An imaging element comprising a support, at least one light-sensitive layer and at least one coalesced layer of film-forming colloidal polymeric particles and non-film-forming colloidal polymeric particles.
|
1. A coating composition for applying a transparent layer to a photographic element which comprises a continuous aqueous phase having dispersed therein film-forming colloidal polymeric particles and non-film-forming colloidal polymeric particles, the film-forming and non-film-forming colloidal polymeric particles having an average particle size of from 10 to 500 nm; whether the colloidal polymeric particles are film-forming or non-film-forming being determined by applying an aqueous coating formulation of 3% by weight of said colloidal polymeric particles free of organic solvent or coalescing aid to a sheet of polyethylene terephthalate in a wet coverage of 10 ml/m2 and drying for 2 minutes at 75° C., polymers that form clear, transparent continuous films under these conditions are film-forming, while those that do not form clear, transparent continuous films are non-film-forming.
2. The coating composition of
3. The coating composition of
5. The coating composition of
7. The coating composition of
8. The coating composition of
10. The coating composition of
12. The coating composition of
|
This is a divisional of application Ser. No. 221,432, filed Mar. 31, 1994 now U.S. Pat. No. 5,447,832.
PAC Field of the InventionThis invention relates to imaging elements and more particularly to photographic imaging elements.
Support materials for imaging elements often employ layers comprising glassy, hydrophobic polymers such as polyacrylates, polymethacrylates, polystyrenes, or cellulose esters, for example. One typical application is as a backing layer to provide resistance to scratches, abrasion, blocking, and ferrotyping. The latter two properties relate to the propensity of layers applied onto the support material or imaging element to stick together as a result of the adverse humidity, temperature, and pressure conditions that may occur during the manufacture and use of the imaging element.
These glassy polymers are typically coated from organic solvent-based solutions to yield a continuous film upon evaporation of the solvent. However, because of environmental considerations, it is desirable to replace organic solvent-based coating formulations with water-based coating formulations. The challenge has been to provide imaging elements containing layers having similar physical and chemical properties in the dried film to that obtained with organic solvent-based coatings, but which are the result of water-based coating compositions substantially free of organic solvents.
Water insoluble polymer particles contained in aqueous latexes and dispersions reported to be useful for coatings on photographic films typically have low glass transition temperatures (Tg) to insure coalescence of the polymer particles into a strong, continuous film. Generally the Tg of such polymers is less than 50°C, frequently the Tg is no more than 30°C Typically these polymers are used in priming or "subbing" layers which are applied onto the film support to act as adhesion promoting layers for photographic emulsion layers. Such low Tg polymers, although useful when they underly an emulsion layer, are not suitable as, for example, backing layers since their blocking and ferrotyping resistance are poor. To fully coalesce a polymer latex with a higher Tg requires significant concentrations of coalescing aids. This is undesirable for several reasons. Volatilization of the coalescing aid as the coating dries is not desirable from an environmental standpoint. In addition, subsequent recondensation of the coalescing aid in the cooler areas of the coating machine may cause coating imperfections and conveyance problems. Coalescing aid which remains permanently in the dried coating will plasticize the polymer and adversely affect its resistance to blocking, ferrotyping, and abrasion. Thus, there is a need for imaging elements containing layers that perform various functions not having the disadvantages associated with layers applied from organic solutions.
The invention provides an imaging element having a support, at least one light-sensitive layer and at least one layer comprising a coalesced layer of film-forming colloidal polymeric particles and non-film-forming colloidal polymeric particles.
The coalesced layers are especially suitable for imaging elements due to their high transparency and toughness.
While the invention is applicable to all types of imaging elements such as, thermal imaging elements, electrophotographic elements, vesicular elements and the like, the invention is particularly applicable for use in photographic elements which, for the purpose of simplicity of explanation, will be referred to hereinafter. The coalesced layers can be employed as subbing layers, interlayers, emulsion layers, overcoat layers, backing layers, receiving layers, barrier layers, timing layers, antihalation layers, antistatic layers, stripping layers, mordanting layers, scavenger layers, antikinking layers, transparent magnetic layers and the like. The coalesced layers in accordance with this invention are particularly advantageous due to superior physical properties including transparency, toughness necessary for providing resistance to scratches, abrasion, blocking and ferrotyping, in addition to environmental considerations such as, the preparation of layers substantially free of solvents and general procedural advantages including ease of preparation together with short drying times.
