The balloon catheter comprises a shaft with an elongated dilatation balloon mounted in the vicinity of the distal end thereof. Armature for preventing expansion of balloon segments are mounted on shaft proximally of the balloon and include an armature enclosed in a sleeve moveable over a proximal portion of the balloon.

Patent
   5628755
Priority
Feb 20 1995
Filed
Oct 24 1995
Issued
May 13 1997
Expiry
Oct 24 2015
Assg.orig
Entity
Large
142
12
all paid
5. A balloon catheter comprising a tubular shaft having a proximal end and a distal end; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon, the armature means adapted for longitudinal motion over a proximal portion of the balloon; and sleeve means having a constricted distal end and enclosing the armature means.
3. A balloon catheter comprising a tubular shaft having a proximal end and a distal end; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon, the armature means adapted for longitudinal motion over a proximal portion of the balloon; and sleeve means having a constricted proximal end and enclosing the armature means.
12. A balloon catheter comprising a tubular shaft having a proximal end and a distal end; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon, the armature means adapted for longitudinal motion over a proximal portion of the balloon; and sleeve means enclosing the armature means and comprising two tubular elements connected to one another.
7. A balloon catheter comprising a tubular shaft having a proximal end, a distal end, and a shoulder portion; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon, the armature means adapted for longitudinal motion over a proximal portion of the balloon; and sleeve means enclosing the armature means; wherein the shaft shoulder portion is disposed proximally of the armature and sleeve means.
9. A balloon catheter comprising a tubular shaft having a proximal end and a distal end; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon the armature means adapted for longitudinal motion over a proximal portion of the balloon and having a distal portion having a first diameter and a proximal portion having a second diameter which is less than the first diameter; and sleeve means enclosing the armature means.
1. A balloon catheter comprising a tubular shaft having a proximal end and a distal end; an elongated dilatation balloon with proximal and distal ends, the balloon being mounted on the tubular shaft in the vicinity of the distal end thereof; means secured on the tubular shaft for preventing expansion of balloon segments, the means for preventing expansion of balloon segments comprising armature means surrounding the shaft proximally of the balloon, the armature means adapted for longitudinal motion over a proximal portion of the balloon; sleeve means enclosing the armature means; and means for locking the armature and sleeve means on the shaft in a position either proximal of the balloon or over the proximal portion of the balloon.
2. The balloon catheter of claim 1 further comprising means for deploying a stent at a treatment site.
4. The balloon catheter of claim 3 further comprising means for deploying a stent at a treatment site.
6. The balloon catheter of claim 5 further comprising means for deploying a stent at a treatment site.
8. The balloon catheter of claim 7 further comprising means for deploying a stent at a treatment site.
10. The balloon catheter of claim 9 further comprising means for deploying a stent at a treatment site.
11. A balloon catheter according to claim 9 wherein the armature means has an inner shoulder portion formed by a junction of the proximal portion and the distal portion.
13. The balloon catheter of claim 12 further comprising means for deploying a stent at a treatment site.
14. A balloon catheter according to claim 13 wherein the sleeve means has a truncated conical shape.

This invention relates to a balloon catheter comprising a tubular shaft having a proximal end and a distal end, an elongated dilatation balloon with proximal and distal ends, said balloon being mounted on said tubular shaft in the vicinity of the distal end thereof, and means secured on the tubular shaft for preventing expansion of balloon segments.

The invention also relates to a stent delivery system for a balloon expandable stent, comprising a balloon catheter with a tubular shaft having a proximal end and a distal end, and an elongated dilatation balloon with proximal and distal ends, said balloon being mounted on said tubular shaft in the vicinity of the distal end thereof.

Balloon catheter technology makes use of balloons of fixed lengths, whereby the great number of medical procedures requiring balloon catheter technology makes it necessary to rely on several catheters of different balloon length. When a procedure requires, for example, two differently sized balloons, it is necessary to change balloon catheters or to act sequentially with the one length balloon available. Changing balloon catheter is costly while sequential action with the available balloon length may be a time-consuming and potentially hazardous procedure which may lead to injury of the patient or insufficient dilatations.

