A method of applying the images in prints, produced by a color image thermal printer, on ceramic mugs, tiles, and metal objects having a coatings which absorbs the sublimable dyes employed, and on fabrics with a polyester content of 50% or higher. The method employs a heat press to transfer the sublimable dyes of the image produced on conventional color video printer print paper into a plastic surface coating applied to ceramic mugs, tiles, or metal articles or the polyester components of fabrics. The limited quantities of sublimable dyes contained in the print originally designed to be an end product produce a sharp, clearly defined transfer of the images from the electronic print paper when heated to between 350°-450° F. while being tightly and continuously pressed against the transfer surface by a relatively high pressure for a period of three to six minutes.

Patent
   5643387
Priority
Sep 06 1988
Filed
Aug 09 1993
Issued
Jul 01 1997
Expiry
Jul 01 2014
Assg.orig
Entity
Small
39
94
EXPIRED
15. A process for the sublimation transfer of images formed by sublimation dyes on a receptive objective body, said process comprising a first step of sublimation transferring a multi-color image formed of at least two different colors of sublimable dyes to a receptive sheet-like material, and a second step of sublimation transferring said image from said receptive sheet-like material to said objective body, said second step including heating said dyes in said receptive sheet-like material to about 350° F.-450° F. as sufficient to sublimate said dyes and simultaneously pressing said sheet-like material against said receptive objective body so that said sublimable dyes in said sheet-like material are received by said objective body to form a substantially faithful reproduction of said image.
1. A process for use in combination with a color video printer of transferring a print of an image, formed substantially entirely of sublimable dyes produced by said printer in an initial step of the process by sublimation transfer of said dyes onto color video printer print paper, to a surface capable of receiving and retaining sublimable dyes, which process comprises the further steps of:
placing said print produced by sublimation transfer of sublimable dyes directly against said surface; and
heating and pressing said print at a temperature above 300° F. and with sufficient force directly against said surface so that said sublimable dyes forming said image on said print are sublimated and transferred permanently from said print directly to said surface without distortion of said image transferred thereto.
12. A process for the sublimation transfer of images formed by sublimation dyes on a receptive objective body, said process comprising a first step of sublimation transferring an image formed from a plurality of sublimable dyes to a receptive sheetlike material, and a second step of sublimation transferring said image from said receptive sheetlike material to said objective body, said second step including heating said dyes in said receptive sheetlike material to a temperature of about 350° F.-450° F. as sufficient to sublimate said dyes and simultaneously pressing said sheetlike material against said receptive objective body so that said sublimable dyes in said sheetlike material are sublimated from a solid phase to a vapor phase and received by said objective body in a vapor phase where said dyes convert to a solid phase to form a substantially faithful reproduction of said image without substantial distortion thereof.
20. A method of placing multiple color images on surfaces composed of a material that accepts sublimable dyes comprising the steps of:
creating a video image on the monitor of a color video print system;
producing a multiple color print of said image by the sublimation transference of sublimable dyes onto a medium by a color video thermal printer of said system;
placing the front said medium in contact with said surface to which said image is to be transferred;
applying force to the back of said medium to obtain complete pressurized contact between said medium and said surface; and
heating said medium to above 300° F. so that said sublimable dyes therein are sublimated and received by said surface to transfer said image into the material of which said surface is composed without undue distortion and so that said transferred image is permanently received by said material and resistant to deterioration by light and wear.
7. A method of placing colored images on surfaces composed of a material that accepts sublimable dyes comprising the steps of:
creating a video image on the monitor of a standard color video print system;
producing a print of said image by the sublimation transfer of sublimable dyes to a color video printer print paper using a color video thermal printer of said system;
placing the front said print in contact with said surface to which said image is to be transferred;
applying sufficient force to the back of said print to obtain complete pressurized contact between said print and said surface; and
heating said print so that said sublimable dyes therein are sublimated and received by said surface to transfer said image into the material of which said surface is composed without undue distortion, said transferred image being permanently received by said material and resistant to deterioration by light and wear, said heating step being conducted at a temperature in the range of 350° F. to 450° F.
2. A process as claimed in claim 1, wherein said pressing step comprises applying a high pressure to the back of said color video printer print paper and thereby forcing said print against said surface concurrent with said heating step.
3. A process as claimed in claim 2, wherein said surface comprises a finish on the exterior of a ceramic mug capable of receiving and retaining sublimable dyes.
4. A process as claimed in claim 2, wherein said surface comprises a finish on a ceramic tile capable of receiving and retaining sublimable dyes.
5. A process as claimed in claim 2, wherein said surface comprises the side of a piece of a fabric having a polyester content of at least 50% which is placed in juxtaposition with said print paper during said heating and pressing steps.
6. A process as claimed in claim 1, further comprising the initial step of creating a mirror image print of whatever is imaged by a color video system which includes said color video printer.
8. A method as claimed in claim 7, further comprising a first step of coating a solid substrate to provide a layer on said substrate which comprises said surface, said layer composed of a material that is receptive to said sublimable dyes.
9. A method as claimed in claim 7, wherein said surface comprises the side of a piece of a fabric containing at least 50% polyester, said side being in contact with the front of said print when force is applied to the back of said print.
10. A method as claimed in claim 7, wherein said heating step has a duration of three to six minutes.
11. A method as claimed in claim 7, wherein between said steps of creating a video image and producing said print there is an additional step of creating a mirror image of said video image.
13. A process in accordance with claim 12, wherein said first step is carried out by means of a thermal printer on the basis of stored image data recorded in a color video printer.
14. A process in accordance with claim 13, wherein said thermal printer comprises a thermal head having a plurality of thermal elements, said thermal elements selectively heating portions of sublimable dye areas in a heat transfer printing sheet sufficiently to sublimate said dyes and to transfer said dyes in the form of said image to said sheetlike material.
16. A process in accordance with claim 15, wherein said objective body comprises a ceramic material which has been coated with a substance that is receptive to receiving said sublimable dyes.
17. A process in accordance with claim 15, wherein the surface of said receptive objective body that receives said image is curved.
18. A process in accordance with claim 17, wherein said receptive objective body comprises a mug.
19. A process in accordance with claim 15, wherein said receptive objective body is composed of cloth.

