage of the error signal 108 has a magnitude indicating that motor torque should be increased, the operational amplifier 126 compares the error signal to the torque limit value 90. So long as the error signal does not exceed the torque limit value 90, the error signal is forwarded without change to the motor controller 96, which in turn uses PWM to increase the motor current and thus the motor torque in order to speed the motor back up to its setpoint speed. On the other hand, if the operational amplifier 126 determines that the error signal 108 has a magnitude which exceeds the torque limit value 90, the operational amplifier 126 turns on the transistor 132 in order to clamp or limit the magnitude of the signal at 108 to a value corresponding to the torque limit value. Thus, even if the error amplifier 121 is outputting a voltage of greater magnitude, the transistor 132 will limit the magnitude of the error signal at 108 so that the PWM carried out by the motor controller 96 is limited in a manner which in turn limits the current supplied to motor 23, and thus the torque of motor 23. As the motor continues to slow down, the error amplifier 121 will increase the magnitude of its output, but the torque limit circuit 111 will keep the signal 112 clamped at the magnitude corresponding to torque limit value 90, and thus the motor torque will be limited to a value which avoids breakage of drive train components. The microcontroller 61 can, of course, selectively change the torque limit value 90, causing the programmable torque limit circuit 111 to change the magnitude at which the error signal 108 is clamped and thus change the maximum torque permitted for motor 23.

Before explaining the flowcharts of FIGS. 3 to 5 in detail, it will be helpful to provide an overview of one aspect of system operation. More specifically, the foot switches 17 and 18 each output an analog voltage that progressively changes from an initial value to a maximum value as the foot switch is progressively manually actuated. The maximum value may vary somewhat from foot switch to foot switch as a result of component tolerances, and a predetermined constant output somewhat less than the typical maximum output value is therefore selected to represent 100% actuation of the foot switch. Depending on its tolerances, a foot switch will usually be capable of producing a maximum output value which exceeds the arbitrary 100% value, and which may for example be 115% of the predetermined constant output for one foot switch, 125% for another, and so forth.

Further, as mentioned above, an operator can use the UP and DOWN push buttons 43 and 44 to specify a maximum motor speed, up to 40,000 rpm. If the operator selects a maximum motor speed of 30,000 rpm, then when the operator fully depresses one of the foot switches, the operator expects that the digital display 49 will show the actual motor speed as precisely 30,000 rpm. Those skilled in the art will recognize that various system components have manufacturing tolerances which, in a conventional system, would cause the motor 23 to run at a speed slightly above or slightly below the preferred value of 30,000 rpm. For example, the maximum output from any foot switch may vary from one foot switch to another (as discussed above), the components used within the current mode control circuit 107 controlling motor speed will have small variations from part to part as a result of manufacturing tolerances, and the speed constant of the motor 23 (a function of manufacturing tolerances) may vary from motor to motor by more than 10%. These effects could in theory be reduced to some extent by purchasing only components manufactured to strict tolerances, but such components would be significantly more expensive, and would still not entirely eliminate the problem. The present invention includes an approach which permits use of relatively inexpensive components manufactured to relatively loose tolerances, while ensuring that full actuation of the foot switch causes operation of the motor 23 at substantially precisely the maximum speed selected by the user, in particular to within 0.05% of the maximum speed selected by the user.

In general terms, and as previously discussed, a foot switch output with a magnitude in excess of the arbitrary 100% value is limited within the processor to the 100% value in order to eliminate the effect of variations in actual maximum output from one foot switch to another. The processor 62 then adjusts the foot switch output using a function, which is described below, and outputs the result to the speed setpoint lines 77 through output ports 74.

When the processor detects that the foot switch is fully actuated, or in other words has an output at or above the 100% level, then it is desirable that the motor 23 be running at a speed which is exactly the maximum speed selected by the user, and the processor therefore compares the user-selected speed to the actual speed determined using TACH signal 86. In this regard, it is important to note that the entire speed feedback path from the motor controller 96 to D/A converter 87 through line 102, frequency divider 103, line 108, frequency sensing circuit 83 and micro controller 61 is digital, and thus highly accurate. If the processor determines that the actual motor speed is not substantially exactly the user-selected speed, the processor adjusts the function used between the output of foot switch unit 12 and speed setpoint lines 77, until the motor 23 is in fact running substantially precisely at the user-selected speed. Stated differently, the function is dynamically adjusted to compensate for manufacturing tolerances which may be present in various system components.

If the operator reduces the pressure on the foot switch in order to slow the motor down, then after the foot switch output drops below the 100% value, the processor continues to use the adjusted function but without making any further adjustments until such time as the foot switch output is again at or above 100%.

With respect to adjustment of the function, there is one further factor which must be taken into account. In particular, in a situation where the motor is operating at a specified maximum torque and the torque limiting circuit 111 is preventing any increase in motor torque, the motor 23 needs to compensate by reducing its speed regardless of whether the foot switch is fully depressed. Therefore, even if the foot switch output is at or above the 100% level, the function is not adjusted unless the actual motor torque is less than a predetermined maximum torque constant (which does not change).

One specific function which is used in the preferred embodiment is represented by the following equations: ##EQU1##

In these equations, FSO represents the foot switch output from 10% to 100% in the form of a fraction from 0.1 to 1.0, VARIABLE is a number representing the function itself, and SSP is the speed setpoint value output on lines 77. The value VARIABLE is the product of a predetermined constant setpoint CSP (which if output at 77 would cause the motor 23 to run at approximately its highest allowable speed of 40,000 rpm), the user-selected maximum motor speed value MMS divided by the top allowable speed of 40,000 rpm, and a number called RATIO. The value of RATIO is set to an initial value of 1.0 each time the system is turned on, and is thereafter increased or decreased by the processor where necessary to adjust the function so that the actual maximum motor speed is substantially precisely the selected maximum motor speed MMS.

Turning now to the flowcharts, each time one of the push buttons 41-44 is pressed, the microprocessor 62 in the microcontroller 61 is interrupted, and executes the interrupt routine shown as a flowchart in FIG. 3. In particular, execution of the interrupt routine starts at 141, and at 142 the processor reads the states of all four push buttons 41-44 and stores these states in the RAM 64. Then, the processor sets a software interrupt flag in the RAM 64 to indicate that a push button has been pressed. The processor then returns to execution of the interrupted program at 143.

The microcontroller 61 also includes a hardware timer which interrupts the processor 62 every 3.2 milliseconds, and this interrupt is serviced by the interrupt routine shown as a flowchart in FIG. 4. The timer interrupt can be selectively enabled and disabled by the software. The software enables the timer interrupt when the motor 23 is running, and disables the timer interrupt when the motor 23 is off. Since the timer interrupt is enabled only if the motor is running, the routine of FIG. 4 is entered only if the motor is running, which necessarily means that the user has manually operated one of the foot switches 17 and 18.

Execution of the timer interrupt routine of FIG. 4 begins at block 146, and control proceeds to block 147, where the processor reads and stores the actual speed and torque of the running motor 23. In particular, and as mentioned above, the TACH signal 86 is a digital signal in the form of a square wave having a frequency which varies with the speed of motor 23. Due to the fact that the motor controller 96 uses PWM techniques to control motor speed through the invertor 91, the TACH signal 86 from the motor controller 96 is an extremely accurate indication of the precise actual speed of motor 23. As already explained, the frequency sensing circuit 83 measures the width of each pulse of the TACH signal 86, the pulse width varying directly with variations in frequency, and stores the measured pulse width in a location of the RAM 64 to serve as a value representing the actual speed of the motor. In the interrupt routine of FIG. 4, the processor 62 reads this value from the location in the RAM 64, and then stores the value in a different location of the RAM 64 (where it is not subject to further change by the frequency sensing circuit 83). The ISENSE signal 84 from the motor controller 96 is an analog voltage which represents the current presently being supplied to motor 23 and which thus also represents motor torque, and the A/D converter 82 provides a digital output representing the magnitude of this voltage. The processor reads this digital output from the A/D converter 82, and stores it in a location of the RAM 64 as an indication of the actual torque presently being generated by the motor 23.

Control then proceeds to block 148, where the processor checks the foot switch 17 or 18 which has been manually actuated in order to see if the magnitude of the output from it has dropped below 10% (or in other words one-tenth of the arbitrary 100% value). If less than 10%, then it is assumed that the user is taking his foot off the foot switch and that the motor is to be stopped, and so at block 149 the timer interrupt is disabled, which will prevent another entry to the interrupt routine of FIG. 4. Then, control proceeds to block 150, where the processor 62 sets the control lines 76 so as to instruct the motor controller 96 to stop the motor. Control then proceeds to block 151, where the processor returns to the program which was interrupted.

On the other hand, if it was determined at block 148 that the actuated foot switch is producing an output greater than or equal to the 10% level, then at block 152 a check is made to see if the foot switch output is greater than 100%. If above 100%, then at block 153 the processor internally limits the foot switch reading to the 100% value. In either case, the foot switch reading is multiplied in block 154 by the above-described quantity called VARIABLE which represents the function, and then the resulting value is output through output ports 74 to the line 77 in order to serve as the speed setpoint. The processor then returns to the interrupted program at block 151.

FIG. 5 is a flowchart of the main routine executed by the processor 62. When power to the system is first turned on, or in the case of a reset, the processor begins program execution at 161, and performs at block 162 some initialization of a conventional type, such as system diagnostics and set-up.