The balloon catheter is also an instrument of common use as a mechanism for transporting and applying a balloon expandable prosthesis, called a stent, for maintaining the patency of a vessel. The length of the balloon must be chosen as a function of the length of the stent, to avoid inappropriate expansion of the stent or damage to the vessel. This may also lead to the costly need of a plurality of balloon catheters to correctly and safety apply the stents.

U.S. Pat. No. 5,246,421 refers to a method of treating obstructed regions of bodily passages which provides for use of balloon catheters with adjustable length balloons. Accordingly, this document teaches the use of a balloon catheter in which an adjustable sheath is externally manipulated to partially surround and contain the dilatation balloon segment of the catheter in situ during a treatment procedure. By external manipulations sliding the sheath forwardly and backwardly to expose a predetermined length of the balloon segment prior to inflating the balloon, various balloon lengths can be obtained. The catheter body can comprise an elongated tube and a balloon attached by both its neck portions to two axially spaced locations on the elongated tube; the catheter can also have a catheter body defining a lumen with a balloon terminating such a body as an integral one piece assembly having a closed end. The document outlines that the described technology can be modified or tuned to be compatible with virtually any catheter constructions, including over the wire catheters and fixed wire catheters. In order to avoid creep of the sheath during or after inflation of the balloon tending to encover more balloon than originally selected, the position of the sheath may be firmly fixed, for example by a clamping device, prior to inflation of the balloon. The mere fact that the sheath is externally manipulated creates a substantial complication in the catheter construction, and the risk of having the sheath clogged up. In addition, the system is relatively cumbersome and rigid due to the multiplicity of elements resulting from the externally manipulated sheath over the catheter shaft, which may cause some difficulties for the treatment of tortuous or narrow vessels. And there may also be a friction problem between the sheath and catheter shaft which may add difficulties to the external manipulation of the sheath. There is no suggestion in this document that the moving sheath and resulting variable length balloon catheter could be envisaged as a system for matching the balloon length requirements for stent delivery.

European Patent Application No. 94118900.3 filed Nov. 30, 1994 by an applicant of the present invention shows a balloon catheter as described hereinbefore in which the tubular shaft comprises a guidewire lumen with an entry for the guidewire distal of the balloon and an exit for the guidewire distal of the proximal end of the tubular shaft, and means for preventing expansion of balloon segments comprising a not distensible sleeve attached to the tubular shaft either distal of the exit for the guidewire if said exit is proximal of the balloon or proximal of the exit for the guidewire if said exit is distal of the balloon. This document also shows a stent delivery system for a balloon expandable stent comprising a balloon catheter having the features as described hereabove. This development is specifically directed to modification of the length of the balloon in balloon catheters and stent delivery systems which make use of the fast and efficient technology known under the name MONORAIL®.

All documents cited herein, including the foregoing, are incorporated herein in their entireties for all purposes.

It is an object of this invention to further improve over the prior at by proposing a balloon catheter which is highly versatile and efficient, simple to manufacture, and easy and safe to use. A further object of the invention is to propose a stent delivery system which is also versatile and efficient, which is simple to manufacture, and which is easy and safe to operate. To this effect, the invention complies with the definitions given in the claims.

Accordingly, either for primary use of the balloon catheter, i.e. for dilatation of stenoses, or for stent delivery of a balloon expandable stent, it is very simple and easy to modify the length of the balloon while relying on a structure which remains absolutely safe, assuring full radial stability of the balloon catheter whatever the pressure of the balloon in the reduced configuration, and with the sleeve means enclosing the armature means providing a smooth atraumatic surface. There is no external manipulation of the balloon reduction arrangement during introduction, withdrawal or use of the balloon catheter, either for stenosis dilatation or for stent delivery within the patient's vessels. The construction of the catheter remains simple, without friction generating motion of elements along the vessel.

In practice, either for usage of the balloon catheter for dilatation of stenosed or for stent delivery, the balloon catheter may be devised for standard over the wire configuration, or for the technology known under the name MONORAIL®.

