A portable infusion pump for infusing solutions from IV bags. The pump includes a housing having a compartment for removably receiving the bag in a solution-dispensing position. A push plate is mounted on the upper end of a flexible bladder having an outer wall which encloses a pressure chamber. The fluid is moved from a reservoir by a peristaltic pump into the pressure chamber so that the bladder is expanded to move the pressure plate toward the IV bag for dispensing the solution through IV tubing to the patient. The bladder has a predetermined configuration so that the differential volume required to fully dispense the solution from the IV bag is less than about 75% of the volume which is swept by movement of the push plate through its full stroke length. The IV tubing is connected to the IV bag by a filling spike having an annular groove which registers with a lock structure on the end of a lid. The lid is manually opened for insertion and removal of the bag to and from the housing compartment.

Patent
   5554123
Priority
Oct 31 1994
Filed
Oct 31 1994
Issued
Sep 10 1996
Expiry
Oct 31 2014
Assg.orig
Entity
Small
81
105
all paid
1. A portable infusion pump for infusing intravenous solution from a bag through tubing into a patient, the bag having a flexible sidewall which at least partially encloses a volume to contain the solution, the bag further having a dispensing port for releasable connection with an end of the tubing, the pump comprising the combination of a housing having a compartment for removably receiving and supporting the bag in a solution-dispensing position, a push plate positioned within the housing, said push plate having a planar area A1 which is in juxtaposed relationship with said flexible sidewall when the bag is in said solution-dispensing position, actuating means for moving the push plate against said flexible sidewall for compressing the bag and discharging solution therefrom during an infusion phase of an operating cycle, said push plate being moved by the actuating means from a home position toward the bag through a predetermined stroke length lS which is sufficient to substantially empty the solution from the bag with the volume v1 which is swept by movement of the push plate through its stroke length having the relationship v1 =LS ×A1, said actuating means comprising 1) a reservoir having a supply chamber for holding a supply of fluid, 2) a flexible bladder having an outer wall which encloses a pressure chamber for receiving a charge of said fluid, said outer wall being expandable from a non-operating position through a differential volume v2 which is sufficient to act against and move said push plate through said length lS, said bladder being shaped with a configuration by which said volume v2 is less than about 75% of the volume v1, and 3) pump means for pumping fluid between the reservoir and pressure chamber, said pump means being operable for pressurizing the fluid within the pressure chamber of the bladder to a pressure which is sufficient to expand the outer wall through said differential volume v2.
2. A pump as in claim 1 in which said configuration of the bladder comprises a torus.
3. A pump as in claim 1 which includes means comprising a flexible conduit for directing fluid between the reservoir and pressure chamber, and said pump means comprises a peristaltic pump operable in an infusion phase for successively compressing portions of the conduit and moving the fluid in waves within the conduit from the reservoir into the pressure chamber, said pump means including a motor having the drive shaft, and said peristaltic pump comprises a rotor and means for coaxially mounting said rotor with said drive shaft.
4. A pump as in claim 3 in which said pump is operable in a reset phase for moving the fluid in waves from the pressure chamber into the reservoir and for moving the push plate from the bag toward said home position.
5. A pump as in claim 1 in which said fluid comprises an hydraulic fluid.
6. A pump as in claim 1 for use with intravenous tubing having a dispensing spike connected with said end of the tubing, said dispensing spike having an annular groove together with an outlet end positioned distally of the groove for connection with said dispensing port of the bag, said pump further being characterized in that said housing comprises a structure positioned in register with said annular groove when the outlet end of the spike is connected with the dispensing port, and means for moving said structure into and out of lockable relationship with said annular groove.
7. A pump as in claim 6 in which said means for moving the structure comprises a lid mounted on the housing for movement between open and closed positions for enabling insertion and removal of the bag into and from said compartment, and groove-engaging means on the lid for supporting the structure for movement into and out of said lockable relationship with the annular groove responsive to the lid being moved to the respective closed and open positions.

1. Field of the Invention

This invention relates in general to the infusion of intravenous (IV) solutions. In particular, the invention relates to portable IV infusion pumps for use by ambulatory and other patients.

2. Description of the Related Art

Infusion pumps are used to deliver various types of solutions intravenously to patients. A variety of drugs are commonly administered to patients by means of the intravenous solutions. Among the types of therapies requiring this kind of administration are chemotherapy, antibiotic therapy and antiviral therapy. In many cases, patients receive multiple daily therapies. Certain medical conditions require infusions of drugs in solution over relatively short periods such as from 30 minutes to two hours. Infusion pumps have been developed in the prior art in an effort to meet these needs. There has been a requirement of providing portable infusion pumps for use by ambulatory patients and the like.