This is a Continuation of application Ser. No. 07/891,919, now abandoned, filed Jun. 1, 1992, which is a Continuation of application Ser. No. 07/645,320, now abandoned, filed Jan. 24, 1991, which is a Continuation of application Ser. No. 07/240,507, now abandoned, filed Sep. 6, 1988.

1. Field of Invention

The present invention relates in general to sublimation transfers and in particular to a method of using prints produced by color video print systems as sublimation transfers in decorating ceramic mugs and other surfaces such as coated ceramic tiles and metal objects.

2. Prior Art

The capability of printing photographic-like images on hard surfaces such as ceramic mugs and tiles fulfills an ongoing need as exemplified by the number of decorated mugs and tiles which we sold and are available for sale in a broad range of retail stores. Current methods of producing these items is to pre-print transfers as decals by one of the following methods, silk screen printing, offset printing, gravure printing or mimeograph wherein the inks employed in these processes contain sublimable dyes. These methods require color separation and long production runs. Another process uses transfers produced on a xerographic type copy machine and these transfers can only be produced as a single color or black on white. These systems are not capable of producing single, full color transfers economically and quickly. Currently, other than by the process disclosed herein, the only partical method for producing ceramic mugs which have full color decorations and each is unique is by hand painting individual pieces.

The principal object of the present invention is to provide a method to economically and quickly make one-of-a-kind products using a full color sublimation transfer process. More specifically, it is a further object of this invention to provide such a method to create one-of-a-kind ceramic mugs by transfer print images.

