A prosthesis for insertion into a lumen to limit restenosis of the lumen. The prosthesis carries restenosis-limiting drugs which elute after the device is positioned in the lumen.

Patent
   5545208
Priority
Feb 28 1990
Filed
Dec 21 1993
Issued
Aug 13 1996
Expiry
Aug 13 2013
Assg.orig
Entity
Large
472
28
all paid
1. A device for local intralumenal administration of drugs comprising:
(a) a catheter having proximal and distal ends;
(b) a body including a plurality of support elements forming a open-ended, radially expandable, self-supporting tubular structure having an interior surface and an exterior surface;
(c) at least one flexible, polymeric filament attached to the support elements of the body, at least a portion of the filament exposed at the exterior surface of the tubular body, said body mounted on the catheter at the distal end thereof;
(d) means at the proximal end of the catheter to provide sufficient radial expansion of the tubular body to bring the tubular body and polymeric filament into contact with a body lumen at an interior portion of the body lumen to be treated and for releasing the tubular body from the catheter; and
(e) a drug compounded into the polymeric filament such that the drug is delivered to the body lumen when the tubular body is radially expanded into contact with the portion of the body lumen to be treated.
2. The device of claim 1 wherein the support elements of the tubular body are arranged in a helically wound structure.
3. The device of claim 2 wherein the helically wound structure includes a plurality of helical elements, each of which is wound in a helix configuration along a center line of the tubular body as a common axis, said elements wound in opposing helical directions such that the tubular body is variable in radial diameter under axial movement of opposite ends of the body relative to each other.
4. The device of claim 3 wherein the helical elements are made from a bioabsorbable polymer.
5. The device of claim 2 wherein the support elements are made from a deformable metal.
6. The device of claim 1 wherein the polymeric filament is made from a bioabsorbable polymer.
7. The device of claim 1 also comprising a second polymeric filament having the drug compounded therein such that the drug is delivered to the body lumen more rapidly from the second polymeric filament than from the polymeric filament.
8. The device of claim 1 also comprising a barrier coating of polymeric material on the drug-containing filament to limit the rate of drug elution.
9. The device of claim 1 wherein the drug is selected from the group consisting of antiplatelet drugs, anticoagulant drugs, anti-inflammatory drugs, antireplicate drugs and combinations of said drugs.
10. The device of claim 9 wherein the polymeric filament includes a drug selected from the group consisting of anticoagulant drugs and antiplatelet drugs and wherein the device also comprises a second polymeric filament having a drug compounded therein selected from the group consisting of antiinflammatory drugs and antireplicate drugs such that the drug in the polymeric filament is delivered to the body lumen more rapidly than from the second polymeric filament.

This is a continuation-in-part of U.S. Ser. No. 07/815,560, filed Dec. 27, 1991, which is a continuation of U.S. Ser. No. 07/486,580, filed Feb. 28, 1990, now abandoned.

1. Field of the Invention

This invention related to methods for lessening restenosis of body lumens, and to prosthesis for delivering drugs to treat said restenosis.

2. Description of the Related Art

Restenosis is defined as the reclosure of a previously stenosed and subsequently dilated peripheral or coronary vessel. It occurs at a rate of 20-50% for these procedures and is dependent on a number of clinical and morphological variables. Restenosis may begin shortly following an angioplasty procedure, but usually ceases at the end of approximately six (6) months. There is not a current therapeutic procedure that has been proven to significantly reduce this restenosis rate.

A recent technology that has been developed that assesses the problem of restenosis is intravascular stents. Stents are typically metallic devices that are permanently implanted (expanded) in coronary and peripheral vessels. The goal of these stents is to provide a long-term "scaffolding" or support for the diseased (stenosed) vessels. The theory being, if you can support the vessel from the inside, the vessel will not close down or restenose. Unfortunately, initial data from clinical stent implants indicates that these metallic structures are not very successful in reducing restenosis.

Pharmacologic (biochemical) attempts have been made to reduce the rate of restenosis. All of these attempts have dealt with the systemic delivery of drugs via oral, intravascular or intramuscular introduction. Little, if any success has been achieved with this systemic approach.

For drug delivery, it has been recognized for a long period of time that pills and injections may not be the best mode of administration. It is very difficult with these types of administration to obtain constant drug delivery. Patient noncompliance with instructions is also a problem. Through repeated does, these drugs often cycle through concentration peaks and valleys, resulting in time periods of toxicity and ineffectiveness. Thus, localized drug treatment is warranted.

The invention provides prostheses which may be inserted into a lumen of a body and fixed to the lumen wall adjacent an area needing treatment. Most typically, the lumen will be part of the vascular system which may be subject to restenosis following angioplasty. However, the methods and devices of the invention are also suited to treatment of any body lumen, including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver or any other lumen of the body where medication cannot be applied without a surgical procedure. The invention applies to acute and chronic closure or reclosure of body lumens.

The prostheses of the invention include at least one drug which will release from the device at a controlled rate to supply the drug where needed without the overkill of systemic delivery. The prostheses include means for fixing the device in the lumen where desired. The prostheses may be completely biodegradable or may be bioabsorbable in whole or incorporated into the lumen wall as a result of tissue over growth, i.e., endothelialization. Alternatively, the prostheses may be biostable in which case the drug is diffused out from the biostable materials in which it is incorporated.

The prosthesis comprises a generally flexible tubular body which is fixed against the lumen walls by a mechanical action. The device should not cause an appreciable reduction in the lumen cross-section where inserted. Conventional stent designs which provide an expansion of the vessel are suitable, though not required. In all cases, the prostheses of the invention require the presence of an elutable drug compounded to the prosthesis itself. With conventional metal stents, the invention requires a drug-carrying coating overlying at least a portion of the metal.

The drugs in the prosthesis may be of any type which would be useful in treating the lumen. In order to prevent restenosis in blood vessels, migration and subsequent proliferation of smooth muscle cells must be checked. Platelet aggregation and adhesion can be controlled with antiplatelets and anticoagulants. Growth factor and receptor blockers and antagonists may be used to limit the normal repair response.

The current invention contemplates the usage of any prosthesis which elutes drugs locally to treat a lumen in need of repair. Controlled release, via a bioabsorbable polymer, offers to maintain the drug level within the desired therapeutic range for the duration of the treatment. When "stent" is referred to herein, it may include the classical definition of stents as they are used in intravascular applications. "Stent" used herein also includes any prothesis which may be inserted and held where desired in a lumen. It includes, but is not limited to, structures such as those shown and described in U.S. Pat. No. 4,886,062 to Wiktor.

A detailed description of the invention is hereafter described with specific reference being made to the drawings in which:

FIG. 1 is a greatly enlarged side view of an intralumenal drug-eluting prosthesis of the invention;

FIG. 2 is a greatly enlarged side view of an alternative embodiment to the prosthesis of FIG. 1;

FIG. 3A is a greatly enlarged fragment of the embodiment of FIG. 1;

FIG. 3B is a greatly enlarged fragment of the embodiment of FIG. 1 in which two layers of polymers are present, each having a different drug;

FIG. 4 is a greatly enlarged fragment of the embodiment of FIG. 2;

FIG. 5 is a greatly enlarged microscopic fragmentary detail of drug shown eluting form the porous structure of a filament or filament coating in a prosthesis into tissue or the vessel lumen;

FIG. 6 is a greatly enlarged cross-section of a blood vessel showing plaque profile immediately post-balloon catheter dilation procedure;

FIG. 7 is a greatly enlarged cross-section of the subject of FIG. 6 at a later date showing restenosis;

FIG. 8 is a greatly enlarged cross-section of a blood vessel showing plaque-prosthesis profile immediately post-prosthesis implant procedure;

FIG. 9 is a greatly enlarged cross-section of the subject of FIG. 8 after ingrowth has occurred;

FIG. 10 is a greatly enlarged fragmentary perspective view of a blood vessel wall and prosthesis filament of FIGS. 1 and 3 immediately after implantation;

FIG. 11 is a greatly enlarged fragmentary perspective view of the subject of FIG. 10 after about one month;

FIG. 12 is a greatly enlarged fragment of a loose weave of prosthesis filaments;

FIG. 13 is a greatly enlarged fragment of a coated metal filament in a loose weave;

FIG. 14 is a greatly enlarged fragment of a melted junction weave of prosthesis filaments in a loose weave;

FIG. 15 is a greatly enlarged fragment of a kinked junction wave of prosthesis filaments;

FIG. 16 is a greatly enlarged fragment of multistrand weave of prosthesis filaments; and

FIG. 17 is a alternative embodiment to FIG. 16, in which strands are not woven.

FIG. 18 is a partial sectional view of a catheter for delivery of the prosthesis of the present invention.

FIG. 19a-19i are sectional views of the deployment of the prosthesis by the catheter of FIG. 18.

PAC Restenosis

In the discussion above, a very simple definition of restenosis was given. As a complement to this definition, there are several more clinical definitions. Several of these definitions are listed below:

1. Reduction of minimal luminal diameter to less than 50% of the normal lumen diameter.

2. Loss of at least 50% of the initial gain achieved in angioplasty.

3. Decrease of at least 30% in the lumen diameter compared to post-angioplasty result.

4. A return to within 10% of the pre-angioplasty diameter stenosis.

5. An immediate post angioplasty diameter stenosis of less than that increases to 70% or greater at follow-up.

6. Deterioration of 0.72 mm in minimal luminal diameter or greater from post-angioplasty to follow-up.

7. As for 6, but with a deterioration of 0.5 mm.

These definitions are sued by cardiologists to angiographically define restenosis.