Whether colloidal polymeric particles are film-forming or non-film-forming is determined by the following test:
An aqueous coating formulation of 3% by weight of colloidal polymeric particles free of organic solvent or coalescing aid, is applied to a sheet of polyethylene terephthalate in a wet coverage of 10 ml/m2 and dried for 2 minutes at 75°C Polymers that form clear, transparent continuous films under these conditions are film-forming, while those that do not form clear, transparent continuous films are non-film-forming, for the purpose of this invention.
The coalesced layers in accordance with this invention are formed from colloidal polymeric particles that are a discontinuous phase of solid, water-insoluble particles suspended in a continuous aqueous medium. The solid, water insoluble particles of both the film-forming and non-film-forming polymers have an average particle size of from 10 to 500 nm, preferably from 10 to 200 nm. The film forming polymer is present in the coalesced layer in an amount of from 20 to 70 percent by weight and preferably from 30 to 50 percent by weight based on the total weight of the layer.
The imaging elements in accordance with this invention comprise a support material having thereon at least one coalesced layer coated from an aqueous composition comprising a mixture of a film-forming, water dispersible polymer and a non-film-forming, water dispersible polymer. The support material may comprise various polymeric films including cellulose esters, such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate; polycarbonate, polystyrene, polyolefins, such as, polyethylene, polypropylene; polyesters, such as polyethylene terephthalate, polyethylene naphthalate; paper, glass, and the like. Polyester film support is preferred. The thickness of the support is not critical. Support thickness of 50 μm to 254 μm (2 to 10 mil) can be employed, for example, with very satisfactory results. The polyester support typically employs an undercoat or primer layer well known in the art that comprise, for example, a vinylidene chloride/methyl acrylate/itaconic acid terpolymer or vinylidene chloride/acrylonitrile/acrylic acid terpolymer as described in U.S. Pat. Nos. 2,627,088; 2,698,235; 2,698,240; 2,943,937; 3,143,421; 3,201,249; 3,271,178; and 3,501,301.
Coating compositions for preparing coalesced layers in accordance with the invention comprise a continuous aqueous phase having dispersed therein a mixture of film-forming polymeric particles (component A) and non-film-forming polymeric particles (component B). As in the coalesced layers, as indicated above, Component A comprises 20 to 70% of the total weight of components A and B of the coating composition. Other additional compounds may be added to the coating composition, depending on the function of the particular layer, including surfactants, emulsifiers, coating aids, matte particles, rheology modifiers, crosslinking agents, inorganic fillers such as metal oxide particles, pigments, magnetic particles, biocides and the like. The coating composition may also include small amounts of organic solvents, preferably the concentration of organic solvent is less than 1 weight % of the total coating composition.
The non-film-forming polymer (B) comprises glassy polymers that provide resistance to blocking, ferrotyping, abrasion and scratches. Non-film-forming polymer B is present in the coating composition and in the photographic layer in an amount of from 30 to 80 and preferably from 50 to 70 percent based on the total weight of film-forming polymer (A) and non-film-forming polymer (B). These polymers include addition-type polymers and interpolymers prepared from ethylenically unsaturated monomers such as acrylates including acrylic acid, methacrylates including methacrylic acid, acrylamides and methacrylamides, itaconic acid and its half esters and diesters, styrenes including substituted styrenes, acrylonitrile and methacrylonitrile, vinyl acetates, vinyl ethers, vinyl and vinylidene halides, and olefins. In addition, crosslinking and graft-linking monomers such as 1,4-butyleneglycol methacrylate, trimethylolpropane triacrylate, allyl methacrylate, diallyl phthalate, divinyl benzene, and the like may be used. Other polymers that may comprise component B include water-dispersible condensation polymers such as polyesters, polyurethanes, polyamides, and epoxies. Polymers suitable for component B do not give transparent, continuous films upon drying when the above-described test is applied.
The film-forming polymer (A) comprises polymers that form a continuous film under the extremely fast drying conditions typical of the photographic film manufacturing process. Polymers that are suitable for component A are those that give transparent, continuous films when the above-described test is applied and include addition-type polymers and interpolymers prepared from ethylenically unsaturated monomers such as acrylates including acrylic acid, methacrylates including methacrylic acid, acrylamides and methacrylamides, itaconic acid and its half esters and diesters, styrenes including substituted styrenes, acrylonitrile and methacrylonitrile, vinyl acetates, vinyl ethers, vinyl and vinylidene halides, and olefins. In addition, crosslinking and graft-linking monomers such as 1,4-butyleneglycol methacrylate, trimethylolpropane triacrylate, allyl methacrylate, diallyl phthalate, divinyl benzene, and the like may be used. Other suitable polymers useful as component A are film-forming dispersions of polyurethanes or polyesterionomers.