The foregoing objects can be accomplished by using a color video thermal printing device. The images contained in prints made by using these printers, as disclosed in U.S. Pat. No. 4,650,494 of Kutsukake et al issued Mar. 17, 1987 and U.S. Pat. No. 4,731,091, of Majima issued Mar. 15, 1988, are transferred to surfaces, coated with a special coating, by applying heat and pressure, as required. For mugs, the images are applied to the mug using a special conforming mug heat press.

The invention is illustrated preferred embodiments in the accompanying drawings.

FIG. 1 is a schematic of the instant color sublimation transfer process in accordance with the present invention.

FIG. 2 is a schematic of the instant color sublimation transfer process incorporating a graphics computer in accordance with the present invention.

FIG. 3 is a plan view of a mug heat transfer press.

Referring now to FIG. 1, a schematic drawing of a preferred embodiment of this invention is disclosed wherein a color video print is transferred to a coffee mug. This invention thus involves a new use for prints made using a color video printing system. A description for producing such prints is found in U.S. Pat. No. 4,731,091 of Osamu Majima which issued Mar. 15, 1988. The invention comprises a secondary sublimable dye thermal transfer printing process and device. Color video printers were developed to produce high resolution prints in full color of anything that can be viewed on the screen of a TV by freezing the motion and recording the event. By means of the color video system, prints of images received by camera 11 can be reproduced for future reference. The instant invention teaches a novel use of such prints produced by the color video system. However, to be used in the process, it is important that the system have the capability to produce a print which is a mirror image of that seen by camera 11. Normally, therefore a video printer 12, such as the Hitachi Color Video Printer VY-55A, should be provided with a logic chip, circuit, or other device to convert the camera image to a mirror image. Finally, the color video system should include a monitor 13 to view the composition. The print produced by the color video system can then be transferred to a specially coated ceramic mug. Appropriate coating materials are known in the art such as those, for examples, disclosed by Davis, U.S. Pat. No. 4,395,263 of Jul. 26, 1983 a hydrophobic synthetic polymer, for example, phenolformaldehyde resins, polyamide resins, such as nylon and polymers obtained from dimerized fatty acids, unsaturated polyesters, cellulose acetate, polyether resins, such as epoxy resins, phenoxy resins, polysulfide resins, polydimethysiloxane amino resins, such as melamine-formaldehyde resin; alkyd resin; heterocyclic polymers, such as polyamide resins, polyacrylate resins, such as polymethyl methacrylate, cyclohexyl methacrylate and polymethyl-2-cyanoacrylate; polyacrylonitrile resins, acrylimitrile-butadiene resins, polystyrene resins, copolymers of dicyanoethylene and vinyl acetate; and polyvinyl resins, such as polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetals, polyvinyl pyridine, and also the polymers referred to in Defago U.S. Pat. No. 3,782,896, Hix et al, U.S. Pat. No. 4,354,851 of Oct. 19, 1982, e.g. acrylic glass including homopolymers of methymetracylate as well as copolymers consisting for the most part of this monomer, preferably at least 70% and the remainder of other monomers that can be copolymerized with it, inclusive of acrylonitriale-methylmethacrylate copolymers, polyethylene, polypropylene, polyvinylchloride, polystryrene, and impact-resistant butadiene-styrene plastics, polyoxynethylene polycarbonate, fiber glass-reinforced polyester, and aminoplast synthetics, and Krajec, U.S. Pat. No. 4,664,672 of May 12, 1987 e.g. clear, polymeric coatings selected from alkyd-melamine resins, polyester resins, alkyd resins and acrylic polymers. The print 17 produced by the color video printing system is placed against surface 15 of a ceramic mug 14 which has been so coated and the combination is placed in a thermal transfer press 16. The thermal transfer press applies a high pressure, something more than the nominal pressures used by those skilled in the art of printing thermal transfers, but not, of course, so much that mug 14 is broken, and a temperature of 350°-450° F. is applied for a period of three to six minutes. Print dyes of print 17 are thereby transferred into coating 18 of mug 14. Because the amount of sublimable dyes transferred in the color video printing system to the electronic print paper and thus, and available for transfer therefrom, are limited, perfect contact between print 17 and surface 15 of mug 14 should be maintained to produce a commercially acceptable transfer onto mug 14.