Several hypotheses exist on why and how restenosis occurs. The current, most widely accepted explanation is that restenosis is a natural healing process in response to the arterial injury that occurs during all types of angioplasty procedures. This very complex healing process results in intimal hyperplasia, more specifically migration and proliferation of medial smooth muscle cells (SMC). The problem associated with this arterial healing process is that in some instances, it does not shut off. The artery continues to "heal" until it becomes occluded. It should be noted that restenosis is not a re-deposition of the plaque-like cholesterol material that originally occluded the artery.

The following is a possible scenario for restenosis according to the vessel healing hypothesis. Successful angioplasty of stenotic lesions produces cracking of the plaque, dissection into the media, denudation and destruction of endothelial cells, exposure of thrombogenic collagen, released tissue thromboplastin, and an increased loss of prostacyclin production. All of these lead to the aggregation of active platelets.

FIGS. 6 and 7 show a typical vessel 30 in cross-section after angioplasty procedures showing the interior 32 of the lumen. In FIG. 6 the interior of the lumen is rough and includes intimal flaps 34. Damage causes healing with deposition of platelets, fibrin formation and proliferation of neointima 37 which as shown in FIG. 7 significantly reduces the interior of the lumen.

Activated platelets release several mitogens including platelet derived growth factor (PDGF), epidermal growth factor, and transforming growth factor. PDGF has both mitogenic and chemotactic properties and thus, may induce both mitigation of SMC from the medial layer to the intimal layer as well as proliferation (Intimal hyperplasia). PDGF causes SMC proliferation by binding to specific PDGF receptors. Once the PDGF is bound to the receptors, deoxyribose nucleic acid (DNA) synthesis occurs and new cells are replicated. Minor endothelial injury may cause platelet adhesion and activation with the resultant release of PDGF. Thus, even the deposition of a monolayer of platelets may be sufficient to induce SMC proliferation.

Deeper arterial injury which is sometimes associated with complex stenotic lesions leads to more extensive platelet deposition and activation which may cause an even greater availability of the mitogenic factors. Thus, increased SMC proliferation and intimal hyperplasia. Arterial injury from angioplasty may result in release of PDGF-like compounds from not only platelets but also macrophages, monocytes, endothelial cells, or SMC's themselves.

Activated SMC from human atheroma or following experimental arterial injury secrete PDGF-like molecules which appears to lead to self perpetuation of SMC proliferation by the release of their own PDGF-like substances. Thus, any or all of the cells which can secrete PDGF relate substances (platelets, macrophages, monocytes, endothelia, and smooth muscle cells) may contribute to the cascading effect of restenosis after angioplasty.

The previous restenosis scenario resulted from normal angioplasty procedures. During balloon angioplasty if the balloon is undersized or not totally inflated and the plaque cracking and extensive endothelial denudation does not occur the lesion could still restenose. Rheologic factors contribute as well to the interaction between platelets and the arterial wall. Residual stenosis, resulting from inadequate balloon expansion, produces a high local shear rate and enhances platelet deposition and activation. These stenoses may be important as a stimulus for some proliferation through enhanced platelet deposition and secretion of growth factors. This hypothesis correlates with the increased incidence of restenosis in patients with high-grade residual stenoses or transtenotic gradients.

In order to prevent restenosis, one must stop the proliferation of smooth muscle cells. As stated earlier, this is a biochemical process which cannot be treated mechanically. Several hypothesis exist on how to biochemically stop restenosis. Some of which are:

1. Reduce the adhesion and aggregation of the platelets at the arterial injury site.

2. Block the expression of the growth factors and their receptors.

3. Develop competitive antagonists of the above growth factors.

4. Interfere with the receptor signaling in the responsive cell.

5. Find a "natural" inhibitor of smooth muscle proliferation.

Item #1 is directly related to the formation of thrombus, a major problem with all types of angioplasty procedures. Items #2, #3 and #4 are closely related. They deal with blocking restenosis during the massive cell migration and replication cycle. Unlike item #1, these items address the growth factors that are produced from sources other than platelets. Item #5 is listed to address the question; Why don't 50-80% of the people undergoing angioplasty restenose? There may be some type of natural inhibitor that these people produce that stops the proliferation of smooth muscle cells.

There are at least two (2) different ways to prevent the adhesion and aggregation of platelets. One method is to use an antiplatelet and another is to use an anticoagulant.

Antiplatelet drugs include such as aspirin and dipyridamole. Aspirin is classified as an analgesic, antipyretic, anti-inflammatory, antiplatelet drug. It has been clinically tested and proven to reduce the risk of sudden death and/or non-fatal reinfarction in post myocardial infarction (heart attack) patients. The proposed mechanism of how aspirin works, relates directly to the platelets. It somehow blocks the platelets, restricting coagulation. This prevents the cascading platelet aggregation found in thrombus and subsequently restenosis. Aspirin is therefore a possible restenosis inhibitor. Dipyridamole is a drug similar to aspirin, in that is has anti-platelet characteristics. Dipyridamole is also classified as a coronary vasodilator. It increases coronary blood flow by primary selective dilatation of the coronary arteries without altering systemic blood pressure or blood flow in peripheral arteries. These vasodilation characteristics are thought to be possibly beneficial for restenosis prevention.

Anticoagulant drugs include Heparin, Coumadin, Protamine, and Hirudin. Heparin is the most common anticoagulant used today. Heparin, in one form or another, is used in virtually every angioplasty procedure performed. All four (4) of these drugs function as an anticoagulant by preventing the production of thrombin, a binding agent which causes blood to clot. This too, may reduce the cascading effect of platelet aggregation at the lesion site, thus possibly reducing restenosis. The use of Protamine in the presence of Heparin causes the Protamine to function as a Heparin antagonist, blocking the effect of the Heparin. Protamine, however, used alone, acts as an anticoagulant. Hirudin is singled out because it is not normally found in the human body. Hirudin is a drug that is found in the salivary glands of leeches. It is a very concentrated anticoagulant that functions in a similar manner as Heparin, Coumadin, and Protamine.

There are several types of drugs that interrupt cell replication. Antimitotics (cytotoxic agents) work directly to prevent cell mitosis (replication), whereas antimetabolites prevent deoxyribose nucleic acid (DNA) synthesis, thus preventing replication. The action of the antimitotics and antimetabolites are similar, they can be grouped into one category. This category will be known as the anti-replicate drugs.

Anti-replicate drugs include among others: Methotrexate, Colchicine, Azathioprine, Vincristine, VinBlastine, Fluorouracil, Adriamycin, and Mutamycin. The target systemic molarity desired with methotrexate is on the order of 10-6 M with a range of between 10-3 to 10-8 Molar. Locally, the molarity of the drug may be highly variable, which is one of the great disadvantages in systemic administration of the drug. When drugs are delivered locally via the prosthesis of the invention, they may be at therapeutic levels at the diseased site while at the lower limits of detectability in the bloodstream. So little drug is required for effective local treatment of a lumen that the drug may not be detectable in blood samples.

Anti-inflammatory drugs such as glucocorticoids (e.g., dexamethasone, betamethasone) can also be useful to locally suppress inflammation caused by injury to luminal tissue during angioplasty.

If the restenosis process ranges from shortly after injury to about four to six months later, then the generalized elution rates contemplated are such that the drug should ideally start to be released immediately after the prosthesis is secured to the lumen wall to lessen cell proliferation. The drug should then continue to elute for up to about four to six months in total.

Complex systems of drugs may be carried by the prosthesis. An anticoagulant or antiplatelet may be included in the outermost surface of the device in order to elute off very quickly for the first several days. Antiinflammatories and antireplicates can be formulated into the device to continue to elute later, when in contact with non-blood cells after neointima overgrowth has surrounded the device. This usually occurs in about two weeks. The drug elution rate does not need to be uniform, and may be tailored to fit the need of the patient.

The current invention contemplates the usage of any prosthesis which elutes drugs locally to treat a lumen in need of repair. When "stent" is referred to herein, it may include the classical definition of stents as they are used in intravascular applications. "Stent" used herein also includes any prosthesis which may be inserted and held where desired in a lumen.

FIGS. 1 through 17 show features of some of the prostheses which may be used to carry and elute restenosis limiting-drugs.

The current preferred stent 10 configuration consists of a single filar, monofilament braided mesh design as shown in FIG. 1. There are sixteen (16) filaments 12, eight (8) of which are wound in one helical direction, and the remaining eight (8) which are wound in the opposite direction. The stent 10 is self-expanding to a predetermined diameter. The profile (diameter) of the stent 10 can be easily reduced by pulling the stent 10 longitudinally. In this reduced profile configuration, the stent 10 can be loaded into a catheter for delivery into the vessel.

The stent 20 shown in FIGS. 2 and 4 is a metallic malleable design which may be forced against a lumen wall by a balloon catheter which fixes it into position. The exterior surface of the metal filaments 22 would include a coating 14 with a drug-eluting polymer described previously. The polymer may be biostable or bioabsorbable. If biostable, the drug would diffuse out of the polymer.

The variations of design shown in the embodiments of FIGS. 1 and 2 show that the prosthesis of the invention must be secured against a lumen wall and must carry a drug-eluting polymer.

There are many variables in the design of stent 10. The angle (a) of the filaments 12 is a major variable. The angle a can vary from 0 degrees to 180 degrees. The design in the Figures is based on an angle in the 60 degree to 90 degree range.