Following initialization, control proceeds to block 163, where the processor checks to see whether the interrupt flag is set or whether one of the UP and DOWN push buttons 43 and 44 has been pressed. As explained above, the interrupt flag is set by the routine of FIG. 3 whenever one of the four push buttons 41-44 is initially pressed. This will include the UP and DOWN push buttons 43 and 44 when either is first pressed, but as to these two buttons a user may hold one of them down in order to cause continuous scrolling through available selections of a parameter such as motor torque. Therefore, a separate check of these two push buttons is made in block 163 in case one is still pressed even after its initial actuation was detected and serviced by setting of the interrupt flag. If it is determined at block 163 that any button is pressed and needs to be serviced, then control proceeds to block 164, where the processor checks to see whether the motor is running, in particular by checking to see whether the timer interrupt (associated with the interrupt routine of FIG. 4) is enabled. If the motor is running, then push buttons other than the UP and DOWN buttons 43 and 44 are ignored, and in particular any indication that the GEAR RATIO button 41 or SPEED/TORQUE button 42 has been pressed is discarded at 166. From block 166, or from block 164 if the motor is not running, control proceeds to block 167. In block 167, the processor services any push-button operation which has occurred and which was not discarded at block 166.

More specifically, the character display 49 of the control unit can display the speed of the motor or the torque of the motor, but can only display one of them at any given time. Accordingly, the SPEED/TORQUE push button 42 is used to toggle between display of speed and display of torque. In particular, in a situation where torque is presently selected, the processor keeps the TORQUE LED 47 lit, and displays a torque value in the character display 49 in a manner described later. If the operator then presses the SPEED/TORQUE push button 42, the processor 61 turns off the TORQUE LED 47 and turns on the SPEED LED 46, and will display a speed value in the character display 49 in a manner described later. If the SPEED/TORQUE push button 42 is pressed again, the processor will revert to the state where torque is displayed. When the motor is not running, the character display 49 is used to display a maximum motor speed or a maximum motor torque, whereas if the motor is running the display 49 is used to display actual motor speed or actual motor torque, as will be described later.

As previously mentioned, the system 10 includes six interchangeable gear reduction portions 27, each having a different gear ratio. The six ratio LEDs 48 on the display each correspond to a respective gear ratio, and one of the LEDs 48 representing the gear ratio of the gear reduction portion 27 currently installed on the handpiece is normally illuminated. If the operator replaces the gear reduction portion 27 with another gear reduction portion having a different ratio, the operator presses the GEAR RATIO push button 41. Each time the GEAR RATIO push button 41 is pressed, the processor 62 turns off one of the LEDs which had been lit and illuminates the next successive LED 48, and records in the RAM 64 a number representing the ratio associated with the newly-lit LED. By pressing the GEAR RATIO push button 41 one or more times, the operator ultimately lights the LED 48 corresponding to the ratio of the gear reduction portion 27 currently installed on the handpiece. Each of the LEDs 48 has next to it a label indicating the associated gear ratio, but these labels have been omitted in FIG. 1 for clarity and because the invention is not limited to any particular ratio values.

Each of the six gear ratios has associated with it a set of predetermined maximum torque values from which the user can select. The maximum torque values in each set typically differ from those in other sets. When the user has selected torque for display on the character display 49, and when the motor is not running, the processor 62 will display the currently-selected maximum torque value for the selected gear ratio. If the operator repeatedly presses the UP or DOWN push button 43 or 44, the processor will cycle through the available selections by successively displaying them, and the last selected maximum torque value for the current gear ratio is stored in the RAM 64, and is output through output ports 74 to the lines 78 to serve as the torque limit value supplied through D/A converter 89 to the torque limit circuit 111.

If motor speed is selected for display then the UP and DOWN push buttons are used to change the user-selected maximum motor speed, whereas if torque is selected for display they are used to change the user-selected maximum motor torque. More specifically, if speed is selected and one of the UP and DOWN push buttons is pressed, then the maximum speed is incremented or decremented by a specific amount when the block 167 is executed. If the button is pressed and held, then the maximum speed is incremented or decremented by the specific amount each time block 167 is executed while the button is held. However, the UP and DOWN push buttons 43 and 44 are not permitted to increment or decrement the maximum motor speed beyond certain values representing physical limitations of the system components. For example, the fastest speed at which the system will operate the motor 23 is the speed of 40,000 rpm, and the processor 62 will therefore not permit the user to increment the maximum motor speed above 40,000 rpm. The user can, of course, select a maximum motor speed which is less than 40,000 rpm.

If torque is selected, the processor selects the next successive value in the current set each time one of the UP and DOWN push buttons is pressed. If the button is pressed and held, the processor scrolls successively through the torque values in the current set, in particular by periodically scrolling to the next torque value during a succession of executions of block 167 while the UP or DOWN button is held.

The maximum motor speed and maximum motor torque values selected by the user are stored in the RAM 64, and the maximum torque value is also output through output port 74 to lines 78 to serve as the torque limit value supplied through D/A converter 89 to torque limit circuit 111. In block 167, the processor also clears the interrupt flag which was set in block 142 of FIG. 3, to reflect the fact that it has serviced the button or buttons which resulted in setting of the flag.

From block 167, and from block 163 if the interrupt flag was not set and the UP and DOWN buttons were not pressed, control proceeds to block 171. In block 171, the processor checks to see if the motor is running, in particular by checking to whether the timer interrupt is enabled in the same manner as in block 164. If the timer interrupt is not enabled, control proceeds to block 173, where the processor checks to see whether the user has indicated that the character display 49 is to be used to display speed or torque. If the user has selected speed for display, then at block 174 the processor outputs to the character display 49 the maximum motor speed, which the user selects in the manner described above in association with block 167. Alternatively, if the user has selected torque for display, then the processor outputs to the character display 49 the maximum motor torque, which the user selects in the manner described above in association with block 167. In either case, control then proceeds to block 177.

In blocks 177 and 178, the processor essentially checks to see whether either of the foot switches 17 and 18 has been manually actuated by an amount sufficient to justify restarting the motor 23. In particular, at block 177 the processor checks to see whether the forward foot switch is producing an output representing at least 10% actuation, and at block 178 checks to see whether the reverse foot switch 18 is producing an output representing at least 10% actuation. If neither foot switch is actuated by at least 10%, control proceeds through each of blocks 177 and 178 and then returns at 179 to block 163. So long as the motor is stopped, the processor will repeatedly execute a loop which includes blocks 171-178.

Eventually, the user will press one of the foot switches in order to start the motor, and for purposes of example it will be assumed that the user presses the forward foot switch. The first time thereafter that the processor reaches block 177, the processor will detect that the forward foot switch is more than 10% actuated, and will proceed to block 181, where it records an internal indication in the RAM 64 that the motor is to be operated in a forward direction, and then uses output port 72 to output a voltage level on the FORWARD/REVERSE line which causes the multiplexers 93 and 97 to select forward motor rotation. Then, the processor enables the timer interrupt so that periodic execution of the interrupt routine of FIG. 4 will resume. Since the motor presently has a speed of 0 rpm, closed loop control of the motor based on feedback of the actual motor speed is not practical until the motor is actually rotating at some relatively low speed, and the processor therefore uses the control lines 76 to instruct the motor controller 96 to carry out open loop control of the motor in a manner intended to cause the motor to start rotating, The manner in which this is carried out is conventional and not itself a part of the present invention, and is therefore not described in detail. The processor then waits a predetermined period of time during which the motor shaft should begin to rotate and should reach substantially the speed at which closed loop control can be utilized, at which point the processor adjusts control lines 76 to instruct the motor controller 96 to switch to closed loop control, where the signals received through multiplexer 93 and on FEEDBACK line 112 are taken into account in formulating control signals for the invertor 91. Control then returns at 182 to block 163.

If the operator had operated the reverse foot switch rather than the forward foot switch, control would have proceeded through blocks 177 and 178 to block 183, where the processor would carry out essentially the same sequence of activity as in block 181, except that the FORWARD/REVERSE output would be set to an opposite logic level to cause the multiplexers 93 and 97 to effect motor rotation in a reverse direction.

After control is returned to block 163 from either of blocks 181 and 183, and then eventually reaches block 171 again, it will be determined in block 171 that the motor is now running (because the timer interrupt has been enabled), and control will proceed to block 191 rather than block 172. In block 191, the processor retrieves from the RAM 64 the speed and torque values which were stored in block 147 of FIG. 4, and then carries out software filtering using conventional techniques which are not pertinent to the present invention. The torque value is also adjusted by the selected gear ratio, to compensate for the effects of the gear reduction portion 27. Control then proceeds to block 192, where the processor checks to see whether the user has selected speed or torque for display. If speed is selected, the actual motor speed as determined from the TACH signal 86 (FIG. 1) is displayed on character display 49 at block 193, whereas if torque is selected, the actual torque as determined from the ISENSE signal 84 and as adjusted for the selected gear reduction ratio is displayed on the character display 49. The software implements a small amount of hysteresis in displaying actual speed or actual torque, in order to avoid flickering of the display. For example, if the actual speed was between 29,999 RPM and 30,000 RPM, and speed readings were alternating rapidly between these two values, the character display 49 would be an unreadable blur. Therefore, the software will continue to display a given value of actual speed even if the measured speed changes very slightly from the given value, and only if the measured actual speed changes from the displayed actual speed by a predetermined small amount will the processor update the display with the newly-measured actual speed. Hysteresis for the actual torque is handled in a similar manner.

From each of blocks 193 and 194, control proceeds to block 196. Blocks 196-199 represent the logic involved with deciding whether the function needs to be adjusted in order to bring actual motor speed into conformity with the user-selected maximum speed in the manner broadly outlined above. In particular, at block 196, the processor checks to see if the active foot switch has an actuation level at or above 100%. If not, then the motor is not supposed to be running at its maximum speed and no adjustment is necessary, so blocks 197-199 are skipped. Otherwise, the processor proceeds to block 197, where it checks to see if actual torque is less than the predetermined maximum torque constant. If actual torque is at the maximum level, then in order to facilitate torque limiting the actual speed should be allowed to drop below the specified maximum speed despite the fact that the foot switch is fully actuated. Accordingly, blocks 198 and 199 are skipped. On the other hand, if it is found that actual torque is less than the maximum torque constant, the processor proceeds to block 198 where it checks to see if the actual speed is equal to the user-selected maximum speed. If the speeds are effectively equal, then there is no need to adjust the function, and block 199 is skipped. Otherwise, the processor proceeds to block 199, where it either increments or decrements the value of RATIO, as appropriate to adjust the function in a manner bringing actual speed into conformity with the users-elected speed. Each time the processor executes the main loop and reaches block 199, the value of RATIO will be incremented or decremented by a small preset amount, until it is found at block 198 that actual speed has in fact been conformed to the user-selected speed, at which point block 199 will be skipped and RATIO will be maintained at the value which causes actual speed to conform to the user-selected speed.