The different types of infusion pumps in the prior art include elastomeric pumps which squeeze the solution from flexible containers, such as balloons, into IV tubing for delivery to the patient. Spring-loaded pumps have also been provided to pressurize the solution containers or reservoirs. In certain pump designs cartridges containing flexible compartments that are squeezed by pressure rollers for discharging the solutions are provided, such as in U.S. Pat. No. 4,741,736. U.S. Pat. No. 5,330,431, issued to the inventor of the present invention, shows an infusion pump in which standard pre-filled single dosage IV bags are squeezed by the use of a roller. U.S. Pat. No. 5,348,539, also issued to the inventor of the present invention, shows an infusion pump in which prepackaged IV bags are squeezed by a bladder which is actuated by fluid pumped from a reservoir. In such a design, a relatively large volume of fluid must be pumped into the bladder to fully empty the IV bag. This requires a relatively larger sized pump and fluid reservoir, which results in a larger sized unit. The need has been recognized for an infusion pump which is smaller and more compact so that it can be better adapted for mobile use by ambulatory and other patients.

It is a general object of the invention to provide a new and improved portable infusion pump which is of smaller size and is more compact than conventional infusion pumps.

Another object is to provide a compact and portable infusion pump of the type described in which solutions from IV bags are infused by the action of inflatable bladders.

Another object is to provide an infusion pump of the type described in which a relatively small sized pump and fluid reservoir can be used for inflating a bladder to squeeze the IV bag for infusing the solution.

Another object is to provide an infusion pump of the type described having an improved arrangement for securely clamping the dispensing spike which interconnects IV tubing with the bag during the infusion process.

The invention in summary provides a portable infusion pump having a housing with a compartment which releasably receives an IV bag. For infusing solution from the bag, a push plate is moved by the expansion of a flexible bladder. Fluid is pumped from a reservoir into the bladder for inflating it. The bladder is shaped with a configuration such that the differential volume through which it expands to move the push plate through its stroke length is less than about 75% of the volume which is swept by movement of the push plate through its stroke during the infusion phase. Fluid is pumped in a reverse direction from the bladder to empty it and move the push plate back to its home position so that the spent IV bag can be removed from the compartment.

The foregoing and additional objects and features of the invention will appear from the following specification in which the several embodiments have been set forth in detail in conjunction with the accompanying drawings.

FIG. 1 is a perspective view illustrating a portable infusion pump in accordance with one embodiment of the invention.

FIG. 2 is a top plan view of the infusion pump shown in FIG. 1.

FIG. 3 is a cross sectional view taken along the line 3--3 of FIG. 2.

FIG. 4 is a cross sectional view taken along the line 4--4 of FIG. 3.

FIG. 5 is cross sectional view taken along the line 5--5 of FIG. 4.

FIG. 6 is a fragmentary cross sectional view taken along the line 6--6 of FIG. 5.

FIG. 7 is a schematic view showing the interrelationship of certain components of the pump of FIG. 1.

FIG. 8 is a fragmentary top plan view to a reduced scale taken along the line 8--8 of FIG. 6.

In the drawings FIG. 1 illustrates generally at 10 a portable infusion pump according to a preferred embodiment of the invention. Infusion pump 10 provides an ambulatory system which enables health care professionals to infuse patients directly from single dose container bags which are pre-filled with IV solutions. Infusion pump 10 of the invention is suitable for use in homes, hospitals or clinics. It is readily adapted for operation in any position, such as resting on a table with the patient in bed, and it could also be carried by the patient.

Infusion pump 10 is comprised of a box-shaped housing 12 having a lid 14 which pivots open and closed about a pair of hinges 16, 18. With the lid in the closed position shown in FIG. 3, an internal elongate bag compartment 20 is formed below the lid for receiving the IV bag 22 in a solution-dispensing position. The typical IV bag is comprised of a flexible, transparent plastic container with side walls of generally rectangular shape. The bag has a front end molded with a pair of necks 24 (one of which is shown) which provide standard filling and dispensing ports. The dispensing port neck 24 is adapted to receive the pointed distal end of a dispensing spike 28. The proximal end 30 of the dispensing spike is adapted for connection with the end of standard IV tubing, not shown.

A transparent window pane 32 is fitted in an opening in the lid so that the health care professional can observe that the bag is in its proper solution-dispensing position when the lid is closed. A latch mechanism is provided to lock the lid in its closed position to prevent unintended removal of the IV bag before the infusion process is completed. The latch comprises a spring-loaded bar 36 which slides back and forth in a recess 38 at the front of the lid for releasably engaging a pointed detent 40 which is carried by the front end of housing 12.