The colloidal polymeric particles can be prepared either by emulsion polymerization or by emulsifying pre-formed polymers in water with a proper dispersing agent. In both cases, chain transfer agents including mercaptans, polymercaptans, and halogen compounds can be sued in the polymerization mixture to moderate the polymer molecular weight. The weight average molecular weight of prepared polymers may vary from 5,000 to 30,000,000 and preferably from 50,000 to 10,000,000.
Preparation of polyurethane dispersions is well-known in the art and involves chain extending an aqueous dispersion of a prepolymer containing terminal isocyanate groups by reaction with a diamine or diol. The prepolymer is prepared by reacting a polyester, polyether, polycarbonate, or polyacrylate having terminal hydroxyl groups with excess polyfunctional isocyanate. This product is then treated with a compound that has functional groups that are reactive with an isocyanate, for example, hydroxyl groups, and a group that is capable of forming an anion, typically this is a carboxylic acid group. The anionic groups are then neutralized with a tertiary amine to form the aqueous prepolymer dispersion.
The term polyesterionomer refers to polyesters that contain at least one ionic moiety. Such ionic moieties function to make the polymer water dispersible. These polyesters are prepared by reacting one or more dicarboxylic acids or their functional equivalents such as anhydrides, diesters, or diacid halides with one or more diols in melt phase polycondensation techniques as described in U.S. Pat. Nos. 3,018,272; 3,929,489; 4,307,174; 4,419,437, incorporated herein by reference. Examples of this class of polymers include, for example, Eastman AQ polyesterionomers, manufactured by Eastman Chemical Co.
Typically the ionic moiety is provided by some of the dicarboxylic acid repeat units, the remainder of the dicarboxylic acid repeat units are nonionic in nature. Such ionic moieties can be anionic or cationic, but, anionic moieties are preferred for the present invention. Preferably, the ionic dicarboxylic acid contains a sulfonic acid group or its metal salt. Examples include the sodium, lithium, or potassium salt of sulfoterephthalic acid, sulfonaphthalene dicarboxylic acid, sulfophthalic acid, and sulfoisophthalic acid or their functional equivalent anhydride, diester, or diacid halide. Most preferably the ionic dicarboxylic acid repeat unit is provided by 5-sodiosulfoisophthalic acid or dimethyl 5-sodiosulfoisophthalate.
The nonionic dicarboxylic acid repeat units are provided by dicarboxylic acids or their functional equivalents represented by the formula: ##STR1## where R is an aromatic or aliphatic hydrocarbon or contains both aromatic and aliphatic hydrocarbons. Exemplary compounds include isophthalic acid, terephthalic acid, succinic acid, adipic acid, and others.
Suitable diols are represented by the formula: HO-R-OH, where R is aromatic or aliphatic or contains both aromatic and aliphatic hydrocarbons. Preferably the diol includes one or more of the following: ethylene glycol, diethylene glycol, or 1,4-cyclohexanedimethanol.
The polyesterionomer dispersions comprise from about 1 to about 25 mol %, based on the total moles of dicarboxylic acid repeat units, of the ionic dicarboxylic acid repeat units. The polyesterionomers have a glass transition temperature (Tg) of about 60°C or less to allow the formation of a continuous film.
The film-forming polymeric particles, the non-film-forming polymeric particles or both type particles may include reactive functional groups capable of forming covalent bonds by intermolecular crosslinking or by reaction with a crosslinking agent (i.e., a hardener). Suitable reactive functional groups include: hydroxyl, carboxyl, carbodiimide, epoxide, aziridine, vinyl sulfone, sulfinic acid, active methylene, amino, amide, allyl, and the like.
The coating compositions in accordance with the invention may also contain suitable crosslinking agents that may effectively be used in the coating compositions of the invention including aldehydes, epoxy compounds, polyfunctional aziridines, vinyl sulfones, methoxyalkyl melamines, triazines, polyisocyanates, dioxane drivatives such as dihydroxydioxane, carbodiimides, chrome alum, and zirconium sulfate, and the like. The crosslinking agents may react with functional groups present on either the film-forming polymers, the non-film-forming polymers or on both.
