A method is disclosed for obtaining the density distributions of three-dimensional elements that compose objects or groups of objects, by examining the objects with beams of x-rays or gamma radiation that are transmitted through the object in a plurality of approximately parallel paths and measuring the intensity of the radiation, scattered approximately perpendicular to the parallel paths, in arrays of detectors around the object. The energy of the x-rays or gamma rays is such that dominant interaction in the object is Compton scattering. The density of each element is determined from the totality of measurements by standard mathematical tomographic or relaxation techniques of data manipulation.
|
11. A device for determining densities in volume elements in a material present in an assembly of objects, the device comprising:
a. a source for producing a beam of energetic photons having a direction for penetrating the material; b. an arrangement for scanning the beam of energetic photons in a sequence of sequential beams across the assembly in a manner such that successive directions of the sequential beams are substantially parallel to each other, the sequential beams passing through every volume of the assembly; c. a detector disposed substantially parallel to the direction of the beam of energetic photons for providing measurements of the intensity of scattered photons of substantially all energies scattered approximately perpendicular to the direction of the beam at each incremental position of the beam; and d. a computer for determining the densities in the volume elements of the material in the assembly from a totality of measurements of the intensity of scattered photons scattered approximately perpendicular to the direction of the beam at each incremental position of the beam by a mathematical reconstruction technique.
1. A method for determining a three-dimensional density, distribution among volume elements in a volume containing at least one material, the method comprising:
a. producing a beam of energetic photons for penetrating the volume; b. scanning the beam sequentially across incremental positions of the volume in a plurality, of paths having substantially parallel directions separated by incremental steps; c. detecting scattered photons of substantially all energies scattered by the material in said volume with a detector having a spatial resolution in a direction substantially parallel to the paths of the beam; d. measuring the intensity of scattered photons scattered approximately perpendicular to each substantially parallel direction of the beam at each incremental position of the beam to derive an independent measurement of intensity, of scattered photons scattered from the volume elements in the volume; e. identifying a volume element as the approximate origin of scattering along the path of the beam giving rise to the measurement of intensity of scattered photons; and f. calculating an independent density for each volume element of the material in the volume.
2. A method according to
3. A method according to
4. A method according to
5. A method according to
6. A method according to
7. A method according to
8. A method according to
9. A method according to
10. A method according to
12. A device according to
13. A device according to
14. A device according to
15. A device according to
16. A device according to
17. A device according to
|
1. Field of the Invention
This invention relates to the examination of a body by means of x-radiation or gamma radiation.
2. Description of the Prior Art
The creation of images of x-ray attention coefficients through objects began with the discovery of x-rays by Roentgen in 1895 and has developed continuously. A major advance was the invention in the early 1970's, by GN Hounsfielch of computerized axial tomography, CAT. (U.S. Pat. Nos. 3,778,614, 4,035,647). Hounsfield showed that the linear attenuation coefficients of individual elements in an object could be reconstructed from the measurements of the intensities of x-ray beams that pass in a plurality of independent paths through the object. Since Hounsfield's invention, the technology of CAT scanning has developed in a number of ways, but all x-ray methods deduce the density distributions from measurements of the radiation transmitted through the object.
This invention is a method for determining the densities of objects or the distribution of densities interior to an object by measuring the intensities of x-rays that are Compton scattered from the volume elements (voxels) of the object. The term x-rays is used throughout the descriptions since it is anticipated that most applications will use an x-ray beam generated by energetic electrons inn an x-ray tube, but it should be evident that all types of energetic photons can be used, including monoenergetic gamma rays, that satisfy the criterion that the energy of the photons are such that Compton scattering dominates the interactions of the photons in the object. The use of scattered radiation to determine densities is fundamentally different in theoretical underpinning, in methodology and in implementing apparatus from the standard methods that use transmitted x-rays to determine densities of interior voxels.
The incident x-rays are rastered across at least one face of an object. The x-rays that are Compton scattered approximately perpendicular to the beam directions are detected in arrays of collimated detectors each of which is sensitive to radiation scattered from a specific portion of the incident x-ray beam.