A rigid divider plate 42, which can be of a suitable plastics material, is mounted horizontally within the housing approximately midway between housing bottom wall 44 and the top of lid. The top surface of the divider plate defines the bottom of bag compartment 20. Mounted on this top surface of the plate is a flexible bladder 46, which is best shown in FIGS. 3, 7 and 8. A horizontally flat push plate 48, which can be formed of a suitable rigid material such as ethylvinyl acetate (EVA) or acetybutylstyrene (ABS), is secured by suitable means such as adhesive across the top of the bladder. The upper surface of the push plate supports the IV bag in its solution-dispensing position. An inlet/outlet port 50 is formed in the bottom of the bladder, and this port connects with a fitting 52 which projects downwardly through an opening formed in divider plate 42. The distal end of fitting 52 extends into a lower compartment 54 which is formed between the divider plate and the housing lower wall. A flexible conduit 56 such as a length of silicone tubing is coupled at one of its ends with fitting 52. The conduit has a horizontal portion 58 (FIGS. 6 and 7) which extends through a peristaltic pump 60 that is mounted in the lower compartment. The opposite end of tubing portion 58 is connected with an inlet/outlet port 62 in a fluid reservoir 64, which is also mounted in the lower compartment. A DC motor 66 mounted in the lower compartment operates pump 60 by means of rotary drive shaft 68. The lower compartment also contains a suitable battery pack, not shown, which powers motor 66 as well as the electronics on a printed circuit board (PCB) 70.

PCB 70 is mounted within the lower compartment by means of mounting pads 72 which are secured to housing lower wall 44. The PCB mounts the electronic components which form a part of a suitable control circuit for operating the motor and other components of portable pump 10.

The construction and mode of operation of peristaltic pump 60 is shown in greater detail in FIGS. 4-6. The pump is comprised of a camshaft 74 having one end rotatably mounted within a suitable bearing 75 which is carried within a bracket 77 mounted above the housing bottom wall. The opposite end of the camshaft is coupled with motor drive shaft 68. Camshaft 74 is formed with a plurality, shown as six, of cam lobes 76 which are spaced apart at 60° incremental positions along the length of the shaft. A cam follower mechanism is provided which comprises a plurality of cantilever blades 78, equal in number to the number of cam lobes. The proximal ends of the cantilever blades are mounted by means of a bracket 80 to the lower surface of divider plate 42. The distal ends of the blades are formed with horizontally flat tips 82 which have lower surfaces that slidably engage the rotating surfaces of the cam lobes, as shown in FIG. 6.

The horizontal portion 58 of the tubing runs in a straight path in contact with the upper surfaces of the blade tips and the lower surface of the divider plate 42. As the camshaft is rotated by motor 66, a cycle of one rotation of each cam lobe causes its associated blade to compress against and flatten the underlying portion of the flexible tubing during a 60° phase and then release and permit the tubing to return to its circular shape during the remaining 300° phase. The combined action of the series of six cam lobes causes small volumes of fluid contained within the tube to be passed in waves along the length of the tubing in a direction which is dependent on the direction of rotation of the camshaft. Peristaltic pump 60 thereby enables reverse direction pumping by controlling the direction of rotation of the motor.

Preferably the fluid is pumped at a pressure in the range of 12-14 psi and is a low viscosity, non-toxic liquid such as oil, although other suitable liquids could be employed for this purpose. The invention also contemplates that a gaseous fluid such as carbon dioxide or air could be used to inflate bladder 46. In such case a suitable gas reservoir, pressure regulator and control valve (not shown) could be used, such as that described in connection with FIG. 12 of U.S. Pat. No. 5,348,539, the disclosure of which is incorporated herein by this reference.

Reservoir 64 is comprised of a flexible bag formed of a suitable plastics material such as EVA or PVC for containing a fluid volume of about 90 cc. As best shown in FIG. 4, reservoir 64 is shaped to economize space within lower compartment 54 by conforming with the shapes of bearing bracket 78, the bracket 80 for holding the cam follower blades, and vertical posts 84 which accommodate bolts 86 that are provided to assemble bottom wall 44 to the housing.

Bladder 46 is comprised of a flexible outer wall 88 formed of a suitable plastics material such as PVC. The outer wall encloses a pressure chamber 90 for receiving a charge of fluid which is moved by the peristaltic pump through inlet/outlet port 50. When the pressure chamber within the bladder is being filled with fluid the bladder expands and pushes pressure plate 48 upwardly. The plate is moved by the bladder through the full stroke length LS from the fully collapsed position shown at 48' to the fully extended position shown in solid line in FIG. 7. Pressure plate 48 has a width WP and length L, the product of which defines an area A1. The volume V1 which is swept by movement of the push plate through its stroke length is V1 =LS ×A1.