Matte particles well known in the art may be used in the coating composition of the invention, such matting agents have been described in Research Disclosure No. 308, published Dec 1989, pages 1008 to 1009. When polymeric matte particles are employed, the polymers may contain reactive functional groups capable of forming covalent bonds by intermolecular crosslinking or by reaction with a crosslinking agent (i.e., a hardener) in order to promote improved adherence to the film-forming and non-film-forming polymers of the invention. Suitable reactive functional groups include: hydroxyl, carboxyl, carbodiimide, epoxide, aziridine, vinyl sulfone, sulfinic acid, active methylene, amino, amide, allyl, and the like.
The coating compositions of the present invention may also include lubricants or combinations of lubricants to reduce sliding friction of the photographic elements in accordance with the invention. Virtually any type of water soluble or dispersible lubricants can be used. For example, (1) water soluble or dispersible paraffin or wax-like materials, including vegetable waxes, insect waxes, mineral waxes, petroleum waxes, synthetic waxes, carnauba wax, as well as wax-like components that occur individually in these waxes, (2) perfluoro- or fluoro- or fluorochloro-containing materials, which include poly(tetrafluoroethylene), poly(trifluorochloroethylene), poly(vinylidene fluoride), poly(trifluorochloroethylene-co-vinyl chloride), poly(meth)acrylates containing fluoro or perfluoroalkyl side groups, and the like, (3) poly(meth)acrylates or poly(meth)acrylamides containing long alkyl side groups, (4) silicone lubricants including siloxane containing various (cyclo)alkyl, aryl, epoxypropylalkyl, polyoxyethylene, and polyoxypropylene side groups, and the like.
The above lubricants also may contain reactive functional groups such as hydroxyl, carboxyl, carbodiimide, epoxide, aziridine, vinyl sulfone, sulfinic acid, active methylene, amino, and amide. The amount of lubricants can be incorporated in the coating composition in an amount from 0.1 to 150 mg/m2, preferably from 0.1 to 90 mg/m2.
Any of the reactive functional groups of the polymers and any of the crosslinking agents described in U.S. Pat. No. 5,057,407 and the patents cited therein may be used in accordance with this invention.
The compositions of the present invention may be applied as aqueous coating formulations containing up to about 50% total solids by coating methods well known in the art. For example, hopper coating, gravure coating, skim pan/air knife coating, spray coating, and other methods may be used with very satisfactory results. The coatings are dried at temperatures up to 150°C to give dry coating weights of 20 mg/m2 to 10 g/m2.
The invention is applicable to thermal imaging elements wherein the coalesced layer may be employed as supports, dye-donor elements, dye-image receiving layers, barrier layers, overcoats, binders and the like, as described in U.S. Pat. Nos. 5,288,689; 5,283,225; 4,772,582; 5,166,128, and incorporated herein.
The invention is further illustrated by the following examples in which parts and percentages are by weight unless otherwise stated. Polymeric particles used in the example coatings together with the film-forming character of each are listed in Table 1. The film forming characteristic of each polymer is defined by the test set forth above.
TABLE 1 |
______________________________________ |
Poly- |
mer Polymer Comosition |
Tg. °C. |
Description |
______________________________________ |
P-1 Methyl methacrylate |
125 Non-film-forming |
homopolymer |
P-2 Methyl methacrylate/ |
130 Non-film-forming |
methacrylic acid 97/3 |
P-3 Methacrylonitrile |
115 Non-film-forming |
homopolymer |
P-4 Methacrylonitrile/ |
115 Non-film-forming |
methacrylic acid 97/3 |
P-5 Styrene/methacrylic acid |
100 Non-film-forming |
97/3 |
P-6 Butyl acrylate/acrylic acid |
-40 Film-forming |
97/3 |
P-7 Butyl acrylate/methyl |
20 Film-forming |
methacrylate/acrylic acid |
48.5/48.5/3 |
P-8 butyl acrylate/2-sulfo-1,1- |
-20 Film-forming |
dimethylethyl |
acrylamide/methyl |
2-acrylamido-2- |
methoxyacetate 90/5/5 |
P-9 Dow 620 latex 15 Film-forming |
(styrene-butadiene) |
P-10 Dow 615 latex 10 Film-forming |
(styrene-butadiene) |
P-11 ICI Neorez 960 10 Film-forming |
polyurethane dispersion |
P-12 Eastman Chemical Co. |
29 Film-forming |
AQ29D polyesterionomer |
dispersion |
P-13 Eastman Chemical Co. |
55 Film-forming |
AQ55D polyesterionomer |
dispersion |
______________________________________ |
Aqueous coating solutions comprising 3 weight % total solids were coated with a doctor blade onto polyethylene terephthalate film support that had been subbed with a terpolymer latex of acrylonitrile vinylidene chloride, and acrylic acid. The coating was dried at 90°C for one minute and the coating appearance recorded, the results are listed in Table 2. Transparent, high-quality films that are comparable in appearance to organic solvent applied coatings were obtained for the coating compositions of the invention.