The distinctive features of the preferred embodiment of this invention are: 1) The energy of the x-rays is high enough so that the interactions in the object are dominated by the Compton effect. In particular, the energy is high enough so that the photoelectric interaction makes a minor contribution in the analysis but it is not so high that pair production is significant. 2) The incident x-rays are collimated into a beam that is scanned through the object in a series of contiguous, approximately parallel paths; the scanning may be accomplished by moving the beam or the container or a combination of both so that the incident x-ray beam passes through every voxel that the detected scattered radiation passes through. 3) The scattered x-rays are detected by arrays of counters that distinguish x-rays that are scattered approximately perpendicular to the incident radiation. The detectors must be capable of sensing the direction of the scattered radiation. Methods for sensing the direction of an incident x-ray are well known; gamma cameras, for example, do so with collimators and position-sensitive detectors. 4) The volume element resolved by this invention is determined by the cross sectional area of the incident x-ray beam times the spatial resolution along the beam path of the origins of the scattered x-rays. The total number of independent measurements is at least equal to the total volume being examined divided by the volume element of spatial resolution. 5. The densities of the voxels is rapidly and accurately determined from the totality of measurements by standard mathematical relaxation methods, without the need for transformation into frequency space or the use of back projection, though both of those techniques can be used.
This invention, which we will refer to as Compton Scatter Tomography or CST, is a new modality for tomography, quite distinct from the conventional method of computerized axial tomography, CAT, in which the linear attenuation coefficients in voxel elements in an object are determined from transmission measurements, or Single Photon Emission Computer Tomography, SPECT, in which the directions of gamma rays emitted from a radioactive source distributed in a body is used to measure the distribution of radioactivity. The invention is described in its application for the inspection of containers for contraband such as explosives. It should be appreciated, however, that this invention may be useful for a broad range applications in which a non-destructive method is needed to determine the density distributions of objects.
FIG. 1. A schematic drawing of the main elements of a preferred embodiment of the invention. A beam of x or γ-rays 2 directed along the Y axis is stepped in a series of approximately parallel paths in the YZ plane so as to intersect every voxel in the plane 8 of the container 3. The examined container moves in the X direction. The x-rays 4 scattered through approximately 90° by elements in the container are counted by an array of collimated detectors 5 and 6, above and below, respectively, the container. A detector 7 of the transmitted x-rays is also shown.
FIG. 2. A cross section of the container showing one plane of the container, such as plane 8. The area of the plane is divided into 25 imaginary voxels. The incident x-ray beam 12 passes along the fourth row and is shown scattered in voxel 43 into the upper detector 18 and the lower detector 20. The transmitted beam is shown stalking the detector 12.
FIG. 3. A cross section view of the main elements of the invention showing an x-ray machine 31 that generates a raster scanned beam of electrons that strike the anode 33. The electron beam 32 is shown striking the top of the anode 33; the electron beam 34 is shown striking near the mid-point of the anode 33. The electron beam 34 generates x-rays that are collimated into a beam 35 by the collimator 36. The x-ray beam 34 passes through the container 41. Some of the x-ray beam is scattered through approximately 90° into arrays of collimated detectors 42 and 43 that are above and below the container, respectively. The x-ray beam that transmits the container 41 is detected in a segmented detector 38.
FIG. 4. A plot of the ratio of the Compton mass attenuation factor to the total mass attenuation factor as a function of x-ray energy, for oxygen, silicon and iron.
The invention is first described using a monoenergic gamma ray source, in particular the 662 keV gamma ray from the decay of 137 Cs. Other radioactive sources, such as the 356 keV gamma ray from the decay of 133 Ba, or the 1117 keV and 1332 keV gamma rays from 60 Co, or monochromatic x-ray sources might be appropriate for specific applications but 137 Cs is an especially appropriate choice because of its long 30 year half-life, low cost, high specific activity and simplicity of its radiation spectrum.