A special mug heat press, as shown in FIG. 3, comprises two metal platens 51 and 52 heated by electric resistance heaters 53, each platen having two electric resistance heaters 53 therein. The metal platens 51 and 52 must have a radius as near identical to the radius of the outside dimension of the mug as possible. The metal platen inner surface 54 has a silicone rubber gasket 58 to ensure a tight contact between print 17 and mug surface 15. The gaskets 58 accommodate the slightly irregular surfaces of the mugs. A mechanical or hydraulic closing device 56 is used for opening and closing platen 51 and applying the pressure. The temperature of the platens 51 and 52, produced by electric resistance heaters 53, is controlled by an adjustable thermostat 55.

As indicated, the prints used in the thermal printing process are produced by a color video printing system. The source of the signal provided to color video printer 12 is video camera 11 as seen in FIG. 1. The video signal may be sent directly to color video printer 12 if it is provided with a capability or function, as in the Hitachi VY-55A, to convert the video image to a mirror image. Otherwise, the video image can be routed to a computer 22 with a graphics program which allows it to convert the video image to a mirror image and transmit the recorded data to the color video printer 24 as shown in FIG. 2.

Prints made from the color video system can also be printed onto a flat surface of specially treated (coated) ceramic tiles and metal objects using the inventive process. These prints can also be transferred, or printed, on fabrics which contain at least 50% polyester if the time, temperature and pressure conditions of the process as disclosed above are followed. In all cases it is important to have the temperature in the 350°-450° F. range and to apply a relatively high pressure. Most flat heat presses which can produce the high pressure and temperature, can be used successfully in applying the transfer to flat surfaces.

The foregoing description of the preferred embodiment of this invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above technique. It is intended that the scope of the invention be limited not by this detailed description but rather by claims appended hereto.

Berghauser, Donald C., Berghauser, Sally H.