Control ultimately reaches block 201, where the processor actually calculates the current value of the function, or in other words the current value of VARIABLE, according to the mathematical equation (2) set forth above. The resulting value of VARIABLE is stored in the RAM 64 for later use. In particular, and with reference to the foregoing discussion of FIG. 4, the next time the timer interrupt occurs and causes execution of the interrupt routine of FIG. 4, at block 154 the processor will multiply the foot switch reading by the value of VARIABLE according to the mathematical equation (1) set forth above, and output the result on line 77 as the speed setpoint.

From block 201 in FIG. 5, control proceeds to block 202, where the processor checks to see if operation of the motor in a reverse direction has just started. If so, then at 203 the processor uses output port 75, tone generator 79 and speaker 80 to generate three short beeps, in order to ensure that the operator realizes the motor is rotating in a reverse direction. When the motor is operating in a forward direction, or when it is operating in a reverse direction but the three beeps have already been emitted, block 203 is skipped. In any case, control ultimately returns to the beginning of the main loop at block 163.

Although a single preferred embodiment of the invention has been disclosed in detail for illustrative purposes, it will be recognized that there are variations and modifications of the disclosed apparatus which lie within the scope of the present invention.

Culp, Jerry A., Schemansky, Kevin J.

Patent Priority Assignee Title
10034723, Oct 29 2016 Tooth bracket extraction device and methods for extracting a bracket section from teeth
10085751, Sep 23 2015 Cilag GmbH International Surgical stapler having temperature-based motor control
10149680, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a gap setting system
10149682, Sep 30 2010 Cilag GmbH International Stapling system including an actuation system
10159483, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to track an end-of-life parameter
10162312, Oct 23 2012 Covidien LP Surgical instrument with rapid post event detection
10166010, Oct 23 1998 Devicor Medical Products, Inc. Surgical device for the collection of soft tissue
10172616, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
10172620, Sep 30 2015 Cilag GmbH International Compressible adjuncts with bonding nodes
10180463, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
10182816, Feb 27 2015 Cilag GmbH International Charging system that enables emergency resolutions for charging a battery
10182819, Sep 30 2010 Cilag GmbH International Implantable layer assemblies
10188385, Dec 18 2014 Cilag GmbH International Surgical instrument system comprising lockable systems
10201349, Aug 23 2013 Cilag GmbH International End effector detection and firing rate modulation systems for surgical instruments
10201363, Jan 31 2006 Cilag GmbH International Motor-driven surgical instrument
10201364, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a rotatable shaft
10206605, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10206676, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument
10206677, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
10206678, Oct 03 2006 Cilag GmbH International Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
10206731, Jul 19 2013 Pro-Dex, Inc. Torque-limiting screwdrivers
10211586, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with watertight housings
10213201, Mar 31 2015 Cilag GmbH International Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
10213262, Mar 23 2006 Cilag GmbH International Manipulatable surgical systems with selectively articulatable fastening device
10226249, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
10231794, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
10238385, Feb 14 2008 Cilag GmbH International Surgical instrument system for evaluating tissue impedance
10238386, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
10238387, Feb 14 2008 Cilag GmbH International Surgical instrument comprising a control system
10238391, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10245027, Dec 18 2014 Cilag GmbH International Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
10245028, Feb 27 2015 Cilag GmbH International Power adapter for a surgical instrument
10245029, Feb 09 2016 Cilag GmbH International Surgical instrument with articulating and axially translatable end effector
10245030, Feb 09 2016 Cilag GmbH International Surgical instruments with tensioning arrangements for cable driven articulation systems
10245032, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
10245033, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
10245035, Aug 31 2005 Cilag GmbH International Stapling assembly configured to produce different formed staple heights
10258330, Sep 30 2010 Cilag GmbH International End effector including an implantable arrangement
10258331, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10258332, Sep 30 2010 Cilag GmbH International Stapling system comprising an adjunct and a flowable adhesive
10258333, Jun 28 2012 Cilag GmbH International Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
10258418, Jun 29 2017 Cilag GmbH International System for controlling articulation forces
10265067, Feb 14 2008 Cilag GmbH International Surgical instrument including a regulator and a control system
10265068, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
10265072, Sep 30 2010 Cilag GmbH International Surgical stapling system comprising an end effector including an implantable layer
10265074, Sep 30 2010 Cilag GmbH International Implantable layers for surgical stapling devices
10271845, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10271846, Aug 31 2005 Cilag GmbH International Staple cartridge for use with a surgical stapler
10271849, Sep 30 2015 Cilag GmbH International Woven constructs with interlocked standing fibers
10278697, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10278702, Jul 28 2004 Cilag GmbH International Stapling system comprising a firing bar and a lockout
10278722, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10278780, Jan 10 2007 Cilag GmbH International Surgical instrument for use with robotic system
10285695, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways
10285699, Sep 30 2015 Cilag GmbH International Compressible adjunct
10292704, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
10292707, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a firing mechanism
10293100, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
10299787, Jun 04 2007 Cilag GmbH International Stapling system comprising rotary inputs
10299792, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
10299817, Jan 31 2006 Cilag GmbH International Motor-driven fastening assembly
10299878, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
10307160, Sep 30 2015 Cilag GmbH International Compressible adjunct assemblies with attachment layers
10307163, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10307170, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
10314589, Jun 27 2006 Cilag GmbH International Surgical instrument including a shifting assembly
10314590, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
10314661, Aug 03 2012 Stryker Corporation Surgical robotic system and method for controlling an instrument feed rate
10321909, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple including deformable members
10327764, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
10327765, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
10327767, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10327769, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on a drive system component
10327776, Apr 16 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
10327777, Sep 30 2015 Cilag GmbH International Implantable layer comprising plastically deformed fibers
10335145, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
10335148, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator for a surgical stapler
10335150, Sep 30 2010 Cilag GmbH International Staple cartridge comprising an implantable layer
10335151, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10342541, Oct 03 2006 Cilag GmbH International Surgical instruments with E-beam driver and rotary drive arrangements
10350017, Aug 03 2012 Stryker Corporation Manipulator and method for controlling the manipulator based on joint limits
10357247, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10357333, Nov 14 2016 Imam Abdulrahman Bin Faisal University Endodontic file system for cleaning and shaping a root canal
10363031, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for surgical staplers
10363033, Jun 04 2007 Cilag GmbH International Robotically-controlled surgical instruments
10363036, Sep 23 2015 Cilag GmbH International Surgical stapler having force-based motor control
10363037, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
10368863, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10368864, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displaying motor velocity for a surgical instrument
10368865, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10368867, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a lockout
10376263, Apr 01 2016 Cilag GmbH International Anvil modification members for surgical staplers
10383630, Jun 28 2012 Cilag GmbH International Surgical stapling device with rotary driven firing member
10383633, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10383634, Jul 28 2004 Cilag GmbH International Stapling system incorporating a firing lockout
10383674, Jun 07 2016 PRO-DEX, INC Torque-limiting screwdriver devices, systems, and methods
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10390841, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10398433, Mar 28 2007 Cilag GmbH International Laparoscopic clamp load measuring devices
10398434, Jun 29 2017 Cilag GmbH International Closed loop velocity control of closure member for robotic surgical instrument
10398436, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10405859, Apr 15 2016 Cilag GmbH International Surgical instrument with adjustable stop/start control during a firing motion
10413291, Feb 09 2016 Cilag GmbH International Surgical instrument articulation mechanism with slotted secondary constraint
10413294, Jun 28 2012 Cilag GmbH International Shaft assembly arrangements for surgical instruments
10420549, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10420550, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
10420553, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10420555, Jun 28 2012 Cilag GmbH International Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
10420560, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
10420561, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10420577, Mar 31 2014 Covidien LP Apparatus and method for tissue thickness sensing
10420619, Aug 03 2012 Stryker Corporation Surgical manipulator and method for transitioning between operating modes
10426463, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
10426467, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
10426469, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a primary firing lockout and a secondary firing lockout
10426471, Dec 21 2016 Cilag GmbH International Surgical instrument with multiple failure response modes
10426476, Sep 26 2014 Cilag GmbH International Circular fastener cartridges for applying radially expandable fastener lines
10426477, Sep 26 2014 Cilag GmbH International Staple cartridge assembly including a ramp
10426478, May 27 2011 Cilag GmbH International Surgical stapling systems
10426481, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
10426560, Aug 03 2012 Stryker Corporation Robotic system and method for reorienting a surgical instrument moving along a tool path
10433837, Feb 09 2016 Cilag GmbH International Surgical instruments with multiple link articulation arrangements
10433840, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a replaceable cartridge jaw
10433844, Mar 31 2015 Cilag GmbH International Surgical instrument with selectively disengageable threaded drive systems
10433846, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441279, Mar 06 2015 Cilag GmbH International Multiple level thresholds to modify operation of powered surgical instruments
10441281, Aug 23 2013 Cilag GmbH International surgical instrument including securing and aligning features
10441285, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
10448948, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10448950, Dec 21 2016 Cilag GmbH International Surgical staplers with independently actuatable closing and firing systems
10448952, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
10456133, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10456137, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
10463369, Aug 31 2005 Cilag GmbH International Disposable end effector for use with a surgical instrument
10463370, Feb 14 2008 Ethicon LLC Motorized surgical instrument
10463372, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
10463383, Jan 31 2006 Cilag GmbH International Stapling instrument including a sensing system
10463384, Jan 31 2006 Cilag GmbH International Stapling assembly
10463440, Aug 03 2012 Stryker Corporation Surgical manipulator and method for resuming semi-autonomous tool path position
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10470763, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument including a sensing system
10470764, Feb 09 2016 Cilag GmbH International Surgical instruments with closure stroke reduction arrangements
10470768, Apr 16 2014 Cilag GmbH International Fastener cartridge including a layer attached thereto
10478181, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
10478188, Sep 30 2015 Cilag GmbH International Implantable layer comprising a constricted configuration
10485536, Sep 30 2010 Cilag GmbH International Tissue stapler having an anti-microbial agent
10485537, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10485539, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