There are many options for fabricating the drug eluting stents. One option is to have all sixteen (16) filaments be drug eluting. Or, you could have any number of filaments up to sixteen (16) degrade and elute drugs. Another option is to have a multi-filar stent. Instead of a single filament braided into the stent, it is possible to have two (2), three (3), or even four (4) strands 16 braided to form a filament 12 as shown in FIG. 16. This would create a stent with much greater expansile force, but also have much more material in the surface area. This is a common trade-off in stent design. Similar to the single-filar design, the multi-filar form shown in FIG. 16 could have varying numbers of strands 16 that are drug eluting. FIGS. 16 and 17 show that the multi-filar design may be braided or unbraided. One (1), two (2), three (3), or four (4) of the filaments could be impregnated with a drug and biodegradably elute. Alternatively, the polymer may be biostable which allows for diffusion of the drug without degradation.

The stent 10 of FIG. 1 consists of a wound braided mesh which is self-expanding to a predetermined diameter and whose profile diameter can be greatly reduced for catheter introduction. The radial expansile force increases with diameter to the point of the self-expanded diameter limit, at which point the angle between the filaments and the longitudinal axis is a maximum. FIGS. 12 and 15 show alternative construction techniques to alter the radial expansive force. FIG. 12 shows the filaments 12 being woven without any connection. FIG. 13 is similar except the filament 22 is formed with a metal core 16 and a-coating 14. In FIG. 14 the individual filaments 12 are shown with a bonded juncture 18. The bonding at the juncture 18 prevents the individual filaments 12 from sliding relative to each other, which improves the radial strength. The mechanically kinked junction 19 shown in FIG. 15 also limits the sliding of the filaments to change the radial strength. A heated platen press may be pressed against the wound stent while still on the forming mandrel to form the kinks. Higher temperatures may be used to form the melted junctures 18.

The devices may be made more visible under fluoroscopy and x-ray by incorporating radiopaque materials into marker band 24 to the individual filaments 12 at the ends of the stent 10 as shown in FIG. 1. Such marker bands could help to locate the stent and assure proper placement and patency.

Controlled release, via a bioabsorbable polymer, offers to maintain the drug level within the desired therapeutic range for the duration of the treatment. In the case of stents, the prosthesis materials will maintain vessel support for at least two weeks or until incorporated into the vessel wall even with bioabsorbable, biodegradable polymer constructions.

Several polymeric compounds that are known to be bioabsorbable and hypothetically have the ability to be drug impregnated may be useful in prosthesis formation herein. These compounds include: poly-1-lactic acid/polyglycolic acid, polyanhydride, and polyphosphate ester. A brief description of each is given below.

Poly-1-lactic acid/polyglycolic acid has been used for many years in the area of bioabsorbable sutures. It is currently available in many forms, i.e., crystals, fibers, blocks, plates, etc. These compounds degrade into non-toxic lactic and glycolic acids. There are, however, several problems with this compound. The degradation artifacts (lactic acid and glycolic acid) are slightly acidic. The acidity causes minor inflammation in the tissues as the polymer degrades. This same inflammation could be very detrimental in coronary and peripheral arteries, i.e., vessel occlusion. Another problem associated with this polymer is the ability to control and predict the degradation behavior. It is not possible for the biochemist to safely predict degradation time. This could be very detrimental for a drug delivery device.

Another compound which could be used are the polyanhydrides. They are currently being used with several chemotherapy drugs for the treatment of cancerous tumors. These drugs are compounded into the polymer which is molded into a cube-like structure and surgically implanted at the tumor site.

Polyanhydrides have weaknesses in their mechanical properties, due to low molecular weights. This drawback makes them difficult to process into a filament form. Also, polyanhydrides have poor solubility, making characterization and fabrication difficult.

The compound which is preferred is a polyphosphate ester. Polyphosphate ester is a compound such as that disclosed in U.S. Pat. Nos. 5,176,907; 5,194,581; and 5,656,765 issued to Leong which are incorporated herein by reference. Similar to the polyanhydrides, polyphoshate ester is being researched for the sole purpose of drug delivery. Unlike the polyanhydrides, the polyphosphate esters have high molecular weights (600,000 average), yielding attractive mechanical properties. This high molecular weight leads to transparency, and film and fiber properties. It has also been observed that the phosphorous-carbon-oxygen plasticizing effect, which lowers the glass transition temperature, makes the polymer desirable for fabrication.

The basic structure of polyphosphate ester monomer is shown below. ##STR1## where P corresponds to Phosphorous,

O corresponds to Oxygen,

and R and R1 are functional groups.

Reaction with water leads to the breakdown of this compound into monomeric phosphates (phosphoric acid) and diols (see below). ##STR2## It is the hydrolytic instability of the phosphorous ester bond which makes this polymer attractive for controlled drug release applications. A wide range of controllable degradation rates can be obtained by adjusting the hydrophobicities of the backbones of the polymers and yet assure biodegradability.

The functional side groups allow for the chemical linkage of drug molecules to the polymer. This is shown below. ##STR3##

The drug may also be incorporated into the backbone of the polymer. ##STR4##

In summary, the highly hydrolytically reactive phosphorous ester bond, the favorable physical properties, and the versatile chemical structure make the polyphosphate esters a superior drug delivery system for a prosthesis.

FIGS. 3A and 3B show that the filaments 12 may be made from one or several layers of polymer. In FIG. 3A only a single polymer is present to carry the drugs. In FIG. 3B a second layer of polymer 15 is shown. That layer 15 may be a simple barrier which limits diffusion of drugs in the polymer 14. In that event, the smaller molecules could elute out immediately, while larger compounds would not elute until later when the layer 15 has biodegraded. Alternatively, layer 15 may include a different drug incorporated therein from that found in layer 14. The barrier coating 15 could be as simple as a silicone or polyurethane.

The prosthesis is inserted into the lumen wherever needed as per the usual procedure for stents. The device is fixed into place either by radial expansion in devices such as shown in FIG. 1 or are deformed by a balloon catheter in the case of devices in accordance with FIG. 2.

FIGS. 8 through 11 show the placement and effects of the drug-eluting prosthesis of the invention. The prosthesis tacks up any intimal flaps and tears caused by any prior ballooning. The initial deposition of platelets and subsequent thrombus formation 38 is controlled and minimized by the stent design and the elution which limits platelet aggregation and other immediate repair responses described previously. Localized thrombus formations in the areas of cracked and roughened plaques and newly exposed underlying collagen and fibro-muscular tissues is also decreased. This results in limited but quick neointima formation 40 and intimal proliferation over individual stent filaments progressing to mature endothelial lining. Long term significant restenosis is therefore limited. Elution of the anti-replicates along or in conjunction with the initial elution of anticoagulants can also limit the extent of the restenosis which occurs in the natural healing process.

In yet another embodiment of the invention, a purely polymeric prosthesis such as that having the configuration shown in FIG. 1 can be combined with an expandable metal stent to provide additional support for the prosthesis. This can be important since preferred bioabsorbable polymeric materials for the prosthesis may have insufficient resilience to expand an occluded body lumen or to maintain its expansion. By including a metal stent within the lumen of the polymeric prosthesis, the polymeric prosthesis is effectively held against the wall of the body lumen by the strength of the metal stent. In a most preferred aspect of this embodiment, the metal stent is only temporarily implanted so that only the bioabsorbable prosthesis remains implanted in the body lumen on a long term basis. This can be accomplished by including a polymeric stent body and a metal stent body on the distal end of a catheter designed to expand and release the stents. Both of the stent bodies have a number of support elements which make up an open-ended, radially expandable self-supporting tubular structure. In the polymeric stent structure, a bioabsorbable polymeric element (such as a filment made from a bioabsorbable polymer) having drugs incorporated therein can be attached to the support elements of the body so that at least a portion of the bioabsorbable element is exposed at the exterior surface of the polymeric stent body. The stents are arranged on the distal end of the catheter such that the catheter can provide remote, transluminal deployment of the stents, with the metal stent inside the polymeric stent, from an entry point into a selected portion of the body lumen to be treated and also remote actuation of an expansion mechanism from the proximal end of the catheter. The expansion mechanism (e.g. a balloon or the like if the metal stent is made of malleable metal for balloon expansion or a release mechanism if the metal stent is a self-expanding stent made from a resilient metal) is one capable of providing radial expansion of the metal stent body to bring the metal stent into supporting contact with the polymeric stent body and also to press the polymeric stent body so that it expands radially into contact with the wall of the body lumen. This will bring the bioabsorbable element into supporting contact with a body lumen at an interior portion of the body lumen to be treated and will position the bioabsorbable element to deliver drugs to the body lumen. Following the expansion of the stents into luminal contact, the balloon (if the expansion device is a balloon) can be deflated which allows luminal flow to be restored. After the stents have been in place for a predetermined period of time, the metal stent can be removed to leave only the polymeric stent (and its drug delivery component) in position in the body lumen. This can be accomplished, for example, by radially contracting the metal stent and then withdrawing it from the body lumen or by unwinding the metal stent a bit at a time as it is withdrawn from the body lumen.