FIG. 1 shows the essential features of the invention as it might be applied to determining the density distributions of materials in luggage. The 662 keV gamma rays from the radioactive source 1 of 137 Cs, are collimated into a beam 2, which is aimed in the Y direction into the luggage 3. The luggage 3 is conveyed in the X direction, i.e., perpendicular to the direction of the beam 2. The intensity of gamma rays 4 that are Compton scattered through approximately 90° in the ±Z directions are measured in top and bottom detectors 5 and 6. The collimated beam 2 is incrementally moved in the Z direction to an adjacent row of voxels in the slice 8 and the measurements repeated until the x-ray beam has interacted with every voxel in the full YZ slice 8 of the luggage 3. The luggage is then moved incrementally in the X direction and the adjacent slice 9 is investigated. In this way, the entire container is examined. It will be appreciated that any combination of relative motions of the gamma ray beam with respect to the luggage is acceptable, including stationary luggage with all of the relative motion supplied by a raster scanned beam and the converse, a stationary beam with all of the relative motion supplied by a luggage conveyance. It will also be appreciated that the relative motions may be incremental or continuous depending on the application. The central requirement is that every voxel in the volume being interrogated must be traversed at least once by both the incident and scattered radiation. The detectors of scattered radiation 5 and 6 may each be single large volume detectors that have the energy and angle dispersive power to determine both the energy of the Compton scattered radiation and the direction from which it came. Such detectors are being developed with these capabilities, but at this time a more cost-effective solution is to use segment detectors 5 and 6 into arrays of collimated detectors each of which is sensitive to radiation from a particular voxel along the beam 2.
FIG. 2 shows one slice 8 of the luggage imagined to be divided into 5 rows and 5 columns to make a total of 25 voxels. The voxels are numbered sequentially, 11, 12, 13, 14, 15, 21, 22, etc. The 662 keV beam of gamma rays 11 is shown passing along the fourth row, through voxels, 41, 42, 43, 44 and 45 to the transmission detector 21. The gamma rays that are scattered in the voxels of row 4 are counted in the top detector array 13 and the bottom detector array 14 which have appropriate collimators 15 and 16 to ensure that only scatterings through ∼90° are detected. The voxels are assumed to be cubic; in practice, the size of the voxels will depend on the beam cross section, beam divergence and the spatial resolution of the detector arrays. FIG. 2 shows an example of Compton scattered radiation 17 being scattered in the Z direction from pixel 43 into the single detector 18 and another scattering 19 in the -Z direction into detector 20.
The scattering of the 662 keV gamma ray through 90° results in 288 keV radiation. The intensity of the 288 keV signal, I17, in detector 18 is given by: ##EQU1## where Io (662) is the intensity of the incident beam 11, the λ values in the first exponential are the total linear attenuation coefficients for 662 keV radiation, the λ, values in the second exponential term are the total linear attenuation coefficients for the scattered radiation of ∼288 keV, the t values are the linear dimensions of the pixels, and the square bracket term is the probability for Compton scattering in pixel 43. The linear attenuation coefficients are defined in terms of the cross section σ, the atomic weight A, Avogadro's number No, and the density ρ; ##EQU2##
An analogous equation to 1 can be written for the intensity scattered into detector 20; only the last exponential term and the solid angle factor changes. There will be a total of 10 equations describing the scattering from material along row 4 into the segmented detectors in the top 13 and bottom 14 arrays. Each row that the 662 beam traverses will produce 10 more independent equations. A total of 50 equations will be generated in a full scan of the slice 8. An additional 5 equations will be generated by the intensities in the transmission detector 12; the equation for the ray 12-22 shown in FIG. 2 is given by,
I22 (662)=Io (662)e-(8043t41+λ42t42. sup.+λ43t43 t43+λ44t44) 3)
The transmission intensities exampled by Equations 3 are not necessary for solving Equations 1 for the densities in each of the volumes of the container 12, but they give important additional information that can speed up and make more secure the analytic procedures.