10485541, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
10485543, Dec 21 2016 Cilag GmbH International Anvil having a knife slot width
10485546, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10485547, Jul 28 2004 Cilag GmbH International Surgical staple cartridges
10492783, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
10492785, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
10499914, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements
10517577, Dec 13 2006 Devicor Medical Products, Inc. Presentation of biopsy sample by biopsy device
10517590, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
10517594, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
10517595, Dec 21 2016 Cilag GmbH International Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
10517596, Dec 21 2016 Cilag GmbH International Articulatable surgical instruments with articulation stroke amplification features
10517682, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
10524787, Mar 06 2015 Cilag GmbH International Powered surgical instrument with parameter-based firing rate
10524788, Sep 30 2015 Cilag GmbH International Compressible adjunct with attachment regions
10524789, Dec 21 2016 Cilag GmbH International Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
10524790, May 27 2011 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10531887, Mar 06 2015 Cilag GmbH International Powered surgical instrument including speed display
10537325, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
10542974, Feb 14 2008 Cilag GmbH International Surgical instrument including a control system
10542982, Dec 21 2016 Cilag GmbH International Shaft assembly comprising first and second articulation lockouts
10542988, Apr 16 2014 Cilag GmbH International End effector comprising an anvil including projections extending therefrom
10548504, Mar 06 2015 Cilag GmbH International Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
10548600, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
10561420, Sep 30 2015 Cilag GmbH International Tubular absorbable constructs
10561422, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising deployable tissue engaging members
10568624, Dec 21 2016 Cilag GmbH International Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
10568625, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10568626, Dec 21 2016 Cilag GmbH International Surgical instruments with jaw opening features for increasing a jaw opening distance
10568629, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument
10568652, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
10575868, Mar 01 2013 Cilag GmbH International Surgical instrument with coupler assembly
10582928, Dec 21 2016 Cilag GmbH International Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
10588623, Sep 30 2010 Cilag GmbH International Adhesive film laminate
10588625, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with off-axis firing beam arrangements
10588626, Mar 26 2014 Cilag GmbH International Surgical instrument displaying subsequent step of use
10588630, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
10588631, Dec 21 2016 Cilag GmbH International Surgical instruments with positive jaw opening features
10588632, Dec 21 2016 Cilag GmbH International Surgical end effectors and firing members thereof
10588633, Jun 28 2017 Cilag GmbH International Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
10595831, May 30 2012 Devicor Medical Products, Inc. Control for biopsy device
10595862, Sep 29 2006 Cilag GmbH International Staple cartridge including a compressible member
10595882, Jun 20 2017 Cilag GmbH International Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
10603036, Dec 21 2016 Cilag GmbH International Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
10603039, Sep 30 2015 Cilag GmbH International Progressively releasable implantable adjunct for use with a surgical stapling instrument
10610224, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
10617412, Mar 06 2015 Cilag GmbH International System for detecting the mis-insertion of a staple cartridge into a surgical stapler
10617413, Apr 01 2016 Cilag GmbH International Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
10617414, Dec 21 2016 Cilag GmbH International Closure member arrangements for surgical instruments
10617416, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
10617417, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
10617418, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10617420, May 27 2011 Cilag GmbH International Surgical system comprising drive systems
10624633, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
10624634, Aug 23 2013 Cilag GmbH International Firing trigger lockout arrangements for surgical instruments
10624635, Dec 21 2016 Cilag GmbH International Firing members with non-parallel jaw engagement features for surgical end effectors
10624861, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
10631859, Jun 27 2017 Cilag GmbH International Articulation systems for surgical instruments
10639034, Dec 21 2016 Cilag GmbH International Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
10639035, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and replaceable tool assemblies thereof
10639036, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
10639037, Jun 28 2017 Cilag GmbH International Surgical instrument with axially movable closure member
10639115, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
10646220, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member velocity for a surgical instrument
10653413, Feb 09 2016 Cilag GmbH International Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
10653417, Jan 31 2006 Cilag GmbH International Surgical instrument
10653435, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10667808, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an absorbable adjunct
10667809, Dec 21 2016 Cilag GmbH International Staple cartridge and staple cartridge channel comprising windows defined therein
10667810, Dec 21 2016 Cilag GmbH International Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
10667811, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
10675025, Dec 21 2016 Cilag GmbH International Shaft assembly comprising separately actuatable and retractable systems
10675026, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
10675028, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10682134, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
10682138, Dec 21 2016 Cilag GmbH International Bilaterally asymmetric staple forming pocket pairs
10682141, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10682142, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including an articulation system
10687806, Mar 06 2015 Cilag GmbH International Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
10687809, Dec 21 2016 Cilag GmbH International Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
10687812, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10687813, Dec 15 2017 Cilag GmbH International Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
10687817, Jul 28 2004 Cilag GmbH International Stapling device comprising a firing member lockout
10695055, Dec 21 2016 Cilag GmbH International Firing assembly comprising a lockout
10695057, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
10695058, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
10695062, Oct 01 2010 Cilag GmbH International Surgical instrument including a retractable firing member
10695063, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
10702266, Apr 16 2013 Cilag GmbH International Surgical instrument system
10702267, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
10709468, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10716563, Jul 28 2004 Cilag GmbH International Stapling system comprising an instrument assembly including a lockout
10716565, Dec 19 2017 Cilag GmbH International Surgical instruments with dual articulation drivers
10716568, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
10716614, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies with increased contact pressure
10722232, Feb 14 2008 Cilag GmbH International Surgical instrument for use with different cartridges
10729432, Mar 06 2015 Cilag GmbH International Methods for operating a powered surgical instrument
10729436, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10729501, Sep 29 2017 Cilag GmbH International Systems and methods for language selection of a surgical instrument
10729509, Dec 19 2017 Cilag GmbH International Surgical instrument comprising closure and firing locking mechanism
10736628, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
10736630, Oct 13 2014 Cilag GmbH International Staple cartridge
10736633, Sep 30 2015 Cilag GmbH International Compressible adjunct with looping members
10736634, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument including a drive system
10736636, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
10743849, Jan 31 2006 Cilag GmbH International Stapling system including an articulation system
10743851, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
10743868, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a pivotable distal head
10743870, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
10743872, Sep 29 2017 Cilag GmbH International System and methods for controlling a display of a surgical instrument
10743873, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
10743874, Dec 15 2017 Cilag GmbH International Sealed adapters for use with electromechanical surgical instruments
10743875, Dec 15 2017 Cilag GmbH International Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
10743877, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
10751051, Jan 14 2013 Intuitive Surgical Operations, Inc. Torque compensation
10751053, Sep 26 2014 Cilag GmbH International Fastener cartridges for applying expandable fastener lines
10751076, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
10751138, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
10758229, Dec 21 2016 Cilag GmbH International Surgical instrument comprising improved jaw control
10758230, Dec 21 2016 Cilag GmbH International Surgical instrument with primary and safety processors
10758232, Jun 28 2017 Cilag GmbH International Surgical instrument with positive jaw opening features
10765425, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10765427, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
10765429, Sep 29 2017 Cilag GmbH International Systems and methods for providing alerts according to the operational state of a surgical instrument
10765432, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10772625, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
10772629, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10779820, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
10779821, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
10779822, Feb 14 2008 Cilag GmbH International System including a surgical cutting and fastening instrument
10779823, Dec 21 2016 Cilag GmbH International Firing member pin angle
10779824, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable by a closure system
10779825, Dec 15 2017 Cilag GmbH International Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
10779826, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
10779903, Oct 31 2017 Cilag GmbH International Positive shaft rotation lock activated by jaw closure
10780539, May 27 2011 Cilag GmbH International Stapling instrument for use with a robotic system
10786253, Jun 28 2017 Cilag GmbH International Surgical end effectors with improved jaw aperture arrangements
10796471, Sep 29 2017 Cilag GmbH International Systems and methods of displaying a knife position for a surgical instrument
10799240, Jul 28 2004 Cilag GmbH International Surgical instrument comprising a staple firing lockout
10806448, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
10806449, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
10806450, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having a control system
10806479, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10813638, Dec 21 2016 Cilag GmbH International Surgical end effectors with expandable tissue stop arrangements
10813639, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
10813641, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10828028, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10828032, Aug 23 2013 Cilag GmbH International End effector detection systems for surgical instruments
10828033, Dec 15 2017 Cilag GmbH International Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
10835245, Dec 21 2016 Cilag GmbH International Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
10835247, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors
10835249, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10835251, Sep 30 2010 Cilag GmbH International Surgical instrument assembly including an end effector configurable in different positions
10835330, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
10838372, Oct 23 2012 Covidien LP Surgical instrument with rapid post event detection
10842488, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10842489, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10842490, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
10842491, Jan 31 2006 Cilag GmbH International Surgical system with an actuation console
10842492, Aug 20 2018 Cilag GmbH International Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
10856866, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
10856868, Dec 21 2016 Cilag GmbH International Firing member pin configurations
10856869, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10856870, Aug 20 2018 Cilag GmbH International Switching arrangements for motor powered articulatable surgical instruments
10863981, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10863986, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
10869664, Aug 31 2005 Cilag GmbH International End effector for use with a surgical stapling instrument