Patent Priority Assignee Title
10011120, Jul 25 2013 THE HILLMAN GROUP, INC.; THE HILLMAN GROUP, INC Single heating platen double-sided sublimation printing process and apparatus
10016986, Jul 25 2013 THE HILLMAN GROUP, INC. Integrated sublimation printing apparatus
10065442, Jul 25 2013 THE HILLMAN GROUP, INC. Automated simultaneous multiple article sublimation printing process and apparatus
10075619, Nov 14 2014 GOGIGIT, LLC Networked digital imaging customization
10125270, Apr 24 2012 AT Promotions LTD Anti-microbial drinking or eating vessel
10189606, Apr 29 2014 AT Promotions LTD Drinking or eating vessel
10273055, Apr 29 2014 AT Promotions LTD Drinking or eating vessel
10419644, Nov 14 2014 GOGIGIT, LLC Digital image processing network
10587777, Nov 14 2014 GOGIGIT, LLC Digital image processing network
10611525, Apr 29 2015 AT Promotions, LTD Drinking or eating vessel
10827097, Nov 02 2015 SAWGRASS TECHNOLOGIES, INC Product imaging
10827098, Nov 02 2015 GOGIGIT, LLC Custom product imaging method
10947011, Dec 22 2014 AT Promotions LTD Drinking or eating vessel
10973349, Jan 10 2017 AT Promotions LTD Vacuum decoration of a drinking or eating vessel
11503187, Nov 02 2015 GOGIGIT, LLC Custom product imaging method
5802969, Apr 10 1997 Eastman Kodak Company Method and apparatus for transferring images onto a cup-shaped structure
6151130, Jul 14 1998 NATIONAL PEN CO , LLC Print product on demand
6209605, Sep 16 1998 BALL LEGENDS, LLC Apparatus for applying an image to a spherical surface
6417138, Jul 26 1994 Sony Corporation Method for transcribing an image and a support for transcription and ink ribbon employed therefor
6450098, Aug 08 1994 Sawgrass Systems, Inc. Permanent heat activated ink jet printing process
6578476, Mar 05 2001 NATIONAL PEN CO , LLC Print product on demand
6793988, Jan 24 1994 Sony Corporation Ink ribbon for image transcription
6964722, Aug 07 2002 POLYMER-WOOD TECHNOLOGIES, INC Method for producing a wood substrate having an image on at least one surface
7213866, Jun 25 2004 Soft top for vehicles
8248441, Oct 27 2007 AKZO NOBEL COATINGS INTERNATIONAL B V Thermal transfer printing
9120326, Jul 25 2013 THE HILLMAN GROUP, INC.; THE HILLMAN GROUP, INC Automatic sublimated product customization system and process
9242450, May 31 2013 Seat belt thermal graphics application device
9302468, Nov 14 2014 GOGIGIT, LLC Digital customizer system and method
9333788, Jul 25 2013 THE HILLMAN GROUP, INC.; THE HILLMAN GROUP, INC Integrated sublimation transfer printing apparatus
9403394, Jul 25 2013 THE HILLMAN GROUP, INC. Modular sublimation transfer printing apparatus
9446599, Jul 25 2013 THE HILLMAN GROUP, INC. Automatic sublimated product customization system and process
9545808, Jul 25 2013 THE HILLMAN GROUP, INC. Modular sublimation printing apparatus
9731534, Jul 25 2013 THE HILLMAN GROUP, INC.; THE HILLMAN GROUP, INC Automated simultaneous multiple article sublimation printing process and apparatus
9781307, Nov 14 2014 GOGIGIT, LLC Networked digital imaging customization
9856055, Apr 29 2014 AT Promotions LTD Drinking or eating vessel
9962979, Aug 05 2015 THE HILLMAN GROUP, INC. Semi-automated sublimation printing apparatus
D827023, Feb 29 2016 Mug wrap
D982622, Jul 03 2019 3D vacuum heat transfer machine
RE38952, Mar 08 1994 Heat activated ink jet ink
Patent Priority Assignee Title
1274206,
2571962,
2647337,
2684775,
2721821,
2920009,
3130107,
3255476,
3289573,
3347733,
3359127,
3363557,
3403045,
3418926,
3502495,
3574049,
3580795,
3620881,
3640213,
3647503,
3725575,
3782896,
3786182,
3788106,
3792968,
3816221,
3818823,
3829286,
3860388,
3868214,
3938164, Aug 29 1973 Fuji Photo Film Co., Ltd. Device for thermally recording a cathode-ray tube image
3952131, Jul 10 1973 TECHNOGRAPHICS PRINTWORLD, INC , A MA CORP Heat transfer print sheet and printed product