In the preferred embodiment using 137 Cs, the interactions in the container are dominated by the Compton effect. FIG. 4 shows that the Compton effect in iron, the heaviest of the materials found in luggage in substantial quantities, accounts for 98% of the interactions for the incoming radiation of 662 keV and 88% of the interactions for the 288 keV scattered radiation. Equations 1, 2 and 3 then simplify enormously since,
λ=λCompton +λphotoeffect +λRayleigh +λpair production ≡λCompton 4
and the differential Compton attenuation ##EQU3## for 90° scattering of 662 keV gamma rays is simply related to the total linear attenuation, ##EQU4##
The consequence of these simplifications, all of which follow from the use of sufficiently high energy photons, is a set of 50 scattering equations and 5 transmission equations that contain just 25 unknowns, the 25 Compton linear attenuation coefficients. Equation 1, for example, becomes, ##EQU5## where all of the unknown quantities in the inspection of a container are total linear Compton attenuation coefficients which depend primarily on the densities in the voxels.
The 50 scattering equations in this example can be rapidly solved by relaxation techniques; it is not necessary to use matrix inversions or convert to frequency space. To emphasize the simplicity we note that the equations describing the interaction of the beam with the top row of voxels of FIG. 2 (voxels 11 through 15) result immediately in the densities of each of the voxels since the scattering from voxel 11 is described by an equation with only 1 unknown, the density of the voxel. The scattering from voxel 12 is described by an equation with only 2 unknowns, one of which has been determined from the scattering from voxel 11, and so forth. Thus a series of simple iterations results in the linear Compton attenuation values for all of the voxels. In practice, one would use the values of the 50 intensifies of scattered radiation and 5 intensities of transmitted radiation to determine a first-order map of the λ values in the 50 voxels and then use mathematical relaxation techniques to obtain a best set of density values. It should be noted that the method results in at least twice as many independent equations as the minimum required for a full tomographic analysis. These extra equations, plus the transmission equations 3, can be used to make the corrections to the scattering equations, such as Equation 6, to take into account small contributions of photo-electric absorption or coherent scattering that are present when the voxels contain higher Z material.
The linear Compton attenuation coefficients are directly proportional to the electron densities in the voxels; i.e., Equation 2 simplifies to Equation 8. ##EQU6## where σe, the Compton scattering per electron, is a constant, and Z is the number of electrons per atom. The electron densities are, in turn, very closely related to the matter densities since, for most materials in luggage, Z/A≡0.5. (The avenge value of Z/A for plastics, explosives and other light materials is a few percent greater than 0.5; Z/A for heavier materials such as iron are a few percent less.)
It is anticipated that the invention will usually be implemented using a spectrum of x-rays generated by an electron beam, The source of the x-rays could be a conventional x-ray tube with a fixed electron beam striking a fixed or rotating anode. Our preferred embodiment uses a raster scanned electron beam shown schematically in FIG. 3. The x-rays are generated in a x-ray tube 31, which produces a raster-scanned beam of x-rays by scanning the electron beam 32 and placing an appropriate collimator 36 in front of the anode 33. The x-ray tube 31 is similar to a conventional cathode ray tube with an appropriate heavy element anode 33 replacing the traditional phosphor screen. As the electron beam sweeps across the anode 33, x-rays are generated that pass through successive parallel holes in the collimator 36. The result is a rastering of approximately parallel beams of x-rays through the container 41. The anode potential determines the maximum energy of the x-ray beams. An absorber 37 eliminates the softer components of the x-ray beam and determines the effective lower energy of the x-rays that interact in the container.
It should be emphasized that the choice of anode voltage and x-ray strength depends on the application. Large containers might warrant anode voltages as high as 2 MeV (pair production is still negligible at this energy) in order to produce sufficiently penetrating x-rays, while small containers with primarily low Z components might be studied effectively with x-ray energies below 150 keV.
A practical choice of parameters for scanning airport luggage would be an anode potential of 450 keV and an electron current of 4 milliamps. The length of the anode 33 might be 20", i.e., about the height of the anode of a 30" TV tube; a power density of 2 kilowatts is easily handled by modest cooling of the large-area. The collimator 36 might be a set of parallel holes in a 4" thick lead block (attenuation by the lead>1010). The holes should be appropriately designed to minimize internal scattering in the collimator. The absorber 37 might be 1 mm of tungsten that would reduce the 300 keV x-rays by a factor of ∼2 while killing 100 keV components by factors of 104.