10869665, Aug 23 2013 Cilag GmbH International Surgical instrument system including a control system
10869666, Dec 15 2017 Cilag GmbH International Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
10869669, Sep 30 2010 Cilag GmbH International Surgical instrument assembly
10874391, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10874396, Feb 14 2008 Cilag GmbH International Stapling instrument for use with a surgical robot
10881396, Jun 20 2017 Cilag GmbH International Surgical instrument with variable duration trigger arrangement
10881399, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
10881401, Dec 21 2016 Cilag GmbH International Staple firing member comprising a missing cartridge and/or spent cartridge lockout
10888318, Apr 16 2013 Cilag GmbH International Powered surgical stapler
10888321, Jun 20 2017 Cilag GmbH International Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
10888322, Dec 21 2016 Cilag GmbH International Surgical instrument comprising a cutting member
10888328, Sep 30 2010 Cilag GmbH International Surgical end effector
10888329, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10888330, Feb 14 2008 Cilag GmbH International Surgical system
10893853, Jan 31 2006 Cilag GmbH International Stapling assembly including motor drive systems
10893864, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10893867, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10898183, Jun 29 2017 Cilag GmbH International Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
10898184, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10898185, Mar 26 2014 Cilag GmbH International Surgical instrument power management through sleep and wake up control
10898186, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
10898190, Aug 23 2013 Cilag GmbH International Secondary battery arrangements for powered surgical instruments
10898193, Sep 30 2010 Cilag GmbH International End effector for use with a surgical instrument
10898194, May 27 2011 Cilag GmbH International Detachable motor powered surgical instrument
10898195, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10903685, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies forming capacitive channels
10905403, Dec 13 2006 Devicor Medical Products, Inc. Presentation of biopsy sample by biopsy device
10905418, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10905422, Dec 21 2016 Cilag GmbH International Surgical instrument for use with a robotic surgical system
10905423, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10905426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10905427, Feb 14 2008 Cilag GmbH International Surgical System
10912559, Aug 20 2018 Cilag GmbH International Reinforced deformable anvil tip for surgical stapler anvil
10912575, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
10918380, Jan 31 2006 Cilag GmbH International Surgical instrument system including a control system
10918385, Dec 21 2016 Cilag GmbH International Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
10918386, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10925605, Feb 14 2008 Cilag GmbH International Surgical stapling system
10932772, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
10932774, Aug 30 2005 Cilag GmbH International Surgical end effector for forming staples to different heights
10932775, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
10932778, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10932779, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10945728, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10945729, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10945731, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10952727, Jan 10 2007 Cilag GmbH International Surgical instrument for assessing the state of a staple cartridge
10952728, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10959722, Jan 31 2006 Cilag GmbH International Surgical instrument for deploying fasteners by way of rotational motion
10959725, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10959727, Dec 21 2016 Cilag GmbH International Articulatable surgical end effector with asymmetric shaft arrangement
10966627, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10966718, Dec 15 2017 Cilag GmbH International Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
10973516, Dec 21 2016 Cilag GmbH International Surgical end effectors and adaptable firing members therefor
10980534, May 27 2011 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10980535, Sep 23 2008 Cilag GmbH International Motorized surgical instrument with an end effector
10980536, Dec 21 2016 Cilag GmbH International No-cartridge and spent cartridge lockout arrangements for surgical staplers
10980537, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
10980539, Sep 30 2015 Cilag GmbH International Implantable adjunct comprising bonded layers
10987102, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
10993713, Nov 09 2005 Cilag GmbH International Surgical instruments
10993716, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10993717, Jan 31 2006 Cilag GmbH International Surgical stapling system comprising a control system
11000274, Aug 23 2013 Cilag GmbH International Powered surgical instrument
11000275, Jan 31 2006 Cilag GmbH International Surgical instrument
11000277, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11000279, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11006955, Dec 15 2017 Cilag GmbH International End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
11007004, Jun 28 2012 Cilag GmbH International Powered multi-axial articulable electrosurgical device with external dissection features
11007022, Jun 29 2017 Cilag GmbH International Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
11013511, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
11020112, Dec 19 2017 Cilag GmbH International Surgical tools configured for interchangeable use with different controller interfaces
11020113, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11020114, Jun 28 2017 Cilag GmbH International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
11020115, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
11026678, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11026680, Aug 23 2013 Cilag GmbH International Surgical instrument configured to operate in different states
11026684, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11033267, Dec 15 2017 Cilag GmbH International Systems and methods of controlling a clamping member firing rate of a surgical instrument
11039834, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with staple directing protrusions and tissue stability features
11039836, Jan 11 2007 Cilag GmbH International Staple cartridge for use with a surgical stapling instrument
11039837, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11045189, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11045192, Aug 20 2018 Cilag GmbH International Fabricating techniques for surgical stapler anvils
11045270, Dec 19 2017 Cilag GmbH International Robotic attachment comprising exterior drive actuator
11045958, Aug 03 2012 Stryker Corporation Surgical robotic system and method for commanding instrument position based on iterative boundary evaluation
11051807, Jun 28 2019 Cilag GmbH International Packaging assembly including a particulate trap
11051810, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
11051811, Jan 31 2006 Cilag GmbH International End effector for use with a surgical instrument
11051813, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11058418, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
11058420, Jan 31 2006 Cilag GmbH International Surgical stapling apparatus comprising a lockout system
11058422, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11058423, Jun 28 2012 Cilag GmbH International Stapling system including first and second closure systems for use with a surgical robot
11058424, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an offset articulation joint
11058425, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
11064998, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
11071543, Dec 15 2017 Cilag GmbH International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
11071545, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11071554, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
11071575, Jun 07 2016 Pro-Dex, Inc. Torque-limiting screwdriver devices, systems, and methods
11076853, Dec 21 2017 Cilag GmbH International Systems and methods of displaying a knife position during transection for a surgical instrument
11076854, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11076929, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
11083452, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator
11083453, Dec 18 2014 Cilag GmbH International Surgical stapling system including a flexible firing actuator and lateral buckling supports
11083454, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11083455, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11083456, Jul 28 2004 Cilag GmbH International Articulating surgical instrument incorporating a two-piece firing mechanism
11083457, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11083458, Aug 20 2018 Cilag GmbH International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
11090045, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11090046, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
11090048, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11090049, Jun 27 2017 Cilag GmbH International Staple forming pocket arrangements
11090075, Oct 30 2017 Cilag GmbH International Articulation features for surgical end effector
11090128, Aug 20 2018 PRO-DEX, INC Torque-limiting devices, systems, and methods
11096689, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
11103241, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11103269, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11109858, Aug 23 2012 Cilag GmbH International Surgical instrument including a display which displays the position of a firing element
11109859, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
11109860, Jun 28 2012 Cilag GmbH International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
11116502, Jul 28 2004 Cilag GmbH International Surgical stapling instrument incorporating a two-piece firing mechanism
11129613, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
11129615, Feb 05 2009 Cilag GmbH International Surgical stapling system
11129616, May 27 2011 Cilag GmbH International Surgical stapling system
11129680, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a projector
11133106, Aug 23 2013 Cilag GmbH International Surgical instrument assembly comprising a retraction assembly
11134938, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11134940, Aug 23 2013 Cilag GmbH International Surgical instrument including a variable speed firing member
11134942, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
11134943, Jan 10 2007 Cilag GmbH International Powered surgical instrument including a control unit and sensor
11134944, Oct 30 2017 Cilag GmbH International Surgical stapler knife motion controls
11134947, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
11135352, Jul 28 2004 Cilag GmbH International End effector including a gradually releasable medical adjunct
11141153, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11141154, Jun 27 2017 Cilag GmbH International Surgical end effectors and anvils
11141155, Jun 28 2012 Cilag GmbH International Drive system for surgical tool
11141156, Jun 28 2012 Cilag GmbH International Surgical stapling assembly comprising flexible output shaft
11147549, Jun 04 2007 Cilag GmbH International Stapling instrument including a firing system and a closure system
11147551, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147553, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147554, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
11154296, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
11154297, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11154298, Jun 04 2007 Cilag GmbH International Stapling system for use with a robotic surgical system
11154299, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11154301, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11160551, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11160553, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11166717, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11166720, Jan 10 2007 Cilag GmbH International Surgical instrument including a control module for assessing an end effector
11172927, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11172929, Mar 25 2019 Cilag GmbH International Articulation drive arrangements for surgical systems
11179141, Dec 13 2006 Devicor Medical Products, Inc. Biopsy system
11179150, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11179151, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a display
11179152, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a tissue grasping system
11179153, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11179155, Dec 21 2016 Cilag GmbH International Anvil arrangements for surgical staplers
11179210, Aug 03 2012 Stryker Corporation Surgical manipulator and method for controlling pose of an instrument based on virtual rigid body modelling
11185325, Oct 16 2014 Cilag GmbH International End effector including different tissue gaps
11185330, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11191539, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
11191540, Dec 21 2016 Cilag GmbH International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
11191543, Dec 21 2016 Cilag GmbH International Assembly comprising a lock
11191545, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
11197670, Dec 15 2017 Cilag GmbH International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
11197671, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a lockout
11202631, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11202633, Sep 26 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
11202682, Dec 16 2016 MAKO Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