TABLE 2 |
______________________________________ |
Polymer A Polymer B |
Film Non-film- |
Coating Forming forming B/A Appearance |
______________________________________ |
Sample A |
none P-1 100/0 Powdery/ |
non-continuous |
Sample B |
none P-2 100/0 Powdery/ |
non-continuous |
Sample C |
none P-3 100/0 Powdery/ |
non-continuous |
Sample D |
none P-4 100/0 Powdery/ |
non-continuous |
Sample E |
none P-5 100/0 Powdery/ |
non-continuous |
Sample F |
P-11 P-1 90/10 Very hazy/ |
non-continuous |
Sample G |
P-11 P-1 80/20 Hazy |
Example 1 |
P-11 P-1 72.5/27.5 |
Excellent |
Example 2 |
P-11 P-1 70/30 Excellent |
Example 3 |
P-11 P-2 70/30 Excellent |
Example 4 |
P-11 P-3 70/30 Excellent |
Example 5 |
P-11 P-4 70/30 Excellent |
Example 6 |
P-11 P-5 70/30 Excellent |
Example 7 |
P-6 P-2 70/30 Excellent |
Example 8 |
P-6 P-2 70/30 Excellent |
Example 9 |
P-7 P-2 70/30 Excellent |
Example 10 |
P-8 P-2 70/30 Excellent |
Example 11 |
P-9 P-1 70/30 Continuous |
film/slight haze |
Example 12 |
P-10 P-1 70/30 Continuous |
film/slight haze |
Example 13 |
P-12 P-2 70/30 Excellent |
Example 14 |
P-13 P-2 70/30 Excellent |
Example 15 |
P-11 P-2 50/50 Excellent |
Example P-11 P-2 60/40 Excellent |
16* |
______________________________________ |
*PFAZ ® 322 polyfunctional aziridine, Sybron Chemicals Inc., added at |
10 wt % of solids. |
The following examples demonstrate the excellent physical properties that are obtained with coating compositions of the invention. Aqueous formulations comprising 3 weight % total solids were applied onto subbed film support as in the previous examples and dried at 90°C for one minute to give transparent films with a dry coating weight of 750 mg/m2. Taber abrasion for the coatings were measured and compared with a 750 mg/m2 coating of Elvacite 2041 (methyl methacrylate polymer sold by E. I. DuPont de Nemours and Co.) that had been coated from methylene chloride solution. The Taber abrasion tests were performed in accordance with the procedures set forth in ASTM D1044. The results are given in Table 3.
TABLE 3 |
______________________________________ |
Taber Abr. |
Coating Description (% haze) |
______________________________________ |
Sample H |
Solvent coated Elvacite 2041 |
7.0 |
Sample I |
P-11 13.5 |
Example 17 |
P-2/P-11 70/30 ratio 7.0 |
Example 18 |
P-2/P-11 70/30 ratio, with aziridine* |
7.0 |
Example 19 |
P-2/P-11 72.5/27.5 ratio, with aziridine* |
7.0 |
Example 20 |
P-2/P-12 70/30 ratio 9.8 |
Example 21 |
P-2/P-13 70/30 ratio 11.0 |
Example 22 |
P-2/P-13 70/30 ratio, with aziridine* |
8.4 |
Example 23 |
P-2/P-11 50/50 ratio with aziridine* |
7.0 |
Example 24 |
P-2/P-11 40/60 ratio with aziridine* |
11.0 |
Example 25 |
P-2/P-11/Ludox AM 35/32.5/32.5 |
7.5 |
______________________________________ |
*PFAZ ® 322 polyfunctional aziridine, Sybron Chemicals Inc., added at |
10 wt % of solids. |
The following examples show that the coating compositions of the invention provide void-free, impermeable films that are comparable with organic solvent applied layers. A subbed polyester film support as previously described was coated with an aqueous antistatic formulation comprising 0.025 weight % of silver-doped vanadium pentoxide, 0.075 weight % of a terpolymer latex of methylacrylate, vinylidene chloride, and itaconic acid (15/83/2) and dried at 100°C to yield an antistatic layer having a dry weight of about 8 mg/m2. Aqueous coating compositions of the invention containing 1 to 3 weight % solids were applied over the antistatic layer and dried for 90 seconds at 100°C to yield transparent coatings having a dry weight of 250 to 750 mg/m2. It is known (described in U.S. Pat. Nos. 5,006,451 and 5,221,598) that the antistatic properties of the vanadium pentoxide layer are destroyed after film processing if not protected by an impermeable barrier. Thus, the permeability of the example coatings could be evaluated by measuring the antistatic properties of the samples after processing in conventional film developing and fixing solutions.