Bladder 46 is shaped with a configuration such that the differential volume V2 through which the bladder expands to fully extend the push plate is less than about 75% of the volume V1. In the illustrated embodiment, this configuration of bladder 46 is a torus in which the cross section of each of the four sides has a height H of 0.75" and width WB of 0.45", as shown for the left side of the torus when viewed in FIG. 8. With the length along the long axis of the torus being 5.05", and the width along the short axis of the torus being 3.00", and with an outer wall thickness of 0.10", then an 80 cc charge of fluid fills pressure chamber 90 to actuate the bladder to its fully extended position. In this example V2 =80 cc and V1 =167 cc so that V2 is 48% of V1. This is in comparison to the prior art IV pumps employing rectangular shaped bladders which require fluid volumes on the order of 115 cc or more to infuse both large (115 cc) and small (50 cc) IV bags. In such prior art pumps the amount of fluid required to pump the bladder sufficient to fully dispense solution from the bags is about the same as the volume of a large IV bag. With the bladder configured in the manner of the present invention the sizes of the bladder and reservoir can be kept to a minimum, and the size of the pump and motor can also be minimized, so that infusion pump 10 can be smaller and more compact for ease of portability. For example, certain prior art infusion devices provide pumps which comprise a pair of spaced rotors operated by intermeshing gears with the rotors each having 11/2" diameters. In comparison, the peristaltic pump of the present invention has a diameter on the order of 1" for providing the requisite pumping action. In the environment of a compact infusion pump, this 0.5" difference in size is significant.

While in the illustrated embodiment the bladder configuration which provides the relationship V2 ≦0.75×V1 is a torus, other configurations providing this relationship could be employed. For example, the bladder in plan view could be shaped as the letters "H", an "I", an "O", an "E", an "X" or the number "8" or other similar configuration which provides this relationship.

A suitable control circuit, not shown, which incorporates PCB 70 is provided for controlling the peristaltic pump through its operating cycle. The control circuit could incorporate certain elements and steps of the control arrangement and method described in connection with FIGS. 10-11 of U.S. Pat. No. 5,348,539, which is incorporated herein by this reference. In the broad aspects of the method of operation, pump 10 is turned on by manually pushing POWER switch 91 which is a part of the control panel 92 on one side of housing 12. Suitable sensors, not shown, can be provided as a part of the control circuit to sense closure of lid 14, pressure levels in bladder 46 and battery charge. The infusion process is initiated by manually pressing the INFUSE switch 94 which turns motor 66 on so that it rotates camshaft 68 in a direction which peristaltically pumps fluid from reservoir 64 through tubing 58 into pressure chamber 90 of the bladder. During the infusion phase the CHECK STATUS indicator light 94 on panel is off. Should there be an obstruction in the tubing causing an overpressure condition in the bladder, or upon completion of the infusion phase, then the CHECK STATUS light will turn on as a warning or alert to the health care professional. At any time during the infusion process, the PAUSE switch 96 on the panel can be pressed to temporarily stop the infusion process. The power is automatically turned off if the infusion is not started within a five minute period.

A suitable pressure sensing switch, not shown, of the type described in connection with FIG. 9 of U.S. Pat. No. 5,348,539, can be provided to sense the back pressure within bladder pressure chamber 90. When this pressure reaches a predetermined level for a defined length of time indicating that solution in the IV bag has been fully dispensed, the circuit turns the motor off to stop the pumping action. During this infusion phase of the cycle the infusion time is shown by the digital readout 98 on the panel. After infusion is completed, RESET switch 100 is pressed. The control circuit then rotates the motor in a reverse direction and operates the peristaltic pump so that it pumps fluid out of bladder 46 and back into reservoir 64. As fluid is pumped out of the bladder it will collapse downwardly due to atmospheric pressure and pull push plate 48 downwardly and away from the IV bag to position 48' shown in FIG. 7. When a predetermined low or negative pressure is sensed within the bladder pressure chamber, the circuit turns the motor off. Lid latch 36 can then be released to permit the health care professional to open the lid and remove the spent IV bag.

As best shown in FIG. 3, dispensing spike 28 is formed about its proximal end with an annular groove 102. The annular recessed portion within the groove releasably fits on its lower side into a matching U-shaped seat 104 (FIG. 1) that is formed on the upper edge of housing end wall 105. The front end 106 of the lid is also formed with a U-shaped seat 107 which moves into register with and fits into the top side of spike groove 102 when the lid is closed. This locks the spike against unintended removal from the housing during the infusion process.