3969071, Sep 13 1973 CIBA-GEIGY AG A COMPANY OF SWITZERLAND Carriers and their use in printing and dyeing
3974014, Jul 10 1974 Hallmark Cards, Incorporated Method for transferring design image to wax articles
4021591, Dec 04 1974 Roy F., DeVries Sublimation transfer and method
4058644, Dec 04 1974 STEPAN COMPANY, NORTHFIELD, IL 60093 A CORP OF DE Sublimation transfer and method
4086112, Jan 20 1976 Imperial Chemical Industries Limited Method of printing fabrics
4119398, Aug 31 1976 Composition for pre-treating fabric for transfer printing and a transfer printing process
4132833, Oct 08 1976 Eastman Kodak Company Dye element with a transparent polyester layer containing heat-transferable dyes
4171230, Sep 09 1977 Swiss Aluminium Ltd. Transfer medium which is suitable for heat transfer printing on aluminum
4174250, Apr 10 1978 LUCAS DURALITH AKT CORPORATION Apparatus for sublimation imprinting tiles
4177299, Jan 27 1978 Swiss Aluminium Ltd. Aluminum or aluminum alloy article and process
4201821, Dec 22 1978 Howard A., Fromson Decorated anodized aluminum article
4202290, Feb 23 1976 Interpace Corporation Apparatus for decorating surfaces of ceramic ware
4205991, Dec 13 1974 H A WHITTEN & CO P O BOX 1368, NEW YORK, NY 10008 A PARTNERSHIP Transfer printing on textile material
4207069, Feb 26 1976 Toppan Printing Co., Ltd. Method of printing cellulose fiber and polyester/cellulose mixed fiber
4231743, Jun 10 1976 SHAW INDUSTRIES, INC , A CORP OF GA Process for shading during the vapor phase dyeing of carpet
4242092, Nov 12 1970 ARMSTRONG WORLD INDUSTRIES,INC Method of sublimatic printing on sheet structures
4250831, Sep 18 1978 COORS BREWING COMPANY, GOLDEN, CO 80401 A CORP OF CO Apparatus for printing cans from heat transfer paper
4264394, Dec 18 1978 Taihei Industries Co., Ltd. Thermal stamping device
4273552, Sep 16 1978 Hoechst Aktiengesellschaft Process for the pretreatment of cellulose fibers to be printed according to the thermotransfer printing method
4278434, Feb 28 1979 Bayer Aktiengesellschaft Transfer printing process and printing inks and temporary supports for carrying out this process
4284410, Sep 22 1978 Hoechst Aktiengesellschaft Process for the pretreatment of cellulose fibers to be printed according to the thermotransfer printing method
4294641, Jul 23 1976 REED KENNETH JAMES Heat transfer sheets
4323601, Sep 18 1978 COORS BREWING COMPANY, GOLDEN, CO 80401 A CORP OF CO Method for printing cans from heat transfer paper
4352721, Jun 28 1976 Ano-Coil Limited Process for applying designs to aluminum strip
4354851, Feb 17 1977 WOOD FIBER INDUSTRIES, INC , 1 SOUTH WACKER DR , CHICAGO, ILL 60606 A CORP OF DE Method for making a decorated, water-resistant, rigid panel and the product made thereby: transfer dye process onto rigid panel
4367071, Nov 28 1977 Dai Nippon Insatsu Kabushiki Kaisha Heat transfer printing
4395263, Apr 21 1977 DAVIS,DOUGLAS ROY Unitary laminate with permanent indicia pattern: transfer printings onto plastic-coated rigid panels
4411667, Mar 10 1981 British Steel Corporation Transfer printing metal sheet coated with thermoset layer while still hot from curing
4455934, Sep 17 1981 Fuji Kikai Kogyo Kabushiki Kaisha Color head for offset press
4462852, Feb 07 1980 SAGUNT GMBH Process for coloring (printing) of web-like objects, especially ski coverings, as well as similar objects
4465489,
4465728, Sep 25 1972 H.L.H. Corp. Dye decorated plastic articles
4475458, Jun 02 1983 COPY CATS, LTD, AN ILLINOIS CORP Vacuum frame for offset printing plates
4496955, Jun 05 1981 Sony Corporation Apparatus for thermal printing
4505975, Jul 25 1981 Sony Corporation Thermal transfer printing method and printing paper therefor
4514815, Jul 27 1979 Honeywell Information Systems Inc. Computerized system and method of material control