The samples were soaked in high pH (11.3) developing and fixing solutions as described in U.S. Pat. No. 4,269,929, at 38°C for 60 seconds each and then rinsed in distilled water. The internal resistivity (using the salt bridge method) of the processed samples at 20% relative humidity was measured and compared with the internal resistivity before processing. The coating compositions and results are reported in Table 4. The results show that coating compositions of the invention give void-free coatings that are as impermeable as a solvent cast film (sample J) and are far superior to an aqueous coating composition comprising only the high Tg methyl methacrylate copolymer dispersion alone (sample K).
TABLE 4 |
__________________________________________________________________________ |
Resistivity |
Resistivity |
Coating |
Before |
After |
Weight |
Process |
Process |
Coating |
Description (mg/m2) |
log Ω/sq. |
log Ω/sq. |
__________________________________________________________________________ |
Sample J |
Solvent Coated Elvacite 2041 |
750 7.5 7.7 |
Sample K |
P-2 without film-forming polymer |
750 7.5 >14.0 |
Sample L |
P-11 without non-film-forming polymer |
750 9.3 10.3 |
Example 26 |
P-2/P-12 70/30 ratio |
750 7.9 8.3 |
Example 27 |
P-2/P-13 70/30 ratio |
750 8.0 8.1 |
Example 28 |
P-2/P-11 70/30 ratio |
750 8.0 8.9 |
Example 29 |
P-2/P-11 70/30 ratio, with aziridine* |
750 7.6 7.6 |
Example 30 |
P-2/P-7 70/30 ratio, with aziridine* |
750 7.6 7.6 |
Example 31 |
P-5/P-11 70/30 ratio |
750 7.6 7.7 |
Example 32 |
P-5/P-13 70/30 ratio |
750 7.6 7.8 |
Example 33 |
P-3/P-11 70/30 ratio |
750 8.0 8.0 |
Example 34 |
P-4/P-11 70/30 ratio, with aziridine* |
750 7.8 7.9 |
Example 35 |
P-2/P-11 70/30 ratio, with aziridine* |
250 8.5 8.7 |
Example 36 |
P-2/P-11 50/50 ratio |
1000 7.3 7.2 |
Example 37 |
P-2/P-11 40/60 ratio |
1000 7.3 7.9 |
Example 38 |
P-2/P-11 70/30 ratio with aziridine* and |
750 7.2 7.3 |
polymethylmethacrylate 2 μm matte |
Example 39 |
P-2/P-11 70/30 ratio with aziridine* and |
750 7.4 7.5 |
polymethylmethacrylate-co-methacrylic |
acid 2 μm matte |
__________________________________________________________________________ |
*PFAZ ® 322 polyfunctional aziridine, Sybron Chemicals Inc., added at |
10 wt % of solids. |
In addition to testing procedures already described, Paper Clip Friction (PCF) and Single Arm Scratch were measured for the following examples using the procedure set forth in ANSI IT 9.4-1992 and ANSI PH 1.37-1977, respectively. These examples serve to illustrate the excellent lubricity and scratch resistance that can be obained with coating compositions of the invention upon incorporation of various lubricant materials. The coatings of the invention were applied over a conductive layer comprising vanadium pentoxide as described in previous examples.