While the foregoing embodiments are at present considered to be preferred it is understood that numerous variations and modifications may be made therein by those skilled in the art and it is intended to cover in the appended claims all such variations and modifications as fall within the true spirit and scope of the invention.

Herskowitz, Glenn

Patent Priority Assignee Title
10010686, Feb 27 2006 Fresenius Kabi USA, LLC Fluid control system and disposable assembly
10039276, Jun 28 2005 TRANSMEDICS, INC. Systems, methods, compositions and solutions for perfusing an organ
10076112, Jun 02 2014 TRANSMEDICS, INC Ex vivo organ care system
10093956, Jun 10 2011 BIOVEST INTERNATIONAL, INC. Method and apparatus for antibody production and purification
10194655, Sep 09 2015 TRANSMEDICS, INC. Aortic cannula for ex vivo organ care system
10314303, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care
10321676, Oct 07 2004 TRANSMEDICS, INC. System and methods for ex-vivo organ care and for using lactate as an indication of donor organ status
10327443, Mar 20 2007 TRANSMEDICS, INC. Systems for monitoring and applying electrical currents in an organ perfusion system
10426896, Sep 27 2016 Bigfoot Biomedical, Inc.; BIGFOOT BIOMEDICAL, INC Medicine injection and disease management systems, devices, and methods
10570434, Jun 10 2011 BIOVEST INTERNATIONAL, INC. Method and apparatus for antibody production and purification
10662401, Aug 28 2012 BIOVEST INTERNATIONAL, INC. Biomanufacturing suite and methods for large-scale production of cells, viruses, and biomolecules
10723993, May 22 2006 BIOVEST INTERNATIONAL, INC. Method and system for the production of cells and cell products and applications thereof
10736314, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care and for using lactate as an indication of donor organ status
10750738, Jan 31 2008 TRANSMEDICS, INC Systems and methods for ex vivo lung care
10987468, Jan 05 2016 INSULET CORPORATION Operating multi-modal medicine delivery systems
11096624, Dec 12 2016 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and systems
11122795, Sep 09 2015 TRANSMEDICS, INC. Aortic cannula for ex vivo organ care system
11147914, Jul 19 2013 INSULET CORPORATION Infusion pump system and method
11154050, Jun 02 2014 TRANSMEDICS, INC. Ex vivo organ care system
11191263, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care
11229751, Sep 27 2016 Bigfoot Biomedical, Inc.; BIGFOOT BIOMEDICAL, INC Personalizing preset meal sizes in insulin delivery system
11345882, May 22 2006 BIOVEST INTERNATIONAL, INC. Extra-capillary fluid cycling system and method for a cell culture device
11389088, Jul 13 2017 BIGFOOT BIOMEDICAL, INC Multi-scale display of blood glucose information
11464906, Dec 02 2013 INSULET CORPORATION Infusion pump system and method
11471598, Apr 29 2015 ASANTE SOLUTIONS, INC Operating an infusion pump system
11570985, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care and for using lactate as an indication of donor organ status
11723357, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care
11806514, Sep 27 2016 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
11844345, Jun 28 2005 TRANSMEDICS, INC. Systems, methods, compositions and solutions for perfusing an organ
11856944, Apr 14 2011 TRANSMEDICS, INC. Organ care solution for ex-vivo machine perfusion of donor lungs
11865299, Aug 20 2008 INSULET CORPORATION Infusion pump systems and methods
11903381, Jun 02 2014 TRANSMEDICS, INC. Ex vivo organ care system
5954696, Dec 15 1997 B BRAUN MEDICAL, INC PA CORPORATION Pressure infusion pump
6293159, May 01 1995 PESCADERO BEACH HOLDINGS CORPORATION Fluid delivery apparatus with reservoir fill assembly
6398760, Oct 01 1999 Baxter International, Inc. Volumetric infusion pump with servo valve control
6993795, Jan 09 2004 Frank Joseph, Prineppi Portable liquid dispensers
7351226, Dec 07 2004 Medical infusion pump
7654982, Feb 27 2006 Fresenius Kabi USA, LLC Flow control system and method with variable pressure and variable resistance
7847276, Mar 14 2008 Fresenius Kabi USA, LLC Impulse analysis for flow sensor-based fluid control system