4522881, Mar 02 1982 Sony Corporation Cover film for color hard copy printing paper
4541340, Jul 02 1982 AU RIB CORP Process for forming permanent images using carrier supported inks containing sublimable dyes
4541830, Nov 11 1982 Matsushita Electric Industrial Co., Ltd. Dye transfer sheets for heat-sensitive recording
4564406, Feb 21 1984 Solar-Kist Corporation Method of and means for combination design transfer and application of heat reactivatable adhesive
4576610, Mar 25 1980 Doncroft Colors & Chemicals, Inc. Sublimation dye transfer printing of fabrics
4591360, Sep 02 1983 Metal Box plc Decorating metal can containers from flexible transfer paper carrier which is heated to shrink onto can
4621271, Sep 23 1985 Eastman Kodak Company Apparatus and method for controlling a thermal printer apparatus
4628811, Feb 25 1985 Cup printer including an endless belt ink cartridge
4645705, Mar 30 1982 Scott Paper Company Transfer coupon
4650494, Nov 08 1983 Dai Nippon Insatsu Kabushiki Kaisha Heat transfer printing sheet
4662966, Sep 25 1984 NISSHA PRINTING CO , LTD , A CORP OF JAPAN Apparatus for transfer printing
4664672, Aug 23 1983 ROHM GmbH Chemische Fabrik Transfer printing process for solid objects employing high-pressure gas
4666320, Oct 15 1983 Sony Corporation Ink ribbon for sublimation transfer type hard copy
4716145, Jun 27 1986 Eastman Kodak Company Non-imagewise reheating of transferred dyes in thermal dye transfer elements
4726675, Jul 08 1985 Fuji Photo Film Co., Ltd. Color picture reproduction using balanced phosphors
4731091, Jul 25 1981 Sony Corporation Thermal transfer printing method and printing paper with cellulose fiber base containing resin fibers or resin coating
4736250, Nov 28 1986 Tektronix, Inc. Digital camera frame capture circuit
4738526, Nov 21 1986 AUTOSTUDIO CORPORATION, A NY CORP Auto-portrait photo studio
4758952, Nov 24 1986 P & S Industries, Inc. Process for heat transfer printing
4820310, Jan 21 1987 POLYPLASTICS CO , LTD , 30, AXUCHIMACHI 2-CHOME, HIGASHI-KU, OSAKA-SHI, OSAKA, JAPAN, A CORP OF JAPAN Method of producing characters, symbols, patterns on thermoplastic resin molded article by reserve dyeing
4835563, Nov 21 1986 AutoStudio Corporation Electronic recording camera with front projector
4874454, Apr 24 1987 Roger, Laudy; U.S. Printcraft Decal transfer device
4923848, Apr 11 1986 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
4943684, Mar 13 1987 FIRST EASTERN EQUITIES, INC Ceramic article, process for imprinting ceramic articles and apparatus
JP57102390,
27892,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 08 1993BERGHAUSER, DONALD C PENROSE LUCAS ALBRIGHTASSIGNOR ASSIGNS A 50% INTEREST TO ASSIGNEE0067580605 pdf
Nov 08 1993BERGHAUSER, SALLY H PENROSE LUCAS ALBRIGHTASSIGNOR ASSIGNS A 50% INTEREST TO ASSIGNEE0067580605 pdf
Date Maintenance Fee Events
Jan 02 2001M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 19 2005REM: Maintenance Fee Reminder Mailed.
Jan 26 2005REM: Maintenance Fee Reminder Mailed.
Feb 18 2005M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Feb 18 2005M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Jan 05 2009REM: Maintenance Fee Reminder Mailed.
Jul 01 2009EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 01 20004 years fee payment window open
Jan 01 20016 months grace period start (w surcharge)
Jul 01 2001patent expiry (for year 4)
Jul 01 20032 years to revive unintentionally abandoned end. (for year 4)
Jul 01 20048 years fee payment window open
Jan 01 20056 months grace period start (w surcharge)
Jul 01 2005patent expiry (for year 8)
Jul 01 20072 years to revive unintentionally abandoned end. (for year 8)
Jul 01 200812 years fee payment window open
Jan 01 20096 months grace period start (w surcharge)
Jul 01 2009patent expiry (for year 12)
Jul 01 20112 years to revive unintentionally abandoned end. (for year 12)