For stenosis dilatation purposes, the doctor may select at will the configuration of the balloon, full or reduced length, as he may proceed to a first dilatation with the full length balloon, and then withdraw the balloon catheter as usual along the guidewire, modify the operational length of the balloon by moving the armature and sleeve over the proximal portion of the balloon, and then insert the balloon catheter over the guidewire to rapidly reach the stenosis which has to be treated with a reduced balloon length. For stent delivery purposes, the doctor may effect the stenosis dilatation with the full length balloon and then withdraw the balloon catheter along the guidewire, reduce the operational length of the balloon by moving the armature and sleeve over the proximal portion of the balloon, install the stent in collapsed condition on the free distal segment of the balloon, and then reinsert the stent equipped balloon catheter over the guidewire to reach the required location in the vessel and expand the stent by balloon inflation.

Where the balloon catheter or stent delivery system comprises means for locking the armature means and sleeve means on the shaft either in a position proximal of the balloon or in a position over the proximal portion of the balloon, a safe arrangement is assured to avoid any risk of having the balloon modifying structure moving in an unwanted position either during insertion through the vessel or during withdrawal thereof.

Where the sleeve means have a constricted proximal end, coupling of the sleeve means and armature means enclosed thereby may be simply achieved over the shaft in the inoperative condition of the balloon reducing configuration. A smooth transition is also achieved between proximal end of the sleeve and the shaft.

Where the sleeve means have a constricted distal end, coupling of the sleeve means and armature means enclosed thereby over the balloon is achieved in operative condition of the balloon reducing structure, In addition, there is a smooth transition between sleeve and shaft or balloon. And furthermore, inflation of the balloon causes the proximal end of the balloon to lock within the armature and sleeve proximally of the constricted distal end of the sleeve, thereby achieving an automatical question free self-locking against any possibility of the armature and sleeve getting loose of the balloon in the proximal direction during the always delicate inflation procedure.

The shaft may comprise an enlarged portion proximal of the balloon to provide a locking friction seat for the armature means in the operative condition of the balloon reducing structure. And to take advantage of the existing structures, this enlarged portion may be formed at the proximal end of the balloon, preferably being made by a proximal fixture of the balloon on the shaft.

Where the shaft comprises a shoulder portion proximally of the armature and sleeve means, a further question free self-locking is achieved in the inoperative condition of the balloon reducing configuration, this shoulder portion providing a geometrical seat for the proximal structure of the sleeve marts, which geometrical seat may even provide an interpenetration fit with the proximal end of the armature means.

The armature means may have a distal portion having a first diameter and a proximal portion having a second diameter, in order to assure a low profile to the means for preventing expansion of balloon segments. Where this second diameter is smaller than the first diameter, lowest profile is achieved while assuring guidance for the expansion preventing structure and also providing room for the question free self-locking conditions as outlined hereinbefore. Within this configuration, the armature means may have an inner shoulder portion formed by a junction of the second diameter portion to the first diameter portion, thereby taking advantage of the two diameter configuration to provide a question free positioning for the expansion preventing means in the operative condition. And for ease of manufacture, the sleeve means may be made of two tubular elements connected to one another.

The armature means may be made of coiled materials or they may be made of braided material, both conditions assuring a good flexibility for travel along tortuous vessels as well as high radial resistance to balloon inflating pressure. When the armature means are made of a high density metal, the resulting radiopacity facilitates visualisation of the balloon reducing structure for balloon portioning purposes.

It is an advantage when the sleeve means have an inner configuration matching the configuration of the armature means, because an excellent transmission of forces is assured between armature means and sleeve means for safe handling and positioning of the sleeve and armature enclosed therein.

In summary, the present invention relates to a balloon catheter or a stent delivery system with a tubular shaft having a proximal end and a distal end, and an elongated dilatation balloon with proximal and distal ends. The balloon is mounted on the tubular shaft in the vicinity of the distal end thereof. Means secured on the tubular shaft prevents expansion of balloon segments, and has armature means surrounding the shaft proximally of the balloon for longitudinal motion over a proximal portion of the balloon, and sleeve means enclosing the armature means. The device may also have means for locking the armature means and sleeve means on the shaft either in a position proximal of the balloon or in a position over the proximal portion of the balloon. The sleeve means may have a constricted proximal end, and/or may have a constricted distal end. The shaft may have an enlarged portion proximal of the balloon, which may be formed at the proximal end of the balloon. The enlarged portion may be a proximal fixture of the balloon on the shaft. The shaft may have a shoulder portion proximally of the armature and sleeve means. The armature means have a distal portion having a first diameter and a proximal portion having a second diameter. The second diameter may be smaller than the first diameter. The armature means may have an inner shoulder portion formed by a junction of the second diameter portion to the first diameter portion. The sleeve means may be made of two tubular elements connected to one another, and may have a truncated core shape. The armature means may be made of coiled material or braided material. The armature means may be made of a high density metal. The sleeve means may have an inner configuration matching the configuration of the armature means.