TABLE 5 |
__________________________________________________________________________ |
Resistivity |
Resistivity |
Single |
Coating |
Before |
After Arm |
Weight |
Process |
Process Scratch |
Coating |
Description (mg/m2) |
log Ω/sq. |
log Ω/sq. |
PCF |
(gms) |
__________________________________________________________________________ |
Example 40 |
P-2/P-11 70/30 ratio |
1000 8.2 7.6 0.20 |
-- |
with aziridine.* |
Michemlube** 160 at |
7.5 mg/m2 |
Example 41 |
P-2/P-11/Teflon 30+ |
750 7.6 7.6 0.15 |
70 |
62/35/3 ratio with |
aziridine* |
Example 42 |
P-2/P-11/Teflon 3170+ |
750 7.8 7.9 0.125 |
110 |
62/35/3 ratio with |
aziridine* |
__________________________________________________________________________ |
+ Teflon 30 and Teflon 3170 aqueous dispersions available from DuPon |
de Nemours and Co. |
**Aqueous carnauba wax dispersion sold by Michelman Inc. |
*PFAZ ® 322 polyfunctional aziridine, Sybron Chemicals Inc., added at |
10 wt % of solids. |
This example illustrates the incorporation of a conductive metal oxide particle in the coatings of the invention. A coating comprising a 15/35/50 weight ratio of polymer P-2/polymer P-11/conductive tin oxide particles was applied onto a subbed polyester support to give a transparent coating with a total dried weight of 1000 mg/m2. The conductive tin oxide was Keeling & Walker CPM375 antimony-doped tin oxide that had been milled to an average particle size of about 50 nm. The surface resistivity of the coating measured at 20% RH before and after film processing using a two-point probe was 9.9 and 10.3 log Ω/square, respectively.
Wang, Yongcai, Anderson, Charles Chester
Patent | Priority | Assignee | Title |
10000716, | Dec 04 2013 | Corning Research & Development Corporation | Aqueous low friction coating for telecommunication cables |
10443009, | Dec 04 2013 | Corning Research & Development Corporation | Aqueous low friction coating for telecommunication cables |
5965304, | Nov 06 1997 | Eastman Kodak Company | Protecting layer for gelatin based AGX photographic products |
6153368, | Feb 05 1998 | Eastman Kodak Company | Backside protective overcoat compositions for silver halide photographic elements |
6555301, | Aug 17 2001 | Eastman Kodak Company | Photographic silver halide material with matte support |
Patent | Priority | Assignee | Title |
3018272, | |||
3929489, | |||
4069186, | Mar 27 1973 | GLIDDEN COMPANY, THE, A CORP OF DE | Opacified latex paint containing plastic polymer particles |
4134872, | May 20 1977 | The Dow Chemical Company | Heterogeneous polymer particles comprising an interpolymer domain of a monovinylidene aromatic monomer, an open chain aliphatic conjugated diene and a monoethylenically unsaturated acid |
4307174, | Aug 01 1980 | Eastman Kodak Company | Water-dispersible polyester adhesives for photographic materials |
4394442, | Mar 15 1982 | AGFA-GEVAERT, N V | Post-stretch water-dispersible subbing composition for polyester film base |
4419437, | Feb 11 1981 | Eastman Kodak Company | Image-forming compositions and elements containing ionic polyester dispersing agents |
4478907, | Nov 02 1981 | Agfa-Gevaert N.V. | Aqueous copolyester dispersions suited for the subbing of polyester film |
4478974, | May 21 1980 | DOW CHEMICAL COMPANY, THE | Heterogeneous polymer latex of relatively hard and relatively soft interpolymers of a monovinylidene aromatic monomer and an aliphatic conjugated diene monomer |
4497917, | Sep 29 1982 | EASTMAN KODAK COMPANY A NJ CORP | Latex composition comprising core-shell polymer particles |
4510204, | Oct 13 1982 | The Standard Oil Company | Film-forming compositions of nitrile polymer latex blends |
4543386, | Feb 21 1983 | Imperial Chemical Industries PLC | Vinylidene chloride copolymer aqueous latex composition |
4543387, | Feb 21 1983 | Imperial Chemical Industries PLC | Aqueous latex copolymer compositions |
4567099, | Dec 21 1984 | The Dow Chemical Company; DOW CHEMICAL COMPANY THE | High solids latexes for paper coatings |
4613633, | Feb 26 1985 | Nippon Zeon Co., Ltd. | Copolymer latex |
4683269, | Dec 18 1985 | Reichhold Chemicals, Inc. | Opaque binder system |
4704309, | Jun 07 1985 | Eastman Chemical Company | Printing processes employing water dispersible inks |
4738785, | Feb 13 1987 | Eastman Chemical Company | Waste treatment process for printing operations employing water dispersible inks |
4826907, | Oct 08 1984 | Nippon Carbide Kogyo Kabushiki Kaisha | Acrylic or methacrylic resin emulsion coating composition, and its use |
4847316, | May 06 1987 | Eastman Chemical Company | Aqueous dispersion blends of polyesters and polyurethane materials and printing inks therefrom |
4880867, | Aug 19 1986 | HERBERTS GESELLSCHAFT MIT BESCHRANKTER HAFTUNG, CHRISTBUSCH 25, 5600 WUPPERTAL 2, GERMANY, A CORP OF GERMANY | Aqueous coating compositions, a process for their preparation and method of using the same |
4883706, | Dec 23 1986 | Rhone-Poulenc Films | Thick composite polyester films |
4883714, | May 18 1987 | Eastman Chemical Company | Ink compositions and preparation |
4954559, | Sep 05 1989 | E. I. du Pont de Nemours and Company | Waterbased methylol (meth) acrylamide acrylic polymer and polyurethane containing coating composition |
5006413, | Sep 05 1989 | E. I. du Pont de Nemours and Company | Waterbased methylol (meth)acrylamide acrylic polymer and polyurethane containing coating composition |
5006451, | Aug 10 1989 | Eastman Kodak Company | Photographic support material comprising an antistatic layer and a barrier layer |