Referring now to specific embodiments shown in the drawings, one possible configuration for a polymeric prosthesis supported by a metal stent is that of the prosthesis shown in FIG. 1 supported by a metal stent having a configuration such as that taught in U.S. Pat. No. 4,886,062 to Wiktor which is incorporated herein by reference. These devices may be combined by simply placing the polymeric prosthesis over the metal stent and balloon; introducing the prosthesis, stent, and balloon into the body lumen as a unit until it reaches the desired point for expansion; inflating the balloon to radially expand the prosthesis and stent into contact with the body lumen; and removing the balloon. In such an embodiment, the metal stent would be permanently implanted with the polymeric prosthesis. Another embodiment of this concept is shown in FIGS. 18 and 19a-19i in which the metal stent is only implanted for a limited period of time and then removed. Referring now to FIGS. 18 and 19a-19i, a catheter assembly 50 includes a hub assembly 52 at a proximal end, an inflatable balloon 54, a metal stent 56 and a polymeric prosthesis 58 at a distal end and a sheath 60 extending from the proximal to the distal end. The metal stent 56 is crimped onto the balloon 54 and includes an elongated lead 62 extending to the proximal end of the catheter assembly 50 where it includes an enlarged portion 64 to enable an operator to securely grip the lead 62. Distal to the balloon 54 is the polymeric prosthesis 58 which is constrained from radial self-expansion by the sheath 60. In operation, a guidewire 66 is inserted into the body lumen 68 and through the point of occlusion 70. The catheter assembly 50 is then passed into the lumen 68 on the guidewire 66 until the prosthesis 58 is positioned at the point of the occlusion 70. The sheath 60 is then drawn back, thereby allowing the prosthesis 58 to be pushed out of the sheath 60 by the leading edge of the balloon assembly where it radially self-expands into luminal contact. The balloon 54 and stent 56 are then advanced out of the sheath 60 as a unit and into the open center of the prosthesis 58. The balloon 54 is then inflated to expand the metal stent 56, the prosthesis 58 and the occlusion 70. The balloon 54 is then deflated and withdrawn from the metal stent 56 and prosthesis 58, leaving the metal stent 56 inside the prosthesis 58 in support of the prosthesis 58 and the occlusion 70. If the body lumen 68 is a blood vessel, blood flow is restored by deflating the balloon 54. If desired, the balloon 54 can then be withdrawn entirely from the sheath 60 and also, if desired, the sheath 60 and guidewire 66 can be withdrawn. However, it is preferred to leave the balloon 54, sheath 60 and guidewire 66 in place in order to provide support for the lead 62 and to avoid entangling the lead 62 with the catheter lumen or guidewire 66 as they are withdrawn. If the balloon 54 or guidewire 66 are to be withdrawn, it may be preferable to modify the sheath 60 by providing a separate lumen in the sheath 60 or another location in the catheter assembly 50 for the lead 62. After a desired period of time which allows the prosthesis to achieve a stable support for the lumen, the lead 62 is pulled at the proximal end of the catheter assembly 50, thereby causing the metal stent 56 to unwind and be taken up into the sheath 60. The metal stent chosen for use in this method should include no edges or ends which can snag the prosthesis 58 and pull it from its intended position in the body lumen 68. The Sheath is then withdrawn, leaving the prosthesis 58 in place in the lumen 68.

This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiments described herein which equivalents are intended to be encompassed by the claims attached hereto.

Wolff, Rodney G., Hull, Vincent W.