These and other objects, features and advantages of the invention will become readily apparent from the following detailed description with reference to the accompanying drawings which show, diagrammatically and by way of example only, one embodiment of the invention.

FIG. 1 is a side elevation of a balloon catheter embodying the invention.

FIG. 2 is a side elevation of the balloon catheter of FIG. 1 in another condition.

FIG. 3 is an enlarged longitudinal section of a detail of FIG. 1.

FIG. 4 is an enlarged longitudinal section of a detail of FIG. 2.

FIG. 5 is an enlarged longitudinal section of an another detail of FIG. 2.

The balloon catheter shown in FIG. 1 comprises a tubular shaft 1 having a proximal end (not shown) and a distal end 2. An elongated dilatation balloon 3 (shown in inflated condition) with proximal end 4 and distal end 5 is mounted on the shaft 1, in the vicinity of its distal end 2. As usual in the art, the balloon 3 has its distal end 5 and its proximal end 4 welded on the shaft 1, and such weldings constitute enlarged portions on the shaft, proximally and distally of the balloon. An aperture 6 in the shaft connects the interior of the balloon 3 to a fluid supplying lumen (not shown) extending within the shaft 1.

Means for preventing expansion of balloon segments are mounted on the tubular shaft 1, proximally of the balloon 3. These means for preventing expansion of balloon segments comprise an armature 7 (as clearly visible on FIG. 3) formed by a coiled metal wire, preferably a high density metal such as Tungsten, and a sleeve 11, preferably made of a substantially flexible polymer, enclosing said armature 7.

The armature 7 comprises a proximal portion 8, substantially cylindrical, and a distal portion 9, also substantially cylindrical. Portion 8 has a diameter which is smaller than the diameter of portion 9, and both portions are connected to one another by a junction forming a shoulder 10 inside the armature 7.

The armature 7 is embedded in sleeve 11 the inner configuration of which matches the configuration of the coiled armature, whereby a close interconnection is achieved between the two parts.

Sleeve 11 has a general configuration following that of armature 7. It has a constricted proximal end 12 and a constricted distal end 13.

Proximally of the armature 7 and sleeve 11, the shaft 1 has a shoulder 14. In the example shown, this shoulder 14 is due to an enlargement of the shaft section which so extends up to the proximal end (not shown) of the shaft. This is however not compulsory and the shaft may just have a constant diameter and a shoulder at the location shown for shoulder 14.

Operation of the balloon catheter is as follows.

When the balloon is to be used full length, or as a basic delivery position, the assembly of armature 7 and sleeve 11 is pushed proximally until the constricted proximal end 12 makes way onto shoulder 14 of shaft 1, as shown in FIG. 1. For extra safety, the sleeve may be pushed proximally until the material of shaft 1, thereby assuring an interpenetration fit, as shown in FIG. 5. In that condition, the balloon catheter may be safely inserted into the patient's vessel and withdrawn thereof without any risk of having the assembly of armature and sleeve moving on the catheter shaft.

For operation of the balloon in reduced size (Cf. FIGS. 2 and 4), it suffices to push (by hand) the sleeve 11 towards the proximal end of the balloon and to follow up that motion up to having the shoulder 10 of armature 7 abutting against the enlarged portion formed by the proximal fixture 4 of the balloon 3. At that time, the distal portion 9 of armature 7 partly engages and friction fits onto the enlargement provided for by the proximal welding 4 of the balloon 3 on the shaft 1.