5342646, | Aug 25 1990 | Huls Aktiengesellschaft | Method for making carrier systems for biologically active materials |
EP466409A1, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 1995 | Eastman Kodak Company | (assignment on the face of the patent) | / | |||
Feb 15 2012 | Eastman Kodak Company | CITICORP NORTH AMERICA, INC , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 028201 | /0420 | |
Feb 15 2012 | PAKON, INC | CITICORP NORTH AMERICA, INC , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 028201 | /0420 | |
Mar 22 2013 | Eastman Kodak Company | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT | PATENT SECURITY AGREEMENT | 030122 | /0235 | |
Mar 22 2013 | PAKON, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT | PATENT SECURITY AGREEMENT | 030122 | /0235 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | Eastman Kodak Company | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | NPEC INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | QUALEX INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | PAKON, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK REALTY, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | FPC INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK NEAR EAST , INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK AMERICAS, LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | NPEC INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | QUALEX INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | PAKON, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK REALTY, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | CITICORP NORTH AMERICA, INC , AS SENIOR DIP AGENT | Eastman Kodak Company | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | KODAK REALTY, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK NEAR EAST , INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | FPC INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | Eastman Kodak Company | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT | PAKON, INC | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | CITICORP NORTH AMERICA, INC , AS SENIOR DIP AGENT | PAKON, INC | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT | Eastman Kodak Company | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | PAKON, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | QUALEX INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK AMERICAS, LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK NEAR EAST , INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | FPC INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | Eastman Kodak Company | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK AMERICAS, LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | NPEC INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | Eastman Kodak Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 041656 | /0531 | |
Feb 02 2017 | BARCLAYS BANK PLC | NPEC INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | FAR EAST DEVELOPMENT LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | FPC INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK AMERICAS LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK REALTY INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | LASER PACIFIC MEDIA CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | QUALEX INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK PHILIPPINES LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK NEAR EAST INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | CREO MANUFACTURING AMERICA LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK AVIATION LEASING LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | NPEC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Eastman Kodak Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | FPC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK NEAR EAST , INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK AMERICAS, LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK IMAGING NETWORK, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK PORTUGUESA LIMITED | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | FAR EAST DEVELOPMENT LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | LASER PACIFIC MEDIA CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | PAKON, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | QUALEX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK PHILIPPINES, LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK REALTY, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049814 | /0001 |
Date | Maintenance Fee Events |
Feb 07 1997 | ASPN: Payor Number Assigned. |
Jan 02 2001 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 03 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 19 2008 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 01 2000 | 4 years fee payment window open |
Jan 01 2001 | 6 months grace period start (w surcharge) |
Jul 01 2001 | patent expiry (for year 4) |
Jul 01 2003 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 01 2004 | 8 years fee payment window open |
Jan 01 2005 | 6 months grace period start (w surcharge) |
Jul 01 2005 | patent expiry (for year 8) |
Jul 01 2007 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 01 2008 | 12 years fee payment window open |
Jan 01 2009 | 6 months grace period start (w surcharge) |
Jul 01 2009 | patent expiry (for year 12) |
Jul 01 2011 | 2 years to revive unintentionally abandoned end. (for year 12) |