7895882, Mar 14 2008 Fresenius Kabi USA, LLC Density analysis for flow sensor-based fluid control system
8067760, Mar 14 2008 Fresenius Kabi USA, LLC Impulse analysis for flow sensor-based fluid control system
8105269, Oct 24 2008 Baxter International Inc; BAXTER HEALTHCARE S A In situ tubing measurements for infusion pumps
8137083, Mar 11 2009 Baxter International Inc.; Baxter Healthcare S.A.; Baxter International Inc; BAXTER HEALTHCARE S A Infusion pump actuators, system and method for controlling medical fluid flowrate
8267894, Oct 12 2007 ASTRA TECH AB Self-contained portable apparatus for administration of a drug solution
8337466, Mar 30 2009 LIFEMEDIX STAFUSION, LLC Manual pump for intravenous fluids
8382447, Dec 31 2009 Baxter International Inc; BAXTER HEALTHCARE S A Shuttle pump with controlled geometry
8496613, Oct 24 2008 Baxter International Inc.; Baxter Healthcare S.A. In situ tubing measurements for infusion pumps
8540499, May 22 2006 BIOVEST INTERNATIONAL, INC Extra-capillary fluid cycling system and method for a cell culture device
8545451, Mar 30 2009 LIFEMEDIX STAFUSION, LLC Manual pump for intravenous fluids
8567235, Jun 29 2010 Baxter International Inc.; Baxter Healthcare S.A. Tube measurement technique using linear actuator and pressure sensor
8579859, Dec 26 2009 ATHENA GTX, INC Fluid balance monitoring system with fluid infusion pump for medical treatment
8585380, Oct 07 2004 TRANSMEDICS, INC Systems and methods for ex-vivo organ care
8822203, Apr 19 2006 TRANSMEDICS, INC. Systems and methods for ex vivo organ care
8961155, Feb 19 2011 Peristaltic linear pump and method of operation
9055740, Oct 07 2004 TRANSMEDICS, INC Systems and methods for ex-vivo organ care
9078428, Jun 28 2005 TRANSMEDICS, INC Systems, methods, compositions and solutions for perfusing an organ
9215867, Oct 07 2004 TRANSMEDICS, INC Systems and methods for ex-vivo organ care
9220836, Mar 30 2009 LifeMedix StatFusion, LLC Portable pump for intravenous fluids
9247728, Jan 31 2008 TRANSMEDICS, INC Systems and methods for ex vivo lung care
9301519, Oct 07 2004 TRANSMEDICS, INC Systems and methods for ex-vivo organ care
9441195, May 22 2006 BIOVEST INTERNATIONAL, INC. Method and system for the production of cells and cell products and applications thereof
9457179, Mar 20 2007 TRANSMEDICS, INC Systems for monitoring and applying electrical currents in an organ perfusion system
9462802, Jan 31 2008 TRANSMEDICS, INC Systems and methods for ex vivo lung care
9516875, Jan 31 2008 TRANSMEDICS, INC. Systems and methods for ex vivo lung care
9534198, May 22 2006 BIOVEST INTERNATIONAL, INC. Extra-capillary fluid cycling system and method for a cell culture device
9756849, Sep 23 1997 The Department of Veteran Affairs Compositions, methods and devices for maintaining an organ
9756850, Sep 23 1997 The Department of Veteran Affairs Compositions, methods and devices for maintaining an organ
9756851, Sep 23 1997 The Department of Veteran Affairs Compositions, methods and devices for maintaining an organ
9814230, Jan 31 2008 TRANSMEDICS, INC Systems and methods for ex vivo lung care
9833284, Feb 04 2015 BIOSENSE WEBSTER ISRAEL LTD Pressure-driven irrigation pump
9894894, Oct 07 2004 TRANSMEDICS, INC. Systems and methods for ex-vivo organ care and for using lactate as an indication of donor organ status
9902928, Aug 28 2012 BIOVEST INTERNATIONAL, INC Biomanufacturing suite and methods for large-scale production of cells, viruses, and biomolecules
D669165, May 27 2010 INSULET CORPORATION Infusion pump
D669166, May 27 2010 INSULET CORPORATION Infusion pump unit
D669167, May 27 2010 INSULET CORPORATION Controller for an infusion pump
D691258, May 27 2010 INSULET CORPORATION Infusion pump
D691259, May 27 2010 INSULET CORPORATION Controller for an infusion pump
D809134, Mar 10 2016 INSULET CORPORATION Infusion pump assembly
D836769, Dec 12 2016 INSULET CORPORATION Insulin delivery controller
D839294, Jun 16 2017 INSULET CORPORATION Display screen with graphical user interface for closed-loop medication delivery
D852837, Jun 16 2017 INSULET CORPORATION Display screen with graphical user interface for closed-loop medication delivery