Simultaneously, the distal end of armature 7 and sleeve 11 extend over a proximal portion of the balloon 3, thereby defining a neutralised length 16 for the balloon and providing a room 17 (FIG. 4) for part expansion of the balloon. Upon inflation of the balloon, the free portion 18 thereof expands normally while the neutralised portion 16 enclosed in room 17 expands for a dilatation limited to the contact between balloon 3 and armature 7. At that time, the constricted distal end of sleeve 11 is boxed between the two portions 16 and 18 of the balloon, thereby assuring automatic self locking of the sleeve and armature on the balloon. In that condition, the armature also guards against any unwanted dilatation of the sleeve 11. After expansion of the balloon as required, the balloon is deflated and the catheter may be withdrawn as usual, the armature 7 and sleeve 11 remaining in their position by friction fit and abutment on the balloon proximal fixture.

The balloon catheter shown may also be used as a stent delivery system for a balloon expandable stent 15 as shown in phantom on FIG. 2.

Variants may be envisaged without departing from the scope of the invention.

For instance, the coiled armature 7 could be replaced by a braided armature, preferably also made of a high density metal wire. And another structure can be devised for sleeve, for example truncated cone shape.

Heller, Mathias, Willi, Jakob, Fernandez-Aceytuno, Alfonso M., Amann, Rainer, Hirt, Roland