Patent Priority Assignee Title
10004511, Mar 25 2011 Covidien LP Vascular remodeling device
10004618, Apr 17 2009 Covidien LP Methods and apparatus for luminal stenting
10076324, Aug 31 2015 Ethicon LLC Adjunct material to provide controlled drug elution
10080821, Jul 17 2009 Boston Scientific Scimed, Inc. Nucleation of drug delivery balloons to provide improved crystal size and density
10099041, Jun 01 2012 Surmodics, Inc. Apparatus and methods for coating medical devices
10117972, Jul 15 2011 MICELL MEDTECH INC Drug delivery medical device
10166131, Sep 19 2001 Abbott Laboratories Vascular Enterprises Limited Process for loading a stent onto a stent delivery system
10179058, Jan 10 2005 Taheri LaDuca LLC Apparatus and method for deploying an implantable device within the body
10188772, Oct 18 2012 MICELL MEDTECH INC Drug delivery medical device
10206798, Oct 31 2012 Covidien LP Methods and systems for increasing a density of a region of a vascular device
10232092, Apr 22 2010 MICELL MEDTECH INC Stents and other devices having extracellular matrix coating
10272260, Nov 23 2011 BRONCUS MEDICAL INC. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
10272606, May 15 2013 MICELL MEDTECH INC Bioabsorbable biomedical implants
10328458, Feb 28 2012 MICROVENTION, INC Coating methods
10342688, Jun 19 2006 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
10350333, Apr 17 2008 MICELL MEDTECH INC Stents having bioabsorable layers
10350391, Jul 16 2009 MICELL MEDTECH INC Drug delivery medical device
10369256, Jul 10 2009 Boston Scientific Scimed, Inc. Use of nanocrystals for drug delivery from a balloon
10369339, Jul 19 2004 BRONCUS MEDICAL INC. Devices for delivering substances through an extra-anatomic opening created in an airway
10398545, Aug 26 2014 SPIROX, INC Nasal implants and systems and method of use
10433851, Sep 26 2007 St. Jude Medical, Cardiology Division, Inc. Braided vascular devices having no end clamps
10433988, Feb 22 2006 Covidien LP Stents having radiopaque mesh
10478194, Sep 23 2015 Covidien LP Occlusive devices
10507309, Jun 01 2012 Surmodics, Inc. Apparatus and methods for coating medical devices
10532190, Jul 12 2002 Cook Medical Technologies LLC Coated medical device
10543299, Oct 03 2016 MicroVention, Inc. Surface coatings
10568994, May 20 2009 LYRA THERAPEUTICS, INC Drug-eluting medical implants
10569071, Aug 31 2015 Cilag GmbH International Medicant eluting adjuncts and methods of using medicant eluting adjuncts
10588740, Feb 27 2013 SPIROX, INC . Nasal implants and systems and methods of use
10596330, Aug 26 2015 Medtronic Xomed, Inc Resorbable, drug-eluting submucosal turbinate implant device and method
10603163, Sep 25 2006 Spirox, Inc. Nasal implant introduced through a non-surgical injection technique
10617795, Jan 08 2007 MICELL MEDTECH INC Stents having biodegradable layers
10617796, May 20 2009 LYRA THERAPEUTICS, INC Drug eluting medical implant
10631938, May 13 2011 BRONCUS MEDICAL INC. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
10639176, Feb 09 2007 Taheri LaDuca LLC Vascular implants and methods of fabricating the same
10653820, Apr 01 2009 MICELL MEDTECH INC Coated stents
10729569, Jan 10 2005 Taheri LaDuca LLC Delivery devices for implanting devices at intersecting lumens
10729819, Jul 15 2011 MICELL MEDTECH INC Drug delivery medical device
10736758, Mar 15 2013 Covidien LP Occlusive device
10765542, Apr 17 2009 Covidien LP Methods and apparatus for luminal stenting
10786383, Nov 19 2008 Spirox, Inc. Apparatus and methods for correcting nasal valve collapse
10828182, Sep 29 2011 Covidien LP Vascular remodeling device
10835396, Jul 15 2005 MICELL MEDTECH INC Stent with polymer coating containing amorphous rapamycin
10898353, Jul 15 2005 MICELL MEDTECH INC Polymer coatings containing drug powder of controlled morphology
10918389, May 25 2004 Covidien LP Flexible vascular occluding device
10952878, Oct 31 2012 Covidien LP Methods and systems for increasing a density of a region of a vascular device
10980631, Aug 26 2014 Spirox, Inc. Nasal implants and systems and method of use
10987133, May 02 2016 ENTELLUS MEDICAL, INC Nasal valve implants and methods of implanting the same
10993800, Sep 25 2015 SPIROX, INC Nasal implants and systems and method of use
11007307, Apr 26 2006 MICELL MEDTECH INC Coatings containing multiple drugs
11039943, Mar 12 2013 MICELL MEDTECH INC Bioabsorbable biomedical implants
11147563, Mar 25 2011 Covidien LP Vascular remodeling device
11278648, Jul 10 2009 Boston Scientific Scimed, Inc Use of nanocrystals for drug delivery from a balloon
11278649, Oct 03 2016 MicroVention, Inc. Surface coatings
11357510, Sep 23 2015 Covidien LP Occlusive devices
11357960, Jul 19 2004 BRONCUS MEDICAL INC. Devices for delivering substances through an extra-anatomic opening created in an airway
11369498, Feb 02 2010 MICELL MEDTECH INC Stent and stent delivery system with improved deliverability
11382777, Feb 22 2006 Covidien LP Stents having radiopaque mesh
11389309, Mar 15 2013 Covidien LP Occlusive device
11406405, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
11426494, Jan 08 2007 MICELL MEDTECH INC Stents having biodegradable layers
11628466, Nov 29 2018 Surmodics, Inc Apparatus and methods for coating medical devices
11654037, Sep 29 2011 Covidien LP Vascular remodeling device
11654250, Aug 26 2015 Medtronic Xomed, Inc. Resorbable, drug-eluting submucosal turbinate implant device and method
11707371, May 13 2008 Covidien LP Braid implant delivery systems
11737865, Sep 25 2015 Spirox, Inc. Nasal implants and systems and method of use
11766506, Mar 04 2016 MiRus LLC Stent device for spinal fusion
11771433, May 25 2004 Covidien LP Flexible vascular occluding device
11779685, Jun 24 2014 MiRus LLC Metal alloys for medical devices
11806265, Nov 19 2008 Spirox, Inc. Apparatus and methods for correcting nasal valve collapse
11819590, May 13 2019 Surmodics, Inc Apparatus and methods for coating medical devices
11826535, Aug 31 2015 Cilag GmbH International Medicant eluting adjuncts and methods of using medicant eluting adjuncts
11839733, Aug 31 2015 Cilag GmbH International Medicant eluting adjuncts and methods of using medicant eluting adjuncts
11844528, Apr 21 2008 Covidien LP Multiple layer filamentary devices for treatment of vascular defects
11850333, Apr 26 2006 MICELL MEDTECH INC Coatings containing multiple drugs
11890186, Feb 27 2013 Spirox, Inc. Nasal implants and systems and methods of use
11904118, Jul 16 2010 MICELL MEDTECH INC Drug delivery medical device
11911301, Jul 15 2005 MICELL MEDTECH INC Polymer coatings containing drug powder of controlled morphology
5733327, Oct 17 1994 Stent for liberating drug
5741333, Apr 12 1995 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
5776184, Apr 26 1993 Medtronic, Inc. Intravasoular stent and method
5824034, Sep 14 1992 Boston Scientific Scimed, Inc Method for repositioning a radially self-expanding implantable intraluminal device
5849037, Apr 12 1995 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
5851231, Feb 28 1990 Medtronic, Inc. Intralumenal drug eluting prosthesis
5879697, Apr 30 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Drug-releasing coatings for medical devices
5899935, Aug 04 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Balloon expandable braided stent with restraint
5968091, Mar 26 1996 LifeShield Sciences LLC Stents and stent grafts having enhanced hoop strength and methods of making the same
5980564, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable implantable endoprosthesis with reservoir
5980972, Dec 20 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Method of applying drug-release coatings
5997468, Feb 28 1990 Medtronic, Inc. Intraluminal drug eluting prosthesis method
6010530, Jun 07 1995 BIOMED RESEARCH, INC Self-expanding endoluminal prosthesis
6042875, Apr 30 1997 Schneider (USA) Inc. Drug-releasing coatings for medical devices
6077217, Jun 25 1997 Ramus Medical Technologies, Inc. System and method for assembling graft structures
6099562, Jun 13 1996 Boston Scientific Scimed, Inc Drug coating with topcoat
6120536, Apr 19 1995 Boston Scientific Scimed, Inc Medical devices with long term non-thrombogenic coatings
6120847, Jan 08 1999 Boston Scientific Scimed, Inc Surface treatment method for stent coating
6123715, Jul 08 1994 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Method of forming medical devices; intravascular occlusion devices
6156373, May 03 1999 Boston Scientific Scimed, Inc Medical device coating methods and devices
6174330, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable marker having radiopaque constituents
6214042, Nov 10 1998 PRECISION VASCULAR SYSTEMS, INC Micro-machined stent for vessels, body ducts and the like
6231600, Feb 22 1995 Boston Scientific Scimed, Inc Stents with hybrid coating for medical devices
6237460, Dec 04 1995 Corvita Corporation Method for preparation of a self-expanding stent for a medical device to be introduced into a cavity of a body
6238368, Jul 13 1994 Therapeutic device for the selective cytoreduction treatment of an obstruction
6245103, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable self-expanding stent
6251135, Aug 01 1997 Schneider (USA) Inc Radiopaque marker system and method of use
6258121, Jul 02 1999 Boston Scientific Scimed, Inc Stent coating
6273901, Aug 10 1999 Boston Scientific Scimed, Inc Thrombosis filter having a surface treatment
6273908, Oct 24 1997 Stents
6280411, May 18 1998 Boston Scientific Scimed, Inc Localized delivery of drug agents
6284305, Jun 13 1996 Schneider (USA) Inc. Drug coating with topcoat
6306166, Aug 13 1997 Boston Scientific Scimed, Inc Loading and release of water-insoluble drugs
6309380, Jan 27 1999 DEPUY PRODUCTS, INC Drug delivery via conformal film
6322847, May 03 1999 Boston Scientific, Inc. Medical device coating methods and devices
6340367, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Radiopaque markers and methods of using the same
6342051, Jun 12 1997 VITROPHAGE, INC Treatment of anoxic tissue with angiogenesis-inducing implants
6358556, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating
6364856, Apr 14 1998 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Medical device with sponge coating for controlled drug release
6368339, Jul 08 1994 AGA Medical Corporation Method of forming medical devices: intra-vascular occlusion devices
6368346, Jun 03 1999 Boston Scientific Scimed, Inc Bioresorbable stent
6419692, Feb 03 1999 Boston Scientific Scimed, Inc Surface protection method for stents and balloon catheters for drug delivery
6447531, Jul 08 1994 AGA Medical Corporation Method of forming medical devices; intravascular occlusion devices
6471980, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
6485514, Dec 12 1997 SuperGen, Inc.; SuperGen, Inc Local delivery of therapeutic agents
6488705, Sep 14 1992 Boston Scientific Scimed, Inc Radially self-expanding implantable intraluminal device
6494907, Apr 28 1998 EV3 PERIPHERAL, INC Braided stent
6533807, Feb 05 1998 Medtronic, Inc Radially-expandable stent and delivery system
6537195, May 07 2001 NUCLETRON OPERATIONS B V Combination x-ray radiation and drug delivery devices and methods for inhibiting hyperplasia
6569191, Jul 27 2000 Bionx Implants, Inc. Self-expanding stent with enhanced radial expansion and shape memory