Patent Priority Assignee Title
1986484,
2898917,
3329390,
3366363,
3487837,
3565078,
3620500,
3703899,
3853127,
3895741,
3970089, Aug 05 1974 Cardiovascular catheter seal device
3977400, Nov 29 1974 DESERET MEDICAL, INC , C O BECTON, DICKINSON AND COMPANY Catheter placement unit with resilient sleeve and manual sleeve closure
3994287, Jul 01 1974 Centre de Recherche Industrielle du Quebec Trocar
4000739, Jul 09 1975 Cordis Corporation Hemostasis cannula
4058123, Oct 01 1975 C R BARD, INC , A CORP OF NJ Combined irrigator and evacuator for closed wounds
4112932, Feb 24 1977 Laparoscopic cannula
4180068, Apr 13 1978 Motion Control, Incorporated Bi-directional flow catheter with retractable trocar/valve structure
4187849, Jul 28 1978 Suction curettage device with valve control and support means for differing diameter tubes
4233982, Nov 24 1977 Richard Wolf GmbH Trocar sleeves having a ball valve
4240411, Apr 25 1977 Olympus Optical Co., Ltd. Device for sealing an endoscope channel
4243034, Oct 17 1978 Viggo AB Cannula or catheter assembly
4338934, Feb 19 1980 Intravascular catheter apparatus
4360019, Feb 28 1979 BAXTER INTERNATIONAL INC , A CORP OF DE Implantable infusion device
4424833, Oct 02 1981 Medtronic Ave, Inc Self sealing gasket assembly
4430081, Jan 06 1981 Cook, Inc. Hemostasis sheath
4464178, Nov 25 1981 HORIZON MEDICAL PRODUCTS, INC Method and apparatus for administration of fluids
4475548, Jun 01 1982 Fitting for endotracheal tube apparatus and method of making the fitting
4512766, Dec 08 1982 Whitman Medical Corporation Catheter valve
4531937, Jan 24 1983 MEDTRONIC MINIMED, INC Introducer catheter apparatus and method of use
4580573, Oct 20 1983 MEDICAL DEVICE TRUST Catheter introducer
4601710, Aug 24 1983 United States Surgical Corporation Trocar assembly
4610665, Jan 18 1983 Terumo Kabushiki Kaisha Medical instrument
4610710, May 05 1983 PPG Industries Ohio, Inc Method for utilizing magnetic field sensing means for detecting discontinuities in a conductor member associated with a glass sheet
4611785, Dec 06 1984 E R SQUIBB & SONS, INC , A CORP OF DE Tube closure device
4613329, Sep 30 1983 Sherwood Services AG; TYCO GROUP S A R L Catheter placement device
4626243, Jun 21 1985 Applied Biomedical Corporation Gravity-independent infusion system
4626245, Aug 30 1985 Cordis Corporation Hemostatis valve comprising an elastomeric partition having opposed intersecting slits
4634432, May 13 1985 Introducer sheath assembly
4654030, Feb 24 1986 Endotherapeutics Corporation Trocar
4664660, Apr 01 1985 Uresil, LLC Chest drainage apparatus with ambient air sealing
4673393, Dec 28 1984 Terumo Kabushiki Kaisha Medical instrument
4705511, May 13 1985 Bipore, Inc. Introducer sheath assembly
4723550, Nov 10 1986 Cordis Corporation Leakproof hemostasis valve with single valve member
4741736, Dec 10 1986 I-Flow Corporation Programmable infusion pump
4758225, Nov 08 1985 Pharmacia Limited Devices for sampling, drainage or infusion of liquids from or to the human or animal body
4817631, May 23 1985 Angiomed AG Method for removing tissue from a body
4842591, Jan 21 1988 LUTHER MEDICAL PRODUCTS, INC Connector with one-way septum valve, and assembly
4857062, Mar 09 1988 ARROW INTERNATIONAL INVESTMENT CORP Catheter introducer valve
4869717, Apr 25 1988 Gas insufflation needle with instrument port
4874378, Jun 01 1988 Cordis Corporation Catheter sheath introducer
4895570, Jun 05 1987 HOSPIRA, INC Locking port shroud for peritoneal dialysis tubing connector
4909798, Nov 12 1987 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Universal hemostasis cannula
4917668, Mar 18 1988 B.. Braun Melsungen AG Valve for permanent venous cannulae or for catheter insertion means
4929235, Jul 31 1985 Merit Medical Systems, Inc Self-sealing percutaneous tube introducer
4932623, May 06 1988 Hughes Brothers, Inc. Bracket
4938259, Jan 18 1989 Vernay Laboratories, Inc. Fluid flow controller
4943280, Dec 31 1987 United States Surgical Corporaiton Self-seating flapper valve for an insufflation cannula assembly