Patent Priority Assignee Title
10076641, May 11 2005 SPECTRANETICS LLC Methods and systems for delivering substances into luminal walls
10086178, Nov 09 2001 SPECTRANETICS LLC Balloon catheter with non-deployable stent
10117668, Oct 08 2013 SPECTRANETICS LLC Balloon catheter with non-deployable stent having improved stability
10179227, Mar 12 2013 ACCLARENT, INC Resilient tube over dilator balloon
10206800, Jul 11 2007 C.R. Bard, Inc. Device for catheter sheath retraction
10220193, Feb 01 2012 TriReme Medical, LLC Device for compartmental dilatation of blood vessels
10232148, Nov 17 2014 TriReme Medical, LLC Balloon catheter system and method of using same
10314947, Apr 19 2010 SPECTRANETICS LLC Coating formulations for scoring or cutting balloon catheters
10342960, May 11 2005 SPECTRANETICS LLC Methods and systems for delivering substances into luminal walls
10471184, Apr 19 2010 SPECTRANETICS LLC Coating formulations for scoring or cutting balloon catheters
10485571, Oct 08 2013 SPECTRANETICS LLC Balloon catheter with non-deployable stent having improved stability
10493246, Jun 08 2009 TriReme Medical, LLC Side branch balloon
10512758, Jul 01 2008 Endologix LLC Catheter system and methods of using same
10524825, Feb 08 2012 TriReme Medical, LLC Constraining structure with non-linear axial struts
10549077, Mar 12 2010 TriReme Medical, LLC Device and method for compartmental vessel treatment
10660775, Mar 01 2011 Endologix LLC Catheter system and methods of using same
10722694, Jan 21 2003 SPECTRANETICS LLC Apparatus and methods for treating hardened vascular lesions
10736652, Sep 21 2010 SPECTRANETICS LLC Method and system for treating valve stenosis
10849747, May 10 2017 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Integrated sheath interface feature
10952879, Oct 21 2010 C. R. Bard, Inc. System to deliver a bodily implant
10993822, Aug 07 2006 C. R. Bard, Inc. Hand-held actuator device
11000680, Nov 17 2014 TriReme Medical, LLC Balloon catheter system and method of using same
11026821, Jul 11 2007 C. R. Bard, Inc. Device for catheter sheath retraction
11026822, Jan 13 2006 C. R. Bard, Inc. Stent delivery system
11129737, Jun 30 2015 Endologix LLC Locking assembly for coupling guidewire to delivery system
11234843, Feb 08 2012 TriReme Medical, LLC System and method for treating biological vessels
11420030, May 11 2005 SPECTRANETICS LLC Methods and systems for delivering substances into luminal walls
11529500, Mar 12 2010 TriReme Medical, LLC Device and method for compartmental vessel treatment
11571554, Nov 09 2001 SPECTRANETICS LLC Balloon catheter with non-deployable stent
11583424, Feb 08 2012 TriReme Medical, LLC Constraining structure with non-linear axial struts
5735859, Feb 14 1997 CATHCO, INC Distally attachable and releasable sheath for a stent delivery system
5843090, Nov 05 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Stent delivery device
5843092, Feb 20 1995 Boston Scientific Corporation Balloon catheter and stent delivery device
5968052, Nov 27 1996 Boston Scientific Corporation Pull back stent delivery system with pistol grip retraction handle
5976153, Mar 31 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent delivery catheter system
5980564, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable implantable endoprosthesis with reservoir
6019777, Apr 21 1997 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
6068634, Aug 23 1996 SciMed Life Systems, INC Stent delivery system
6126628, Apr 22 1997 DePuy Orthopaedics, Inc Fluid flow limiting device
6149996, Jan 15 1998 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Molded tip and tubing and method of making same
6174327, Feb 27 1998 Boston Scientific Scimed, Inc Stent deployment apparatus and method
6174330, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable marker having radiopaque constituents
6190393, Mar 29 1999 CARDINAL HEALTH SWITZERLAND 515 GMBH Direct stent delivery catheter system
6206834, Jun 29 1995 Schneider (Europe) A.G. Stiffened hollow vascular device
6210318, Mar 09 1999 ABIOMED, INC Stented balloon pump system and method for using same
6217586, Apr 21 1997 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
6235007, Nov 27 1995 TherOx, Inc Atraumatic fluid delivery devices
6245103, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable self-expanding stent
6251135, Aug 01 1997 Schneider (USA) Inc Radiopaque marker system and method of use
6296633, Jan 09 1998 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Medical device tubing assembly and method of making the same
6319275, Apr 07 1999 Medtronic Ave, Inc Endolumenal prosthesis delivery assembly and method of use
6340367, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Radiopaque markers and methods of using the same
6379365, Mar 29 1999 Stent delivery catheter system having grooved shaft
6387118, Apr 20 2000 Boston Scientific Scimed, Inc Non-crimped stent delivery system
6391051, Nov 27 1996 SciMed Life Systems, Inc. Pull back stent delivery system with pistol grip retraction handle
6432130, Apr 20 2000 Boston Scientific Scimed, Inc Fully sheathed balloon expandable stent delivery system