11207064, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11207065, Aug 20 2018 Cilag GmbH International Method for fabricating surgical stapler anvils
11213293, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11213302, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11219455, Jun 28 2019 Cilag GmbH International Surgical instrument including a lockout key
11224423, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11224426, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11224427, Jan 31 2006 Cilag GmbH International Surgical stapling system including a console and retraction assembly
11224428, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11224454, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11224497, Jun 28 2019 Cilag GmbH International Surgical systems with multiple RFID tags
11229437, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11234698, Dec 19 2019 Cilag GmbH International Stapling system comprising a clamp lockout and a firing lockout
11241229, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11241230, Jun 28 2012 Cilag GmbH International Clip applier tool for use with a robotic surgical system
11241235, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11246590, Aug 31 2005 Cilag GmbH International Staple cartridge including staple drivers having different unfired heights
11246592, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable to a frame
11246616, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11246618, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
11246678, Jun 28 2019 Cilag GmbH International Surgical stapling system having a frangible RFID tag
11253254, Apr 30 2019 Cilag GmbH International Shaft rotation actuator on a surgical instrument
11253256, Aug 20 2018 Cilag GmbH International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
11259799, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
11259803, Jun 28 2019 Cilag GmbH International Surgical stapling system having an information encryption protocol
11259805, Jun 28 2017 Cilag GmbH International Surgical instrument comprising firing member supports
11266405, Jun 27 2017 Cilag GmbH International Surgical anvil manufacturing methods
11266406, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
11266409, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising a sled including longitudinally-staggered ramps
11266410, May 27 2011 Cilag GmbH International Surgical device for use with a robotic system
11272927, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11272928, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11272938, Jun 27 2006 Cilag GmbH International Surgical instrument including dedicated firing and retraction assemblies
11278279, Jan 31 2006 Cilag GmbH International Surgical instrument assembly
11278284, Jun 28 2012 Cilag GmbH International Rotary drive arrangements for surgical instruments
11284891, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11284898, Sep 18 2014 Cilag GmbH International Surgical instrument including a deployable knife
11284953, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
11291440, Aug 20 2018 Cilag GmbH International Method for operating a powered articulatable surgical instrument
11291441, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11291447, Dec 19 2019 Cilag GmbH International Stapling instrument comprising independent jaw closing and staple firing systems
11291449, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
11291451, Jun 28 2019 Cilag GmbH International Surgical instrument with battery compatibility verification functionality
11298125, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator
11298127, Jun 28 2019 Cilag GmbH International Surgical stapling system having a lockout mechanism for an incompatible cartridge
11298132, Jun 28 2019 Cilag GmbH International Staple cartridge including a honeycomb extension
11298134, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11304695, Aug 03 2017 Cilag GmbH International Surgical system shaft interconnection
11304696, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a powered articulation system
11311290, Dec 21 2017 Cilag GmbH International Surgical instrument comprising an end effector dampener
11311292, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11311294, Sep 05 2014 Cilag GmbH International Powered medical device including measurement of closure state of jaws
11317910, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11317913, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
11317917, Apr 18 2016 Cilag GmbH International Surgical stapling system comprising a lockable firing assembly
11324501, Aug 20 2018 Cilag GmbH International Surgical stapling devices with improved closure members
11324503, Jun 27 2017 Cilag GmbH International Surgical firing member arrangements
11324506, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11337691, Dec 21 2017 Cilag GmbH International Surgical instrument configured to determine firing path
11337693, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
11337698, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
11344299, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11344303, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11350843, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11350916, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
11350928, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a tissue thickness lockout and speed control system
11350929, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11350932, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
11350934, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
11350935, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
11350938, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an aligned rfid sensor
11364027, Dec 21 2017 Cilag GmbH International Surgical instrument comprising speed control
11364046, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11369368, Dec 21 2017 Cilag GmbH International Surgical instrument comprising synchronized drive systems
11369376, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11373755, Aug 23 2012 Cilag GmbH International Surgical device drive system including a ratchet mechanism
11376001, Aug 23 2013 Cilag GmbH International Surgical stapling device with rotary multi-turn retraction mechanism
11376098, Jun 28 2019 Cilag GmbH International Surgical instrument system comprising an RFID system
11382625, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11382626, Oct 03 2006 Cilag GmbH International Surgical system including a knife bar supported for rotational and axial travel
11382627, Apr 16 2014 Cilag GmbH International Surgical stapling assembly comprising a firing member including a lateral extension
11382628, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
11382638, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
11389160, Aug 23 2013 Cilag GmbH International Surgical system comprising a display
11389161, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11389162, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11395651, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11395652, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11399828, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
11399829, Sep 29 2017 Cilag GmbH International Systems and methods of initiating a power shutdown mode for a surgical instrument
11399831, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
11399837, Jun 28 2019 Cilag GmbH International Mechanisms for motor control adjustments of a motorized surgical instrument
11406377, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11406378, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible tissue thickness compensator
11406380, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11406381, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11406386, Sep 05 2014 Cilag GmbH International End effector including magnetic and impedance sensors
11419606, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
11426160, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11426167, Jun 28 2019 Cilag GmbH International Mechanisms for proper anvil attachment surgical stapling head assembly
11426251, Apr 30 2019 Cilag GmbH International Articulation directional lights on a surgical instrument
11432816, Apr 30 2019 Cilag GmbH International Articulation pin for a surgical instrument
11439470, May 27 2011 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
11446029, Dec 19 2019 Cilag GmbH International Staple cartridge comprising projections extending from a curved deck surface
11446034, Feb 14 2008 Cilag GmbH International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
11452526, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a staged voltage regulation start-up system
11452528, Apr 30 2019 Cilag GmbH International Articulation actuators for a surgical instrument
11457918, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
11464512, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a curved deck surface
11464513, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11464514, Feb 14 2008 Cilag GmbH International Motorized surgical stapling system including a sensing array
11464601, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an RFID system for tracking a movable component
11464602, Mar 23 2017 Device and method for controlling an endodontic motor
11471155, Aug 03 2017 Cilag GmbH International Surgical system bailout
11471157, Apr 30 2019 Cilag GmbH International Articulation control mapping for a surgical instrument
11471232, Aug 03 2012 Stryker Corporation Surgical system and method utilizing impulse modeling for controlling an instrument
11478241, Jun 28 2019 Cilag GmbH International Staple cartridge including projections
11478242, Jun 28 2017 Cilag GmbH International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
11478244, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
11478247, Jul 30 2010 Cilag GmbH International Tissue acquisition arrangements and methods for surgical stapling devices
11484307, Feb 14 2008 Cilag GmbH International Loading unit coupleable to a surgical stapling system
11484309, Dec 30 2015 Cilag GmbH International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
11484310, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a closure tube profile
11484311, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11484312, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11490889, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11497488, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
11497492, Jun 28 2019 Cilag GmbH International Surgical instrument including an articulation lock
11497499, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11504116, Mar 28 2012 Cilag GmbH International Layer of material for a surgical end effector
11504119, Aug 23 2013 Cilag GmbH International Surgical instrument including an electronic firing lockout
11504122, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a nested firing member
11510671, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11517304, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11517306, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11517311, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
11517315, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11517325, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
11517390, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a limited travel switch
11523821, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
11523822, Jun 28 2019 Cilag GmbH International Battery pack including a circuit interrupter
11523823, Feb 09 2016 Cilag GmbH International Surgical instruments with non-symmetrical articulation arrangements
11529137, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11529138, Mar 01 2013 Cilag GmbH International Powered surgical instrument including a rotary drive screw
11529139, Dec 19 2019 Cilag GmbH International Motor driven surgical instrument
11529140, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
11529142, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
11534162, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11534259, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation indicator
11540824, Sep 30 2010 Cilag GmbH International Tissue thickness compensator
11540829, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11547403, Dec 18 2014 Cilag GmbH International Surgical instrument having a laminate firing actuator and lateral buckling supports
11547404, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553911, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553916, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11553919, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11553971, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for display and communication
11559302, Jun 04 2007 Cilag GmbH International Surgical instrument including a firing member movable at different speeds
11559303, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
11559304, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a rapid closure mechanism
11559496, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
11564679, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11564682, Jun 04 2007 Cilag GmbH International Surgical stapler device
11564686, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with flexible interfaces
11564688, Dec 21 2016 Cilag GmbH International Robotic surgical tool having a retraction mechanism
11571207, Dec 18 2014 Cilag GmbH International Surgical system including lateral supports for a flexible drive member
11571210, Dec 21 2016 Cilag GmbH International Firing assembly comprising a multiple failed-state fuse
11571212, Feb 14 2008 Cilag GmbH International Surgical stapling system including an impedance sensor
11571215, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11571231, Sep 29 2006 Cilag GmbH International Staple cartridge having a driver for driving multiple staples
11576668, Dec 21 2017 Cilag GmbH International Staple instrument comprising a firing path display
11576672, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
11576673, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different heights