6569195, Jul 02 1999 SciMed Life Systems, Inc. Stent coating
6585764, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent with therapeutically active dosage of rapamycin coated thereon
6589266, Aug 10 1999 Boston Scientific Scimed, Inc Thrombosis filter having a surface treatment
6613079, Feb 05 1998 Medtronic, Inc. Radially-expandable stent with controllable force profile
6620194, Apr 19 1995 Boston Scientific Scimed, Inc. Drug coating with topcoat
6626939, Dec 18 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Stent-graft with bioabsorbable structural support
6656156, Feb 03 1999 Boston Scientific Scimed, Inc Dual surface protection coating for drug delivery balloon catheters and stents
6682545, Oct 06 1999 The Penn State Research Foundation System and device for preventing restenosis in body vessels
6709706, Feb 22 1995 Boston Scientific Scimed, Inc Hydrophilic coating and substrates coated therewith having enhanced durablity and lubricity
6746773, Sep 29 2000 Ethicon, Inc Coatings for medical devices
6759431, May 24 1996 Angiotech International AG Compositions and methods for treating or preventing diseases of body passageways
6776796, May 12 2000 Wyeth Antiinflammatory drug and delivery device
6786919, Jul 10 2001 Endovascular Technologies, Inc. Self-expanding intravascular device with protector members
6790223, Sep 21 2001 Boston Scientific Scimed, Inc Delivering a uretheral stent
6808536, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent containing rapamycin or its analogs using a modified stent
6858221, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
6884427, Feb 08 1999 ADERANS RESEARCH INSTITUTE, INC Filamentary means for introducing agents into tissue of a living host
6887266, Nov 14 2002 Synecor, LLC Endoprostheses and methods of manufacture
6890339, Dec 15 1989 SciMed Life Systems, Inc. Stent lining
6890583, Apr 27 1998 Surmodics, Inc. Bioactive agent release coating
6908622, Sep 24 2001 Boston Scientific Scimed, Inc Optimized dosing for drug coated stents
6932930, Mar 10 2003 Synecor, LLC Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
6939320, May 18 1998 Boston Scientific Scimed, Inc Localized delivery of drug agents
6939375, Dec 22 2000 Avantec Vascular Corporation Apparatus and methods for controlled substance delivery from implanted prostheses
6949083, Jul 13 1994 Therapeutic device for the selective cytoreduction treatment of an obstruction in a natural lumen or passage of the human or animal body
6981964, May 22 2001 Boston Scientific Scimed, Inc Draining bodily fluids with a stent
6981987, Dec 22 1999 Ethicon, Inc Removable stent for body lumens
6989033, Sep 17 1992 OSSACUR AG Implant for recreating verterbrae and tubular bones
6991647, Jul 03 1999 Boston Scientific Scimed, Inc Bioresorbable stent
7005137, Jun 21 2002 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
7008667, Apr 27 1998 Surmodics, Inc. Bioactive agent release coating
7018371, May 07 2001 NUCLETRON OPERATIONS B V Combination ionizing radiation and radiosensitizer delivery devices and methods for inhibiting hyperplasia
7018405, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of methylprednisolone
7041046, May 07 2001 NUCLETRON OPERATIONS B V Combination ionizing radiation and immunomodulator delivery devices and methods for inhibiting hyperplasia
7056338, Mar 28 2003 Innovational Holdings LLC Therapeutic agent delivery device with controlled therapeutic agent release rates
7056550, Sep 29 2000 Ethicon, Inc Medical devices, drug coatings and methods for maintaining the drug coatings thereon
7077859, Dec 22 2000 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
7077860, Apr 24 1997 Advanced Cardiovascular Systems, Inc. Method of reducing or eliminating thrombus formation
7083642, Dec 22 2000 Avantec Vascular Corporation Delivery of therapeutic capable agents
7097850, Jun 18 2002 Surmodics, Inc Bioactive agent release coating and controlled humidity method
7108701, Sep 28 2001 Wyeth Drug releasing anastomosis devices and methods for treating anastomotic sites
7108716, Dec 18 1997 Schneider (USA) Inc. Stent-graft with bioabsorbable structural support
7112226, Oct 22 2002 Boston Scientific Scimed, Inc Male urethral stent device
7112293, Dec 19 2000 NICAST LTD Method and apparatus for manufacturing polymer fiber shells via electrospinning
7115220, Dec 19 2000 NICAST LTD Vascular prosthesis and method for production thereof
7125851, Apr 20 1999 OSSACUR AG Endoprosthesis with long-term stability
7141061, Nov 14 2002 Synecor, LLC Photocurable endoprosthesis system
7144419, Jan 24 2003 Medtronic Vascular, Inc Drug-polymer coated stent with blended phenoxy and styrenic block copolymers
7160592, Feb 15 2002 CV Therapeutics, Inc Polymer coating for medical devices
7195640, Sep 25 2001 CARDINAL HEALTH SWITZERLAND 515 GMBH Coated medical devices for the treatment of vulnerable plaque
7198641, Aug 08 2000 ADERANS RESEARCH INSTITUTE, INC Scaffolds for tissue engineered hair
7208010, Oct 16 2000 CONOR MEDSYSTEMS, INC Expandable medical device for delivery of beneficial agent
7208011, Sep 23 2002 CONOR MEDSYSTEMS, INC Implantable medical device with drug filled holes
7208172, Nov 03 2003 Medlogics Device Corporation Metallic composite coating for delivery of therapeutic agents from the surface of implantable devices
7211108, Jan 23 2004 Icon Interventional Systems, Inc Vascular grafts with amphiphilic block copolymer coatings
7214654, Sep 17 1992 OSSACUR AG Agent for the manufacture of biological parts including an active ingredient complex and carrying materials suitable for the active ingredient complex
7217286, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7217426, Jun 21 2002 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
7223286, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7229473, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7244116, Dec 19 2000 NICAST LTD Apparatus for improving mechanical characteristics of nonwoven materials
7244272, Dec 19 2000 Nicast Ltd. Vascular prosthesis and method for production thereof
7244443, Aug 31 2004 Advanced Cardiovascular Systems, INC Polymers of fluorinated monomers and hydrophilic monomers
7247313, Jun 27 2001 Advanced Cardiovascular Systems, INC Polyacrylates coatings for implantable medical devices
7261735, May 07 2001 Wyeth Local drug delivery devices and methods for maintaining the drug coatings thereon
7276271, Dec 19 2000 NICAST LTD Polymer fiber tubular structure having kinking resistance
7285287, Nov 14 2002 Synecor, LLC Carbon dioxide-assisted methods of providing biocompatible intraluminal prostheses
7300662, May 12 2000 Wyeth Drug/drug delivery systems for the prevention and treatment of vascular disease
7311727, Feb 05 2003 BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS Encased stent
7351421, Nov 05 1996 GP MEDICAL, INC Drug-eluting stent having collagen drug carrier chemically treated with genipin
7357793, Aug 31 2004 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated and hydrophilic monomers
7364768, Feb 15 2002 CV Therapeutics, Inc. Polymer coating for medical devices
7371257, Dec 15 1989 Boston Scientific Scimed, Inc Stent lining
7396538, Sep 26 2002 Endovascular Devices, Inc.; ENDOVASCULAR DEVICES, INC Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
7396539, Jun 21 2002 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
7410665, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7419696, Apr 26 1993 Medtronic, Inc Medical devices for delivering a therapeutic agent and method of preparation
7419709, Feb 15 2002 CV Therapeutics, Inc. Polymer coating for medical devices
7442402, Apr 27 1998 Surmodics, Inc. Bioactive agent release coating
7445628, Jun 07 1995 Cook Medical Technologies LLC Method of treating a patient with a coated implantable medical device
7462165, Apr 14 1998 Boston Scientific Scimed, Inc Medical device with sponge coating for controlled drug release
7488444, Mar 03 2005 MiRus LLC Metal alloys for medical devices
7491233, Jul 19 2002 Advanced Cardiovascular Systems Inc. Purified polymers for coatings of implantable medical devices
7517362, Aug 20 2001 Innovational Holdings LLC Therapeutic agent delivery device with controlled therapeutic agent release rates
7527651, Oct 22 2002 Boston Scientific Scimed, Inc. Male urethral stent device
7541048, Apr 06 2004 Surmodics, Inc Coating compositions for bioactive agents
7544673, Apr 06 2004 Surmodics, Inc Coating compositions for bioactive agents
7550005, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7553325, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable marker having radiopaque constituents
7563454, May 01 2003 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
7566486, May 31 2000 N V BEKAERT S A Braid reinforced flexible hose
7597885, Mar 26 2004 ADERANS RESEARCH INSTITUTE, INC Tissue engineered biomimetic hair follicle graft
7604663, Dec 30 1999 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Medical devices with polymer/inorganic substrate composites
7611532, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7622135, Oct 22 2001 Covidien LP Coated stent
7625410, May 02 2001 Boston Scientific Scimed, Inc. Stent device and method
7651529, May 09 2003 Boston Scientific Scimed, Inc Stricture retractor
7666222, Apr 18 1997 Cordis Corporation Methods and devices for delivering therapeutic agents to target vessels
7682387, Apr 24 2002 Biosensors International Group, Ltd Drug-delivery endovascular stent and method for treating restenosis
7691078, May 22 2001 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
7699887, Dec 18 1997 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
7731685, Jul 12 2002 Cook Medical Technologies LLC Coated medical device
7753285, Jul 13 2007 Bacoustics, LLC Echoing ultrasound atomization and/or mixing system
7758631, Aug 01 1997 Boston Scientific Scimed, Inc. Bioabsorbable endoprosthesis having elongate axial reservoir for by-product collection
7766884, Aug 31 2004 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
7771466, Nov 16 1999 LifeShield Sciences LLC Multi-section filamentary endoluminal stent
7776379, Sep 19 2001 CELONOVA BIOSCIENCES, INC Metallic structures incorporating bioactive materials and methods for creating the same
7780095, Jul 13 2007 Bacoustics, LLC Ultrasound pumping apparatus
7794219, Mar 19 2002 NANOMEDIC TECHNOLOGIES LTD Portable electrospinning device
7799070, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7803394, Jun 21 2002 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
7806925, Oct 04 1991 Boston Scientific Scimed, Inc. Biodegradable drug delivery vascular stent
7811317, Apr 26 1993 Medtronic, Inc. Medical devices for delivering a therapeutic agent and method of preparation
7811622, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7815590, Aug 05 1999 SRONCUB, INC Devices for maintaining patency of surgically created channels in tissue
7819912, Mar 30 1998 Innovational Holdings LLC Expandable medical device with beneficial agent delivery mechanism
7820193, Jul 19 1993 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
7824704, May 02 2003 Surmodics, Inc. Controlled release bioactive agent delivery device
7833548, Jun 18 2002 Surmodics, Inc. Bioactive agent release coating and controlled humidity method