6527741, Dec 21 1999 Advanced Cardiovascular Systems, INC Angioplasty catheter system with adjustable balloon length
6558502, Nov 27 1995 TherOx, Inc. Method for forming atraumatic fluid delivery device
6602226, Oct 12 2000 Boston Scientific Scimed, Inc Low-profile stent delivery system and apparatus
6602287, Dec 08 1999 Advanced Cardiovascular Systems, Inc. Stent with anti-thrombogenic coating
6605114, Apr 24 1997 Advanced Cardiovascular Systems, Inc. Heparin delivery method
6695863, Jun 07 1995 Advanced Cardiovascular Systems, Inc. Sheath for an adjustable length balloon
6776792, Apr 24 1997 Advanced Cardiovascular Systems Inc. Coated endovascular stent
6830575, May 08 2002 Boston Scientific Scimed, Inc Method and device for providing full protection to a stent
6884257, Nov 28 2000 Advanced Cardiovascular Systems, Inc. Stent delivery system with adjustable length balloon
7008535, Aug 04 2000 NEXTEC ENVIRONMENTAL INC Apparatus for oxygenating wastewater
7077860, Apr 24 1997 Advanced Cardiovascular Systems, Inc. Method of reducing or eliminating thrombus formation
7108716, Dec 18 1997 Schneider (USA) Inc. Stent-graft with bioabsorbable structural support
7163715, Jun 12 2001 Advanced Cardiovascular Systems, INC Spray processing of porous medical devices
7198675, Sep 30 2003 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
7201940, Jun 12 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
7258891, Jun 28 2001 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
7294278, Aug 04 2000 NEXTEC ENVIRONMENTAL INC Method for oxygenating wastewater
7297159, Oct 26 2000 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
7514122, Jun 12 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for spray processing of porous medical devices
7553325, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable marker having radiopaque constituents
7553377, Apr 27 2004 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
7563324, Dec 29 2003 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
7604700, Sep 30 2003 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for selectively coating surfaces of a stent
7632307, Dec 16 2004 Advanced Cardiovascular Systems, INC Abluminal, multilayer coating constructs for drug-delivery stents
7691138, May 08 2002 Boston Scientific Scimed, Inc Method and device for providing full protection to a stent
7699887, Dec 18 1997 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
7758631, Aug 01 1997 Boston Scientific Scimed, Inc. Bioabsorbable endoprosthesis having elongate axial reservoir for by-product collection
7867547, Dec 19 2005 Advanced Cardiovascular Systems, INC Selectively coating luminal surfaces of stents
7935141, Aug 17 2005 C R BARD, INC Variable speed stent delivery system
8003156, May 04 2006 Advanced Cardiovascular Systems, INC Rotatable support elements for stents
8017237, Jun 23 2006 ABBOTT CARDIOVASCULAR SYSTEMS, INC Nanoshells on polymers
8048441, Jun 25 2007 ABBOTT CARDIOVASCULAR SYSTEMS, INC; ABBOTT CARDIOVASCULAR SYSTEMS INC Nanobead releasing medical devices
8048448, Jun 15 2006 ABBOTT CARDIOVASCULAR SYSTEMS, INC Nanoshells for drug delivery
8062344, Apr 30 2001 ANGIOMED GMBH & CO. MEDIZINTECHNIK KG Variable speed self-expanding stent delivery system and luer locking connector
8177831, Dec 03 2001 J W MEDICAL SYSTEMS LTD Stent delivery apparatus and method
8197879, Sep 30 2003 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
8282680, Jan 17 2003 J W MEDICAL SYSTEMS LTD Multiple independent nested stent structures and methods for their preparation and deployment
8293367, Jun 23 2006 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
8317859, Jun 28 2004 J W MEDICAL SYSTEMS LTD Devices and methods for controlling expandable prostheses during deployment
8460358, Mar 30 2004 J W MEDICAL SYSTEMS LTD Rapid exchange interventional devices and methods
8465789, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8486132, Mar 22 2007 J W MEDICAL SYSTEMS LTD Devices and methods for controlling expandable prostheses during deployment
8500789, Jul 11 2007 C R BARD, INC Device for catheter sheath retraction
8512400, Apr 09 2010 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
8574282, Dec 03 2001 J W MEDICAL SYSTEMS LTD Apparatus and methods for delivery of braided prostheses
8585747, Dec 23 2003 J W MEDICAL SYSTEMS LTD Devices and methods for controlling and indicating the length of an interventional element
8592036, Jun 23 2006 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
8596215, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8603530, Jun 14 2006 ABBOTT CARDIOVASCULAR SYSTEMS INC Nanoshell therapy
8637110, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8652198, Mar 20 2006 J W MEDICAL SYSTEMS LTD Apparatus and methods for deployment of linked prosthetic segments
8702781, Dec 03 2001 J W MEDICAL SYSTEMS LTD Apparatus and methods for delivery of multiple distributed stents
8740968, Jan 17 2003 J.W. Medical Systems Ltd. Multiple independent nested stent structures and methods for their preparation and deployment
8741379, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8771344, Apr 09 2010 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