Above and below the container are detectors or detector arrays 42 and 43, respectively that measures the scattered x-rays 46 as a function of position of scattering along the beam direction. To do this, we propose to use collimating slits 44 and 45 such as the Soller plates used extensively in x-ray diffraction. These slits restrict the direction of x-rays seen by the detector; their function is similar to the collimators used in Single Photon Emission Tomography (SPECT) in which the origins of the emission of gamma rays from radioactive sources is determined by the SPECT detector. Many options are available for the detectors including the hodoscopes of NaI(TI), BGO and CdZnTe now used for SPECT and Positron Emission Tomography.
Equations 1 and 3 must now be written in terms of weighted integrals over the energy spectra. Exact expressions can be taken into account in the analysis, though we anticipate that in most practical cases it will be sufficient to use appropriate averages of the incident and scattered energies as well as the differential and integral linear attenuation coefficients in Equations 1 and 3, since the Compton cross sections vary slowly with energy, atomic number, and scattering angle around 90°. Specifically, for elements from carbon to iron, the total Compton cross section varies by only 25% from 150 keV to 450 keV; for a given x-ray energy, it varies by only 10%. Moreover, the differential Compton cross section is almost independent of angle from 80° to 110°. It should also be noted that beam hardening--the changing energy spectrum in the container due to absorption--will not be significant when the invention is applied to airline baggage since the high energies of the incident beam are not much attenuated traversing an airline suitcase.
We have carded out computer simulation studies, assuming a rastered x-ray beam with dimensions 5 mm×5 mm generated by a 2 kilowatt, 450 keV electron beam. We estimate that efficient side scattered detectors can determine the origin of the scattered x-rays to within 2 cm along the beam path. (Note that SPECT hodoscopes of 150 keV radiation have spatial resolutions of approximately 0.5 cm.) Each voxel thus has a volume of 0.5 cc so that 100 grams of explosives would occupy about 300 voxels. The simulation studies show that the interrogation of a piece of luggage, 1 meter×60 cm×20 cm can be carried out in 6 seconds, resulting in the determination of the linear attention coefficients of each voxel in the luggage to an accuracy of 30%. The mean values of the densities of any contiguous 300 voxels (∼100 g of explosives) would then be known to an accuracy of 2%. The simulation studies show that CST should have a minimum detection limit below 100 g of explosives.
It should also be noted that the CST method of tomographic analysis is very effective for finding sheet bombs, one of the most difficult of the explosive configurations to investigate by x-ray means.
A logical extension of the invention is to make scattering measurements at two incident energies, one at the preferred high energy where the Compton effect is dominant and the other at a lower energy where the photo-electric effect makes a substantial contribution to the interactions of the x-rays in those voxels with high Z components. This so-called dual-energy method is well know for transmission tomography where it is used to determine the effective atomic number of the elements in the voxels and we anticipate that the dual energy method could have applications in which the measurement of the effective atomic number of the voxels as well as the density is important. Referring to FIG. 4, one might choose a high x-ray energy greater than 300 keV where the Compton effect is more than 90% of the total interaction in iron, and a low energy x-ray in the 100 keV range where the photo-electric effect makes up about 80% of the cross section in iron. Dual energy, however, is not so easily applied to CST where the scattered radiation is substantially lower than the incident energy; e.g., the energy of Compton scattered 300 keV x-ray is 188 keV, and the energy of the Compton scattered 100 keV x-ray is 83 keV. The change in the energy in the former case makes only a minor, and easily accounted for, complication to the analysis. The change in the latter case is not so easily taken into account since small changes in the scattered energy make large changes in the attenuation coefficients. The effects of beam hardening--that is, the increase in the average energy of the beam as the lower energy components become absorbed in the container--are very difficult to take into account. Nevertheless, there may be applications for this extension, particularly when only a relatively few voxels contain high Z material.
The invention stresses that the incident beams should be rastered across the container in approximately parallel paths and that the detected radiation should be limited to those x-rays that are scattered approximately perpendicular to the incident beam direction. The allowable deviations from these conditions depend on the applications. For all applications we expect that the deviations can be at least ±20°, since the cos 20° deviates by only 6% from unity. For some applications, especially those in which the high density regions make up a small portion of the container, the deviations from ideal could be considerably larger. Simulation studies indicate that the CST method is robust with respect to deviations from parallel beams and 90° scattering but that the closer the rastered beams are to being parallel, and the closer the scatter angle of detected rays are to 90°, the simpler and more accurate will be the analytic tomographic procedures for determining the densities.