7846202, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
7850727, Aug 20 2001 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
7850728, Oct 16 2000 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
7867275, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device method
7896539, Aug 16 2005 Bacoustics, LLC Ultrasound apparatus and methods for mixing liquids and coating stents
7896912, Mar 30 1998 Innovational Holdings LLC Expandable medical device with S-shaped bridging elements
7896914, Feb 20 1997 Cook Medical Technologies LLC Coated implantable medical device
7901453, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
7901703, Jun 21 2002 Advanced Cardiovascular Systems, Inc. Polycationic peptides for cardiovascular therapy
7906133, Sep 24 2002 Boston Scientific Scimed, Inc. Optimized dosing for drug coated stents
7909865, Mar 30 1998 Conor Medsystems, LLC Expandable medical device for delivery of beneficial agent
7918815, May 22 2001 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
7919162, Mar 10 2003 Synecor, LLC Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
7931683, Jul 27 2007 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
7938855, Nov 02 2007 Boston Scientific Scimed, Inc Deformable underlayer for stent
7942926, Jul 11 2007 Boston Scientific Scimed, Inc Endoprosthesis coating
7967855, Jul 27 1998 MiRus LLC Coated medical device
7976862, May 02 2003 Surmodics, Inc. Controlled release bioactive agent delivery device
7976915, May 23 2007 Boston Scientific Scimed, Inc Endoprosthesis with select ceramic morphology
7981150, Nov 09 2006 Boston Scientific Scimed, Inc Endoprosthesis with coatings
7985252, Jul 30 2008 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
7985537, Jun 12 2007 ADERANS RESEARCH INSTITUTE, INC Methods for determining the hair follicle inductive properties of a composition
7998192, May 09 2008 Boston Scientific Scimed, Inc. Endoprostheses
8002740, Jul 18 2003 SRONCUB, INC Devices for maintaining patency of surgically created channels in tissue
8002821, Sep 18 2006 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
8002823, Jul 11 2007 Boston Scientific Scimed, Inc Endoprosthesis coating
8016881, Jul 31 2002 MiRus LLC Sutures and surgical staples for anastamoses, wound closures, and surgical closures
8021680, May 02 2003 Surmodics, Inc Controlled release bioactive agent delivery device
8029554, Nov 02 2007 Boston Scientific Scimed, Inc Stent with embedded material
8029561, May 12 2000 Wyeth Drug combination useful for prevention of restenosis
8034369, May 02 2003 Surmodics, Inc. Controlled release bioactive agent delivery device
8048150, Apr 12 2006 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
8052734, Mar 30 1998 Innovational Holdings, LLC Expandable medical device with beneficial agent delivery mechanism
8052743, Aug 02 2006 Boston Scientific Scimed, Inc Endoprosthesis with three-dimensional disintegration control
8052744, Sep 15 2006 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
8052745, Sep 13 2007 Boston Scientific Scimed, Inc Endoprosthesis
8057534, Sep 15 2006 Boston Scientific Scimed, Inc Bioerodible endoprostheses and methods of making the same
8066763, Apr 11 1998 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
8067022, Sep 25 1992 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
8067054, Apr 05 2007 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
8070796, Jul 27 1998 MiRus LLC Thrombosis inhibiting graft
8070797, Mar 01 2007 Boston Scientific Scimed, Inc Medical device with a porous surface for delivery of a therapeutic agent
8071156, Mar 04 2009 Boston Scientific Scimed, Inc. Endoprostheses
8080055, Dec 28 2006 Boston Scientific Scimed, Inc Bioerodible endoprostheses and methods of making the same
8088060, Mar 15 2000 ORBUSNEICH MEDICAL PTE LTD Progenitor endothelial cell capturing with a drug eluting implantable medical device
8089029, Feb 01 2006 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
8097642, Feb 15 1995 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
8100963, Oct 26 2001 MiRus LLC Biodegradable device
8114049, Mar 06 2008 Boston Scientific Scimed, Inc Balloon catheter devices with folded balloons
8114152, Apr 15 1998 MiRus LLC Stent coating
8118864, May 25 2004 LifeShield Sciences LLC Drug delivery endovascular graft
8128689, Sep 15 2006 Boston Scientific Scimed, Inc Bioerodible endoprosthesis with biostable inorganic layers
8158670, Feb 15 1996 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
8172793, Oct 31 2000 Cook Medical Technologies LLC Coated medical device
8177743, May 18 1998 Boston Scientific Scimed, Inc. Localized delivery of drug agents
8182527, May 07 2001 Wyeth Heparin barrier coating for controlled drug release
8187321, Aug 20 2001 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
8187620, Mar 27 2006 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
8206435, Mar 30 1998 Conor Medsystems, Inc.; Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
8211085, Jul 13 1994 Therapeutic device for the selective cytoreduction treatment of an obstruction in a natural lumen or passage of the human or animal body
8216632, Nov 02 2007 Boston Scientific Scimed, Inc Endoprosthesis coating
8221822, Jul 31 2007 Boston Scientific Scimed, Inc Medical device coating by laser cladding
8230913, Jan 16 2001 Halliburton Energy Services, Inc Expandable device for use in a well bore
8231980, Dec 03 2008 Boston Scientific Scimed, Inc Medical implants including iridium oxide
8236039, Dec 21 2007 Abbott Laboratories Vena cava filter having wall contacts
8236046, Jun 10 2008 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
8236048, May 12 2000 Wyeth Drug/drug delivery systems for the prevention and treatment of vascular disease
8246974, May 02 2003 Surmodics, Inc Medical devices and methods for producing the same
8252046, Apr 24 2002 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
8257424, May 22 2000 MICELL SPV EQUITY LLC; MICELL SPV I LLC Radially expandable vascular stent
8257433, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8262613, May 18 1998 Boston Scientific Scimed, Inc. Localized delivery of drug agents
8267992, Mar 02 2009 Boston Scientific Scimed, Inc Self-buffering medical implants
8287937, Apr 24 2009 Boston Scientific Scimed, Inc. Endoprosthese
8298279, Sep 24 2009 Medtronic Vascular, Inc Stent including a toggle lock strut
8303609, Sep 29 2000 Wyeth Coated medical devices
8303643, Nov 19 2003 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
8303650, Jan 10 2008 Telesis Research, LLC Biodegradable self-expanding drug-eluting prosthesis
8308682, Jul 18 2003 SRONCUB, INC Devices for maintaining patency of surgically created channels in tissue
8308795, Apr 24 2002 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of forming the same
8317857, Jan 10 2008 Telesis Research, LLC Biodegradable self-expanding prosthesis
8323333, Mar 03 2005 MiRus LLC Fragile structure protective coating
8353948, Jan 24 1997 NEXEON STENT, INC ; CELONOVA STENT, INC Fracture-resistant helical stent incorporating bistable cells and methods of use
8353949, Sep 14 2006 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
8361537, Mar 30 1998 Innovational Holdings, LLC Expandable medical device with beneficial agent concentration gradient
8382824, Oct 03 2008 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
8409133, Dec 18 2007 INSULINE MEDICAL LTD Drug delivery device with sensor for closed-loop operation
8431149, Mar 01 2007 Boston Scientific Scimed, Inc Coated medical devices for abluminal drug delivery
8439968, Apr 17 2009 Innovational Holdings, LLC Expandable medical device for delivery of beneficial agent
8449603, Jun 18 2008 Boston Scientific Scimed, Inc Endoprosthesis coating
8449901, Mar 28 2003 Innovational Holdings LLC Implantable medical device with beneficial agent concentration gradient
8449905, Oct 22 2001 Covidien LP Liquid and low melting coatings for stents
8469943, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8475431, Jul 18 2008 Cook Medical Technologies LLC Introducer sheath having a braided member and methods of manufacture
8506618, Nov 16 1999 LifeShield Sciences LLC Multi-section filamentary endoluminal stent
8545550, Apr 24 2002 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
8556962, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8574191, May 18 1998 Boston Scientific Scimed, Inc. Localized delivery of drug agents
8574259, May 10 2005 Lifescreen Sciences LLC Intravascular filter with drug reservoir
8574615, Mar 24 2006 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
8591565, Dec 12 2008 Abbott Laboratories Vascular Enterprises Limited Process for loading a stent onto a stent delivery system
8597341, Mar 06 2006 Intravascular device with netting system
8597720, Jan 21 2007 HEMOTEQ AG Medical product for treating stenosis of body passages and for preventing threatening restenosis
8603158, Apr 15 1998 MiRus LLC Irradiated stent coating
8608724, Jul 19 2004 SRONCUB, INC Devices for delivering substances through an extra-anatomic opening created in an airway
8613764, Sep 30 2002 Abbott Cardiovascular Systems Inc. Method and apparatus for treating vulnerable plaque
8617234, May 24 2006 Covidien LP Flexible vascular occluding device
8622991, Mar 19 2007 INSULINE MEDICAL LTD. Method and device for drug delivery
8623067, May 25 2004 Covidien LP Methods and apparatus for luminal stenting
8623068, Mar 30 1998 Conor Medsystems, Inc.; Innovational Holdings LLC Expandable medical device with ductile hinges
8628564, May 24 2006 Covidien LP Methods and apparatus for luminal stenting
8652194, Sep 30 2002 ABBOTT CARDIOVASCULAR SYSTEMS INC Method and apparatus for treating vulnerable plaque
8663311, Jan 24 1997 CELONOVA STENT, INC Device comprising biodegradable bistable or multistable cells and methods of use
8668732, Mar 23 2010 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
8669360, Aug 05 2011 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
8673387, Oct 31 2000 Cook Medical Technologies LLC Coated medical device
8696701, Apr 21 2008 NFOCUS LLC; Covidien LP Braid-ball embolic devices
8709034, May 13 2011 SRONCUB, INC Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
8715339, Dec 28 2006 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
8715341, Apr 24 2002 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of forming the same
8740973, Oct 26 2001 MiRus LLC Polymer biodegradable medical device
8747597, Apr 21 2008 NFOCUS LLC; Covidien LP Methods for making braid-ball occlusion devices
8758428, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
8771343, Jun 29 2006 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
8784400, Jul 19 2004 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
8791171, May 01 2003 Abbott Cardiovascular Systems Inc. Biodegradable coatings for implantable medical devices
8808618, Mar 03 2005 MiRus LLC Process for forming an improved metal alloy stent
8808726, Sep 15 2006 Boston Scientific Scimed, Inc Bioerodible endoprostheses and methods of making the same
8815273, Jul 27 2007 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
8815275, Jun 28 2006 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
8827979, Mar 19 2007 INSULINE MEDICAL LTD. Drug delivery device