8808342, Jun 14 2006 Abbott Cardiovascular Systems Inc. Nanoshell therapy
8808346, Jan 13 2006 C R BARD, INC Stent delivery system
8808350, Mar 01 2011 Endologix LLC Catheter system and methods of using same
8956398, Dec 03 2001 J W MEDICAL SYSTEMS LTD Custom length stent apparatus
8980297, Feb 20 2007 J W MEDICAL SYSTEMS LTD Thermo-mechanically controlled implants and methods of use
8986362, Jun 28 2004 J W MEDICAL SYSTEMS LTD Devices and methods for controlling expandable prostheses during deployment
9078779, Aug 07 2006 C R BARD, INC Hand-held actuator device
9101503, Mar 06 2008 J W MEDICAL SYSTEMS LTD Apparatus having variable strut length and methods of use
9173977, Apr 19 2010 SPECTRANETICS LLC Coating formulations for scoring or cutting balloon catheters
9179936, Feb 08 2012 TriReme Medical, LLC Constraining structure with non-linear axial struts
9199066, Mar 12 2010 TriReme Medical, LLC Device and method for compartmental vessel treatment
9216033, Feb 08 2012 TriReme Medical, LLC System and method for treating biological vessels
9326876, Dec 03 2001 J.W. Medical Systems Ltd. Apparatus and methods for delivery of multiple distributed stents
9339404, Mar 22 2007 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
9351756, Sep 21 2010 SPECTRANETICS LLC Method and system for treating valve stenosis
9364254, Sep 21 2010 SPECTRANETICS LLC Method and system for treating valve stenosis
9375328, Nov 09 2001 SPECTRANETICS LLC Balloon catheter with non-deployable stent
9421115, Jul 10 2008 C. R. Bard, Inc. Device for catheter sheath retraction
9440043, Jun 13 2014 LEADING AGE SUPPLIES LLC Catheter having a tapered structure and balloon formed above a lower drainage hole
9457133, Feb 20 2007 J W MEDICAL SYSTEMS LTD Thermo-mechanically controlled implants and methods of use
9549835, Mar 01 2011 Endologix LLC Catheter system and methods of using same
9566179, Dec 23 2003 J.W. Medical Systems Ltd. Devices and methods for controlling and indicating the length of an interventional element
9586031, May 11 2005 SPECTRANETICS LLC Methods and systems for delivering substances into luminal walls
9675486, Jan 13 2006 C.R. Bard, Inc. Stent delivery system
9687374, Mar 01 2011 Endologix LLC Catheter system and methods of using same
9700448, Jun 28 2004 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
9700701, Jul 01 2008 Endologix LLC Catheter system and methods of using same
9801745, Oct 21 2010 C R BARD, INC System to deliver a bodily implant
9833343, Dec 18 1997 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
9883957, Mar 20 2006 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
9962529, Jan 21 2003 SPECTRANETICS LLC Apparatus and methods for treating hardened vascular lesions
Patent Priority Assignee Title
4824435, May 18 1987 FOGARTY, THOMAS J Instrument guidance system
5171305, Oct 17 1991 CREDIT SUISSE FIRST BOSTON MANAGEMENT CORPORATION Linear eversion catheter with reinforced inner body extension
5201757, Apr 03 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Medial region deployment of radially self-expanding stents
5242399, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5246421, Feb 12 1992 VENTION MEDICAL ADVANCED COMPONENTS, INC Method of treating obstructed regions of bodily passages
5312356, May 22 1989 STRYKER EUROPEAN HOLDINGS III, LLC Catheter with low-friction distal segment
EP335341A1,
EP408245A1,
EP466518A2,
EP678307A2,
WO9508965,
WO9619256,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 24 1995Schneider (Europe) A.G.(assignment on the face of the patent)
Mar 04 1996FERNANDEZ-ACEYTUNO, ALFONSO MEDINASCHNEIDER EUROPE A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079580039 pdf
Mar 07 1996HELLER, MATHIASSCHNEIDER EUROPE A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079580039 pdf
Mar 12 1996AMANN, RAINERSCHNEIDER EUROPE A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079580039 pdf
Mar 12 1996HIRT, ROLANDSCHNEIDER EUROPE A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079580039 pdf
Mar 12 1996WILLI, JAKOBSCHNEIDER EUROPE A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0079580039 pdf
Jul 23 2015SCHNEIDER EUROPE GMBH FKA SCHNEIDER EUROPE AG Boston Scientific CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0373590669 pdf
Date Maintenance Fee Events
Jan 31 1997ASPN: Payor Number Assigned.
Sep 28 2000M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 29 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 18 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 13 20004 years fee payment window open
Nov 13 20006 months grace period start (w surcharge)
May 13 2001patent expiry (for year 4)
May 13 20032 years to revive unintentionally abandoned end. (for year 4)
May 13 20048 years fee payment window open
Nov 13 20046 months grace period start (w surcharge)
May 13 2005patent expiry (for year 8)
May 13 20072 years to revive unintentionally abandoned end. (for year 8)
May 13 200812 years fee payment window open
Nov 13 20086 months grace period start (w surcharge)
May 13 2009patent expiry (for year 12)
May 13 20112 years to revive unintentionally abandoned end. (for year 12)