4960412, Apr 15 1988 Merit Medical Systems, Inc Catheter introducing system
4966588, Jul 25 1986 H G WALLACE LIMITED, A BRITISH COMPANY Device suitable for the administration of a therapeutic substance
4978341, Apr 07 1988 Schneider Europe Introducer valve for a catheter arrangement
5000745, Nov 18 1988 HENLEY OPERATING COMPANY A CORP OF TEXAS Hemostatis valve
5002557, Apr 06 1989 Laparoscopic cannula
5017059, May 17 1988 CAREFUSION 303, INC Infusion device with disposable elements
5041095, Dec 22 1989 Cordis Corporation Hemostasis valve
5059186, Apr 29 1986 Vitaphore Corporation Percutaneous access device
5071413, Jun 13 1990 DSU Medical Corporation Universal connector
5073169, Oct 02 1990 RAIKEN, STEVE Trocar support
5082429, Aug 28 1990 DEUTSCHE BANK AG, NEW YORK BRANCH Peristaltic pump
5103854, Jan 22 1990 Vernay Laboratories, Inc. Low pressure check valve for artificial respiration devices
5104383, Oct 17 1989 United States Surgical Corporation Trocar adapter seal and method of use
5108380, Jan 12 1990 B. Braun Melsungen AG Hub member
5108702, Aug 20 1988 Blood aerator
5127626, Oct 31 1989 Applied Medical Resources Corporation Apparatus for sealing around members extending therethrough
5137520, Apr 24 1991 Cannula skirt
5158553, Dec 26 1990 BIOSURFACE ENGINEERING TECHNOLOGIES, INC Rotatably actuated constricting catheter valve
5167636, Oct 24 1991 Mectra Labs, Inc. Cannula sealing mechanism
5207645, Jun 25 1991 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
5207714, Jan 25 1991 Aisin Seiki Kabushiki Kaisha Exhausted gas recycle device
5209736, Oct 18 1991 ETHICON, INC , A CORP OF NJ Trocar method and apparatus
5221264, Mar 10 1992 Reduction port for laparoscopic trocar sleeve and related method
5226891, Apr 07 1992 Applied Medical Resources; APPLIED MEDICAL RESOURCES, INC , A CORPORATION OF CA Seal protection apparatus
5242412, Jan 21 1992 Trocar tube subassembly having sealing ring and duckbill sealing tube having planar, truncate, diverging sealing bills
5250037, Dec 18 1992 Becton, Dickinson and Company Syringe having needle isolation features
5312363, Jul 13 1993 Symbiosis Corporation Low friction slit valve
5330431, Mar 12 1993 Infusion pump
5334164, Jan 03 1992 United States Surgical Corporation Variable interior dimension cannula assembly
5342315, Apr 12 1993 EHTICON, INC Trocar seal/protector assemblies
5348539, Jun 29 1993 Infusion pump for use with prepackaged IV bags
5350364, Oct 18 1991 Ethicon, Inc. Universal seal for trocar assembly
5352201, Feb 03 1994 Kimberly-Clark Worldwide, Inc Compact uniform pressure infusion apparatus
5366446, Nov 17 1993 Design Standards Corporation Introducer assembly
5380288, Mar 30 1993 INNOVASIVE DEVICES, INC Surgical cannula and trocar system and method of using the same
5391154, Aug 30 1993 United States Surgical Corporation Trocar seal system
5395342, Jul 26 1990 Endoscopic portal
5411483, Feb 10 1993 Applied Medical Resources Corporation Gas-tight seal accommodating surgical instruments with a wide range of diameters
DE3042229,
DE4020956,
EP51718,
EP113520,
EP206553,
EP223451,
EP267584,
EP312219,
EP349955,
EP350291,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Mar 16 2000M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Mar 16 2000M286: Surcharge for late Payment, Small Entity.
Mar 05 2004M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Mar 17 2008REM: Maintenance Fee Reminder Mailed.
Sep 10 2008M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.
Sep 10 2008M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Sep 10 19994 years fee payment window open
Mar 10 20006 months grace period start (w surcharge)
Sep 10 2000patent expiry (for year 4)
Sep 10 20022 years to revive unintentionally abandoned end. (for year 4)
Sep 10 20038 years fee payment window open
Mar 10 20046 months grace period start (w surcharge)
Sep 10 2004patent expiry (for year 8)
Sep 10 20062 years to revive unintentionally abandoned end. (for year 8)
Sep 10 200712 years fee payment window open
Mar 10 20086 months grace period start (w surcharge)
Sep 10 2008patent expiry (for year 12)
Sep 10 20102 years to revive unintentionally abandoned end. (for year 12)