8840660, Jan 05 2006 Boston Scientific Scimed, Inc.; Boston Scientific Scimed, Inc Bioerodible endoprostheses and methods of making the same
8889211, Sep 02 2010 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
8900292, Aug 03 2007 Boston Scientific Scimed, Inc Coating for medical device having increased surface area
8900618, Oct 22 2001 Covidien LP Liquid and low melting coatings for stents
8920491, Apr 22 2008 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
8925177, Jun 19 2006 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
8926681, Jan 28 2010 Covidien LP Vascular remodeling device
8932316, May 13 2011 BRONCUS MEDICAL INC. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
8932345, Feb 07 2007 Cook Medical Technologies LLC Medical device coatings for releasing a therapeutic agent at multiple rates
8932346, Apr 24 2008 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
8945206, May 16 1996 Cook Medical Technologies LLC Methods for making implantable medical devices
8961458, Nov 07 2008 INSULINE MEDICAL LTD Device and method for drug delivery
8974522, Oct 31 2000 Cook Medical Technologies LLC Coated medical device
9023380, Nov 22 2005 Aderans Research Institute, Inc. Hair follicle graft from tissue engineered skin
9028859, Jul 07 2006 Advanced Cardiovascular Systems, INC Phase-separated block copolymer coatings for implantable medical devices
9034245, Dec 10 2010 MiRus LLC Method for forming a tubular medical device
9050205, May 24 2006 Covidien LP Methods and apparatus for luminal stenting
9056152, Aug 25 2011 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
9056167, Dec 18 2007 INSULINE MEDICAL LTD. Method and device for drug delivery
9060886, Sep 29 2011 Covidien LP Vascular remodeling device
9089332, Mar 25 2011 Covidien LP Vascular remodeling device
9095342, Nov 09 2009 NFOCUS LLC; Covidien LP Braid ball embolic device features
9101949, Aug 04 2005 Ultrasonic atomization and/or seperation system
9107899, Mar 03 2005 MiRus LLC Metal alloys for medical devices
9114001, Oct 30 2012 Covidien LP Systems for attaining a predetermined porosity of a vascular device
9125659, May 25 2004 Covidien LP Flexible vascular occluding device
9157174, Feb 05 2013 Covidien LP Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
9179918, Jul 22 2008 Covidien LP Vascular remodeling device
9192697, Jul 03 2007 HEMOTEQ AG Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
9220837, Mar 19 2007 INSULINE MEDICAL LTD Method and device for drug delivery
9259341, Jun 19 2006 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
9278016, May 20 2009 LYRA THERAPEUTICS, INC Medical implant
9284409, Jul 19 2007 Boston Scientific Scimed, Inc Endoprosthesis having a non-fouling surface
9295568, Apr 17 2009 Covidien LP Methods and apparatus for luminal stenting
9295570, Sep 19 2001 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
9295571, Jan 17 2013 Covidien LP Methods and apparatus for luminal stenting
9295716, Feb 22 2008 ANNEXIN PHARMACEUTICALS AB Methods for treating restenosis using annexin A5
9301831, Oct 30 2012 Covidien LP Methods for attaining a predetermined porosity of a vascular device
9308355, Jun 01 2012 Surmodics, Inc Apparatus and methods for coating medical devices
9314248, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
9320590, Feb 22 2006 Covidien LP Stents having radiopaque mesh
9333279, Oct 22 2001 Covidien LP Coated stent comprising an HMG-CoA reductase inhibitor
9345532, May 13 2011 BRONCUS TECHNOLOGIES, INC Methods and devices for ablation of tissue
9393021, May 25 2004 Covidien LP Flexible vascular occluding device
9393022, Feb 11 2011 Covidien LP Two-stage deployment aneurysm embolization devices
9415142, Apr 26 2006 MICELL MEDTECH INC Coatings containing multiple drugs
9421070, May 13 2011 BRONCUS MEDICAL INC. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
9433516, Apr 17 2009 MICELL MEDTECH INC Stents having controlled elution
9452070, Oct 31 2012 Covidien LP Methods and systems for increasing a density of a region of a vascular device
9463105, Mar 14 2013 Covidien LP Methods and apparatus for luminal stenting
9468442, Jan 28 2010 Covidien LP Vascular remodeling device
9480594, Feb 27 2013 SPIROX, INC Nasal implants and systems and methods of use
9486229, May 13 2011 BRONCUS TECHNOLOGIES, INC Methods and devices for excision of tissue
9486338, Apr 17 2009 MICELL MEDTECH INC Stents having controlled elution
9486431, Jul 17 2008 MICELL MEDTECH INC Drug delivery medical device
9492269, Sep 30 1998 Selective adherence of stent-graft coverings
9510856, Jul 16 2009 MICELL MEDTECH INC Drug delivery medical device
9522217, Mar 15 2000 ORBUSNEICH MEDICAL PTE LTD Medical device with coating for capturing genetically-altered cells and methods for using same
9526642, Feb 09 2007 Taheri LaDuca LLC Vascular implants and methods of fabricating the same
9561122, Feb 05 2013 Covidien LP Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
9579225, Jun 19 2006 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
9585669, Apr 21 2008 NFOCUS LLC; Covidien LP Multiple layer filamentary devices for treatment of vascular defects
9597220, Nov 19 2008 SPIROX, INC Apparatus and methods for correcting nasal valve collapse
9610181, Feb 22 2006 Covidien LP Stents having radiopaque mesh
9623215, Jun 01 2012 Surmodics, Inc. Apparatus and methods for coating medical devices
9656003, Feb 07 2007 Cook Medical Technologies LLC Medical device coatings for releasing a therapeutic agent at multiple rates
9694162, Oct 31 2000 Cook Medical Technologies LLC Coated medical device
9731084, Nov 07 2008 INSULINE MEDICAL LTD. Device and method for drug delivery
9737642, Jan 08 2007 MICELL MEDTECH INC Stents having biodegradable layers
9737645, Apr 26 2006 MICELL MEDTECH INC Coatings containing multiple drugs
9775729, Apr 17 2009 MICELL MEDTECH INC Stents having controlled elution
9789233, Apr 17 2008 MICELL MEDTECH INC Stents having bioabsorbable layers
9801744, May 24 2006 Covidien LP Methods and apparatus for luminal stenting
9814865, Oct 31 2000 Cook Medical Technologies LLC Coated medical device
9827117, Jul 15 2005 MICELL MEDTECH INC Polymer coatings containing drug powder of controlled morphology
9827401, Jun 01 2012 Surmodics, Inc Apparatus and methods for coating medical devices
9833343, Dec 18 1997 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
9855047, May 25 2004 Covidien LP Flexible vascular occluding device
9861467, Dec 22 2004 W. L. Gore & Associates, Inc. Filament-wound implantable devices
9901472, Jan 17 2013 Covidien LP Methods and apparatus for luminal stenting
9901614, Feb 22 2008 ANNEXIN PHARMACEUTICALS AB Methods for treating restenosis using annexin A5
9907643, Oct 30 2012 Covidien LP Systems for attaining a predetermined porosity of a vascular device
9913969, Oct 05 2006 BRONCUS MEDICAL INC. Devices for delivering substances through an extra-anatomic opening created in an airway
9924959, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
9943427, Nov 06 2012 Covidien LP Shaped occluding devices and methods of using the same
9974672, Oct 15 2012 Material structures for intravascular device
9981071, Jul 17 2008 MICELL MEDTECH INC Drug delivery medical device
9981072, Apr 01 2009 MICELL MEDTECH INC Coated stents
9993306, May 13 2011 BRONCUS MEDICAL INC. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
D516723, Jul 06 2004 Innovational Holdings LLC Stent wall structure
D523558, Jul 06 2004 Innovational Holdings LLC Stent wall structure
RE45011, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
RE45099, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
RE45244, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
Patent Priority Assignee Title
4326532, Oct 06 1980 Minnesota Mining and Manufacturing Company Antithrombogenic articles
4650466, Nov 01 1985 LUTHER MEDICAL PRODUCTS, INC Angioplasty device
4655771, Apr 30 1982 AMS MEDINVENT S A Prosthesis comprising an expansible or contractile tubular body
4678466, Jun 25 1981 Internal medication delivery method and vehicle
4739762, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4871365, Apr 25 1985 Sherwood Services AG Partially absorbable prosthetic tubular article having an external support
4872874, May 29 1987 WORLD MEDICAL MANUFACTURING CORP Method and apparatus for transarterial aortic graft insertion and implantation
4886062, Oct 19 1987 Medtronic, Inc. Intravascular radially expandable stent and method of implant
4892539, Feb 08 1988 C R BARD, INC BARD Vascular graft
4923470, Apr 25 1985 Sherwood Services AG Prosthetic tubular article made with four chemically distinct fibers
4944767, Jan 16 1986 G CREMASCOLI S P A , A CORP OF ITALY Synthetic material apt to stably adsorb high quantities of heparin, and process for the production thereof
5015253, Jun 15 1989 Cordis Corporation Non-woven endoprosthesis
5019090, Sep 01 1988 Corvita Corporation Radially expandable endoprosthesis and the like
5019096, Feb 11 1988 Trustees of Columbia University in the City of New York; TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE, A EDUCATIONAL CORP OF NY Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
5028597, Apr 07 1986 DAIICHI PHARMACEUTICAL CO , LTD Antithrombogenic materials
5047020, Sep 14 1987 Edwards Lifesciences Corporation Ionic heparin coating
5053048, Sep 22 1988 LifeShield Sciences LLC Thromboresistant coating
5059211, Jun 25 1987 Duke University Absorbable vascular stent
5061275, Apr 21 1986 AMS MEDINVENT S A Self-expanding prosthesis
5062829, Mar 17 1989 Interag Relates to devices for administering a substance such as a drug or chemical or the like
5102417, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5152783, Sep 28 1989 SONY CORPORATION, A CORP OF JAPAN; RIKAGAKU KENKYSHO Antithrombogenic material
5152784, Dec 14 1989 Regents of the University of Minnesota Prosthetic devices coated with a polypeptide with type IV collagen activity
5165919, Mar 28 1988 ASAHI MEDICAL CO , LTD Medical material containing covalently bound heparin and process for its production
5171262, Jun 15 1989 Cordis Corporation Non-woven endoprosthesis
5213580, Aug 24 1988 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
GB2153235,
WO8903232,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 17 1993WOLFF, RODNEY G Medtronic, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0069580601 pdf
Dec 20 1993HULL, VINCENT W Medtronic, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0069580601 pdf
Dec 21 1993Medtronic, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
May 31 1996ASPN: Payor Number Assigned.
Feb 11 2000M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 23 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 07 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 13 19994 years fee payment window open
Feb 13 20006 months grace period start (w surcharge)
Aug 13 2000patent expiry (for year 4)
Aug 13 20022 years to revive unintentionally abandoned end. (for year 4)
Aug 13 20038 years fee payment window open
Feb 13 20046 months grace period start (w surcharge)
Aug 13 2004patent expiry (for year 8)
Aug 13 20062 years to revive unintentionally abandoned end. (for year 8)
Aug 13 200712 years fee payment window open
Feb 13 20086 months grace period start (w surcharge)
Aug 13 2008patent expiry (for year 12)
Aug 13 20102 years to revive unintentionally abandoned end. (for year 12)