11583274, Dec 21 2017 Cilag GmbH International Self-guiding stapling instrument
11583277, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11583278, May 27 2011 Cilag GmbH International Surgical stapling system having multi-direction articulation
11583279, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11596406, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11602340, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11602346, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11607219, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a detachable tissue cutting knife
11607239, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11612393, Jan 31 2006 Cilag GmbH International Robotically-controlled end effector
11612394, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11612395, Feb 14 2008 Cilag GmbH International Surgical system including a control system having an RFID tag reader
11617575, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617576, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617577, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
11622763, Apr 16 2013 Cilag GmbH International Stapling assembly comprising a shiftable drive
11622766, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
11622785, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
11627959, Jun 28 2019 Cilag GmbH International Surgical instruments including manual and powered system lockouts
11627960, Dec 02 2020 Cilag GmbH International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
11633183, Apr 16 2013 Cilag International GmbH Stapling assembly comprising a retraction drive
11638581, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11638582, Jul 28 2020 Cilag GmbH International Surgical instruments with torsion spine drive arrangements
11638583, Feb 14 2008 Cilag GmbH International Motorized surgical system having a plurality of power sources
11638587, Jun 28 2019 Cilag GmbH International RFID identification systems for surgical instruments
11639001, Aug 03 2012 Stryker Corporation Robotic system and method for reorienting a surgical instrument
11642125, Apr 15 2016 Cilag GmbH International Robotic surgical system including a user interface and a control circuit
11642128, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
11648005, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11648006, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11648008, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11648009, Apr 30 2019 Cilag GmbH International Rotatable jaw tip for a surgical instrument
11648024, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with position feedback
11653914, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
11653915, Dec 02 2020 Cilag GmbH International Surgical instruments with sled location detection and adjustment features
11653917, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11653918, Sep 05 2014 Cilag GmbH International Local display of tissue parameter stabilization
11653920, Dec 02 2020 Cilag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
11660090, Jul 28 2020 Cilag GmbH International Surgical instruments with segmented flexible drive arrangements
11660110, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11660163, Jun 28 2019 Cilag GmbH International Surgical system with RFID tags for updating motor assembly parameters
11666332, Jan 10 2007 Cilag GmbH International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
11672531, Jun 04 2007 Cilag GmbH International Rotary drive systems for surgical instruments
11672532, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
11672536, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11672620, Aug 03 2012 Stryker Corporation Robotic system and method for removing a volume of material from a patient
11678877, Dec 18 2014 Cilag GmbH International Surgical instrument including a flexible support configured to support a flexible firing member
11678880, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a housing arrangement
11678882, Dec 02 2020 Cilag GmbH International Surgical instruments with interactive features to remedy incidental sled movements
11684360, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
11684361, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11684365, Jul 28 2004 Cilag GmbH International Replaceable staple cartridges for surgical instruments
11684369, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11684434, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for instrument operational setting control
11690615, Apr 16 2013 Cilag GmbH International Surgical system including an electric motor and a surgical instrument
11690623, Sep 30 2015 Cilag GmbH International Method for applying an implantable layer to a fastener cartridge
11696757, Feb 26 2021 Cilag GmbH International Monitoring of internal systems to detect and track cartridge motion status
11696759, Jun 28 2017 Cilag GmbH International Surgical stapling instruments comprising shortened staple cartridge noses
11696761, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11697220, Apr 16 2015 BOHNERT EQUIPMENT COMPANY, INC Barrel hoop driving apparatus and electric drive
11701110, Aug 23 2013 Cilag GmbH International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
11701111, Dec 19 2019 Cilag GmbH International Method for operating a surgical stapling instrument
11701113, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a separate power antenna and a data transfer antenna
11701114, Oct 16 2014 Cilag GmbH International Staple cartridge
11701115, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11707273, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
11712244, Sep 30 2015 Cilag GmbH International Implantable layer with spacer fibers
11717285, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having RF electrodes
11717289, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
11717291, Mar 22 2021 Cilag GmbH International Staple cartridge comprising staples configured to apply different tissue compression
11717294, Apr 16 2014 Cilag GmbH International End effector arrangements comprising indicators
11717297, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11723657, Feb 26 2021 Cilag GmbH International Adjustable communication based on available bandwidth and power capacity
11723658, Mar 22 2021 Cilag GmbH International Staple cartridge comprising a firing lockout
11723662, May 28 2021 Cilag GmbH International Stapling instrument comprising an articulation control display
11730471, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11730473, Feb 26 2021 Cilag GmbH International Monitoring of manufacturing life-cycle
11730474, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
11730477, Oct 10 2008 Cilag GmbH International Powered surgical system with manually retractable firing system
11737748, Jul 28 2020 Cilag GmbH International Surgical instruments with double spherical articulation joints with pivotable links
11737749, Mar 22 2021 Cilag GmbH International Surgical stapling instrument comprising a retraction system
11737751, Dec 02 2020 Cilag GmbH International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
11737754, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
11744581, Dec 02 2020 Cilag GmbH International Powered surgical instruments with multi-phase tissue treatment
11744583, Feb 26 2021 Cilag GmbH International Distal communication array to tune frequency of RF systems
11744588, Feb 27 2015 Cilag GmbH International Surgical stapling instrument including a removably attachable battery pack
11744593, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11744603, Mar 24 2021 Cilag GmbH International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
11749877, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a signal antenna
11751867, Dec 21 2017 Cilag GmbH International Surgical instrument comprising sequenced systems
11751869, Feb 26 2021 Cilag GmbH International Monitoring of multiple sensors over time to detect moving characteristics of tissue
11759202, Mar 22 2021 Cilag GmbH International Staple cartridge comprising an implantable layer
11759208, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11766258, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
11766259, Dec 21 2016 Cilag GmbH International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
11766260, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11771419, Jun 28 2019 Cilag GmbH International Packaging for a replaceable component of a surgical stapling system
11771425, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different formed heights
11771426, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication
11771454, Apr 15 2016 Cilag GmbH International Stapling assembly including a controller for monitoring a clamping laod
11777375, Oct 04 2019 Gyrus ACMI, Inc. Handheld surgical instrument with heat management
11779330, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a jaw alignment system
11779336, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11779420, Jun 28 2012 Cilag GmbH International Robotic surgical attachments having manually-actuated retraction assemblies
11786239, Mar 24 2021 Cilag GmbH International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
11786243, Mar 24 2021 Cilag GmbH International Firing members having flexible portions for adapting to a load during a surgical firing stroke
11793509, Mar 28 2012 Cilag GmbH International Staple cartridge including an implantable layer
11793511, Nov 09 2005 Cilag GmbH International Surgical instruments
11793512, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11793513, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
11793514, Feb 26 2021 Cilag GmbH International Staple cartridge comprising sensor array which may be embedded in cartridge body
11793516, Mar 24 2021 Cilag GmbH International Surgical staple cartridge comprising longitudinal support beam
11793518, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11793521, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11793522, Sep 30 2015 Cilag GmbH International Staple cartridge assembly including a compressible adjunct
11801047, Feb 14 2008 Cilag GmbH International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
11801051, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
11806011, Mar 22 2021 Cilag GmbH International Stapling instrument comprising tissue compression systems
11806013, Jun 28 2012 Cilag GmbH International Firing system arrangements for surgical instruments
11811253, Apr 18 2016 Cilag GmbH International Surgical robotic system with fault state detection configurations based on motor current draw
11812954, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11812958, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
11812960, Jul 28 2004 Cilag GmbH International Method of segmenting the operation of a surgical stapling instrument
11812961, Jan 10 2007 Cilag GmbH International Surgical instrument including a motor control system
11812964, Feb 26 2021 Cilag GmbH International Staple cartridge comprising a power management circuit
11812965, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11826012, Mar 22 2021 Cilag GmbH International Stapling instrument comprising a pulsed motor-driven firing rack
11826013, Jul 28 2020 Cilag GmbH International Surgical instruments with firing member closure features
11826042, Mar 22 2021 Cilag GmbH International Surgical instrument comprising a firing drive including a selectable leverage mechanism
11826045, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11826047, May 28 2021 Cilag GmbH International Stapling instrument comprising jaw mounts
11826048, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11826132, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11832816, Mar 24 2021 Cilag GmbH International Surgical stapling assembly comprising nonplanar staples and planar staples
11839352, Jan 11 2007 Cilag GmbH International Surgical stapling device with an end effector
11839375, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising an anvil and different staple heights
11844518, Oct 29 2020 Cilag GmbH International Method for operating a surgical instrument
11844520, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11844521, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
11849939, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
11849941, Jun 29 2007 Cilag GmbH International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
11849943, Dec 02 2020 Cilag GmbH International Surgical instrument with cartridge release mechanisms
11849944, Mar 24 2021 Cilag GmbH International Drivers for fastener cartridge assemblies having rotary drive screws
11849945, Mar 24 2021 Cilag GmbH International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
11849946, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11849947, Jan 10 2007 Cilag GmbH International Surgical system including a control circuit and a passively-powered transponder
11849948, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11849952, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
11850011, Dec 16 2016 MAKO Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
11850310, Sep 30 2010 INTERNATIONAL, CILAG GMBH; Cilag GmbH International Staple cartridge including an adjunct
11857181, May 27 2011 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11857182, Jul 28 2020 Cilag GmbH International Surgical instruments with combination function articulation joint arrangements
11857183, Mar 24 2021 Cilag GmbH International Stapling assembly components having metal substrates and plastic bodies
11857187, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
11857189, Jun 28 2012 Cilag GmbH International Surgical instrument including first and second articulation joints
11864756, Jul 28 2020 Cilag GmbH International Surgical instruments with flexible ball chain drive arrangements
11864760, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11871923, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11871925, Jul 28 2020 Cilag GmbH International Surgical instruments with dual spherical articulation joint arrangements
11871939, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11877745, Oct 18 2021 Cilag GmbH International Surgical stapling assembly having longitudinally-repeating staple leg clusters
11877748, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
11882987, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
11882991, Aug 20 2018 Pro-Dex, Inc. Torque-limiting devices, systems, and methods
11883019, Dec 21 2017 Cilag GmbH International Stapling instrument comprising a staple feeding system
11883020, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
11883024, Jul 28 2020 Cilag GmbH International Method of operating a surgical instrument
11883025, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
11883026, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11890005, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
11890008, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11890010, Dec 02 2020 Cilag GmbH International Dual-sided reinforced reload for surgical instruments
11890012, Jul 28 2004 Cilag GmbH International Staple cartridge comprising cartridge body and attached support
11890015, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11890029, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
11890144, Jun 07 2016 Pro-Dex, Inc. Torque-limiting screwdriver devices, systems, and methods
11896217, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation lock
11896218, Mar 24 2021 Cilag GmbH International; INTERNATIONAL, CILAG GMBH Method of using a powered stapling device
11896219, Mar 24 2021 Cilag GmbH International Mating features between drivers and underside of a cartridge deck
11896222, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
11896225, Jul 28 2004 Cilag GmbH International Staple cartridge comprising a pan
11903581, Apr 30 2019 Cilag GmbH International Methods for stapling tissue using a surgical instrument
11903582, Mar 24 2021 Cilag GmbH International Leveraging surfaces for cartridge installation
11903586, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11911027, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11911028, Jun 04 2007 Cilag GmbH International Surgical instruments for use with a robotic surgical system
11911032, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a seating cam
5980248, Jul 28 1995 Kabushiki Kaisha Morita Seisakusho Motor controller for a dental handpiece
6017354, Aug 15 1996 Stryker Corporation Integrated system for powered surgical tools
6086544, Mar 31 1999 DEVICOR MEDICAL PRODUCTS, INC Control apparatus for an automated surgical biopsy device
6090123, Feb 12 1999 Stryker Corporation Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly
6120462, Mar 31 1999 DEVICOR MEDICAL PRODUCTS, INC Control method for an automated surgical biopsy device
6273862, Oct 23 1998 DEVICOR MEDICAL PRODUCTS, INC Surgical device for the collection of soft tissue
6329778, Aug 15 1996 Stryker Corporation Integrated system for powered surgical tools
6352532, Dec 14 1999 Ethicon Endo-Surgery, Inc Active load control of ultrasonic surgical instruments
6428487, Dec 17 1999 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy system with remote control for selecting an operational mode
6432064, Apr 09 2001 DEVICOR MEDICAL PRODUCTS, INC Biopsy instrument with tissue marking element
6432065, Dec 17 1999 DEVICOR MEDICAL PRODUCTS, INC Method for using a surgical biopsy system with remote control for selecting and operational mode
6536402, May 04 2001 Caterpillar Inc Programmable torque limit
6610020, Oct 13 2000 DEVICOR MEDICAL PRODUCTS, INC Fork assembly for a surgical biopsy device
6616446, May 10 1999 Working device for drilling, cutting and screwdriver instruments used for medical purposes
6620111, Apr 20 2001 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy device having automatic rotation of the probe for taking multiple samples
6656133, Oct 13 2000 DEVICOR MEDICAL PRODUCTS, INC Transmission assembly for a surgical biopsy device
6752768, Dec 17 1999 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy system with remote control for selecting an operational mode
6752816, Aug 15 1996 Stryker Corporation Powered surgical handpiece with removable control switch
6904813, Sep 05 2003 Ford Global Technologies, LLC System and method for monitoring torque in an electric motor
6955536, Sep 24 2002 Motor control system for endodontic handpiece providing dynamic torque limit tracking of specific file fatigue
7060039, Oct 13 2000 DEVICOR MEDICAL PRODUCTS, INC Fork assembly for a surgical biopsy device
7108660, Apr 20 2001 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy device having automatic rotation of the probe for taking multiple samples
7177533, Sep 24 2000 Medtronic, Inc.; Medtronic, Inc Motor control system for a surgical handpiece
7369757, May 24 2006 Covidien LP Systems and methods for regulating power in a medical device
7517351, Aug 15 1996 Stryker Corporation Surgical tool system including plural powered handpieces and a console to which the handpieces are simultaneously attached, the console able to energize each handpiece based on data stored in a memory integral with each handpiece
7806835, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with sharps reduction feature
7858038, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with illuminated tissue holder
7914464, Jun 18 2002 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy system with control unit for selecting an operational mode
7938786, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Vacuum timing algorithm for biopsy device
7981049, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Engagement interface for biopsy system vacuum module
7994746, May 25 2007 Delta Electronics, Inc. Motor control method and apparatus thereof
7998157, Aug 15 1996 Stryker Corporation Surgical tool system with a powred handpiece and a console, the console able to provide energization signals to the handpiece in either a motor drive mode or a direct drive mode
8016844, Oct 23 1998 DEVICOR MEDICAL PRODUCTS, INC Surgical device for the collection of soft tissue
8052616, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with fine pitch drive train
8187204, Oct 01 2007 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Surgical device and method for using same
8197501, Mar 20 2008 Medtronic Xomed, Inc. Control for a powered surgical instrument
8202229, Oct 01 2007 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Surgical device
8206409, Oct 23 1998 Devicor Medical Products, Inc. Surgical device for the collection of soft tissue
8251916, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Revolving tissue sample holder for biopsy device
8454531, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Icon-based user interface on biopsy system control module
8460207, Dec 17 1999 Devicor Medical Products, Inc. Surgical biopsy system with remote control for selecting an operational mode
8480595, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with motorized needle cocking
8545527, Mar 20 2008 Medtronic Xomed, Inc. Control for a powered surgical instrument
8653919, Aug 15 1996 Stryker Corporation Removable hand switch for attachment to a powered surgical tool
8702623, Dec 18 2008 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with discrete tissue chambers
8729845, Feb 25 2011 Siemens Aktiengesellschaft Method and device for controlling an electric motor
8808200, Oct 01 2007 Suros Surgical Systems, Inc. Surgical device and method of using same
8932233, May 21 2004 DEVICOR MEDICAL PRODUCTS, INC MRI biopsy device
8968212, Dec 13 2006 Devicor Medical Products, Inc. Biopsy device with motorized needle cocking
8979768, Oct 23 1998 Devicor Medical Products, Inc. Surgical device for the collection of soft tissue
9039634, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device tissue sample holder rotation control
9039635, Dec 17 1999 Devicor Medical Products, Inc. Surgical biopsy system with remote control for selecting an operational mode
9077276, Jul 02 2010 NAKANISHI INC Motor control method and motor control apparatus for dental handpiece
9199552, May 30 2012 RENAULT S A S System and method for monitoring the torque of a motor vehicle engine
9265551, Jul 19 2013 PRO-DEX, INC Torque-limiting screwdrivers
9265585, Oct 23 2012 Covidien LP Surgical instrument with rapid post event detection
9345457, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Presentation of biopsy sample by biopsy device
9392999, May 21 2004 Devicor Medical Products, Inc. MRI biopsy device
9433402, Oct 23 1998 Devicor Medical Products, Inc. Surgical device for the collection of soft tissue
9433403, Nov 20 2007 Devicor Medical Products, Inc. Icon-based user interface on biopsy system control module
9504453, May 21 2004 Devicor Medical Products, Inc. MRI biopsy device
9638770, May 21 2004 DEVICOR MEDICAL PRODUCTS, INC MRI biopsy apparatus incorporating an imageable penetrating portion
9675354, Jan 14 2013 Intuitive Surgical Operations, Inc Torque compensation
9795365, May 21 2004 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating a sleeve and multi-function obturator
D851762, Jun 28 2017 Cilag GmbH International Anvil
D854151, Jun 28 2017 Cilag GmbH International Surgical instrument shaft
D869655, Jun 28 2017 Cilag GmbH International Surgical fastener cartridge
D879808, Jun 20 2017 Cilag GmbH International Display panel with graphical user interface
D879809, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D890784, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D906355, Jun 28 2017 Cilag GmbH International Display screen or portion thereof with a graphical user interface for a surgical instrument
D907647, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D907648, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D910847, Dec 19 2017 Cilag GmbH International Surgical instrument assembly
D914878, Aug 20 2018 Cilag GmbH International Surgical instrument anvil
D917500, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with graphical user interface
D966512, Jun 02 2020 Cilag GmbH International Staple cartridge
D967421, Jun 02 2020 Cilag GmbH International Staple cartridge
D974560, Jun 02 2020 Cilag GmbH International Staple cartridge
D975278, Jun 02 2020 Cilag GmbH International Staple cartridge
D975850, Jun 02 2020 Cilag GmbH International Staple cartridge
D975851, Jun 02 2020 Cilag GmbH International Staple cartridge
D976401, Jun 02 2020 Cilag GmbH International Staple cartridge
D980425, Oct 29 2020 Cilag GmbH International Surgical instrument assembly
ER1904,
Patent Priority Assignee Title
4486176, Oct 08 1981 Kollmorgen Technologies Corporation Hand held device with built-in motor
4568283, Dec 22 1983 Kabushiki Kaisha Morita Seisaksuho Medical handpiece
4760317, Jul 23 1986 Bien-Air SA Electrical arrangement for driving a rotary tool fitted in a handpiece
4870334, Aug 22 1986 Otis Elevator Company Motor control apparatus
5469215, Aug 02 1993 Okuma Corporation Method and apparatus for controlling an electric motor with compensation or torque ripple
RE30356, Jun 16 1978 Hand drilling
/////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 05 1995Stryker Corporation(assignment on the face of the patent)
Dec 04 1998HOWMEDICA LEIBINGER, INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998SMD CORPORATIONBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998Stryker Technologies CorporationBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998Stryker Sales CorporationBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998STRYKER PUERTO RICO INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998STRYKER IMPLANTS INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998STRYKER FOREIGN HOLDCO INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998HOWMEDICA CORPORATIONBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998Stryker CorporationBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY AGREEMENT0141370212 pdf
Dec 04 1998STRYKER FAR EAST, INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY AGREEMENT0141370212 pdf
Dec 04 1998Stryker CorporationBANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998STRYKER FAR EAST, INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Dec 04 1998STRYKER INTERNATIONAL INC BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0098170001 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SMD CORPORATIONRELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION STRYKER FOREIGN HOLDCO, INC RELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION Stryker Technologies CorporationRELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION Stryker Sales CorporationRELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION STRYKER PUERTO RICO INC RELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION PHYSIOTHERAPY ASSOCIATES, INC RELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION Howmedica Osteonics CorporationRELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION STRYKER INTERNATIONAL, INC RELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION STRYKER FAR EAST, INC RELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION Stryker CorporationRELEASE OF SECURITY INTEREST0125390557 pdf
Jan 24 2002BANK OF AMERICA, N A F K A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION HOWMEDICAL LEIBINGER, INC RELEASE OF SECURITY INTEREST0125390557 pdf
Date Maintenance Fee Events
Jan 26 2000M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 04 2000ASPN: Payor Number Assigned.
Feb 04 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 13 2007ASPN: Payor Number Assigned.
Aug 13 2007RMPN: Payer Number De-assigned.
Jan 11 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 06 19994 years fee payment window open
Feb 06 20006 months grace period start (w surcharge)
Aug 06 2000patent expiry (for year 4)
Aug 06 20022 years to revive unintentionally abandoned end. (for year 4)
Aug 06 20038 years fee payment window open
Feb 06 20046 months grace period start (w surcharge)
Aug 06 2004patent expiry (for year 8)
Aug 06 20062 years to revive unintentionally abandoned end. (for year 8)
Aug 06 200712 years fee payment window open
Feb 06 20086 months grace period start (w surcharge)
Aug 06 2008patent expiry (for year 12)
Aug 06 20102 years to revive unintentionally abandoned end. (for year 12)