Grodzins, Lee, Parson, Charles G.
Patent | Priority | Assignee | Title |
10007019, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
10098214, | May 20 2008 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
10134254, | Nov 25 2014 | Rapiscan Systems, Inc | Intelligent security management system |
10261212, | Jul 25 2013 | Analogic Corporation | Generation of diffraction signature of item within object |
10317566, | Jan 31 2013 | Rapiscan Systems, Inc. | Portable security inspection system |
10408967, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
10605750, | Jul 22 2014 | The Boeing Company | Visible X-ray indication and detection system for X-ray backscatter applications |
10670769, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
10713914, | Nov 25 2014 | Rapiscan Systems, Inc. | Intelligent security management system |
10720300, | Sep 30 2016 | AMERICAN SCIENCE AND ENGINEERING, INC | X-ray source for 2D scanning beam imaging |
10746674, | Feb 03 2012 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
10901113, | Mar 20 2015 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
10942291, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
10976465, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Two-sided, multi-energy imaging system and method for the inspection of cargo |
11143783, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Four-sided imaging system and method for detection of contraband |
11175245, | Jun 15 2020 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter X-ray imaging with adaptive scanning beam intensity |
11280898, | Mar 07 2014 | Rapiscan Systems, Inc | Radar-based baggage and parcel inspection systems |
11300703, | Mar 20 2015 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
11307325, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
11340361, | Nov 23 2020 | AMERICAN SCIENCE AND ENGINEERING, INC | Wireless transmission detector panel for an X-ray scanner |
11371948, | Feb 03 2012 | Rapiscan Systems, Inc. | Multi-view imaging system |
11525930, | Jun 20 2018 | American Science and Engineering, Inc. | Wavelength-shifting sheet-coupled scintillation detectors |
11550077, | Jan 31 2013 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
11561320, | Mar 20 2015 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
11579327, | Feb 14 2012 | American Science and Engineering, Inc. | Handheld backscatter imaging systems with primary and secondary detector arrays |
11726218, | Nov 23 2020 | American Science arid Engineering, Inc. | Methods and systems for synchronizing backscatter signals and wireless transmission signals in x-ray scanning |
11822041, | Feb 08 2011 | Rapiscan Systems, Inc. | Systems and methods for improved atomic-number based material discrimination |
5930326, | Jul 17 1996 | AMERICAN SCIENCE AND ENGINEERING, INC | Side scatter tomography system |
6026171, | Feb 11 1998 | Analogic Corporation | Apparatus and method for detection of liquids in computed tomography data |
6111974, | Feb 11 1998 | Analogic Corporation | Apparatus and method for detecting sheet objects in computed tomography data |
6249567, | Dec 01 1998 | AMERICAN SCIENCE AND ENGINEERING, INC | X-ray back scatter imaging system for undercarriage inspection |
6256404, | Oct 10 1997 | Analogic Corporation | Computed tomography scanning apparatus and method using adaptive reconstruction window |
6282260, | Dec 14 1998 | AMERICAN SCIENCE AND ENGINEERING, INC | Unilateral hand-held x-ray inspection apparatus |
6421420, | Dec 01 1998 | AMERICAN SCIENCE AND ENGINEERING, INC | Method and apparatus for generating sequential beams of penetrating radiation |
6442233, | Jun 18 1998 | AMERICAN SCIENCE AND ENGINEERING, INC | Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection |
6542574, | Dec 01 1998 | American Science and Engineering, Inc. | System for inspecting the contents of a container |
6556653, | May 25 2000 | NEW BRUNSWICK, UNIVERSITY OF | Non-rotating X-ray system for three-dimensional, three-parameter imaging |
6563906, | Aug 28 2000 | University of New Brunswick | X-ray compton scattering density measurement at a point within an object |
6621888, | Jun 18 1998 | AMERICAN SCIENCE AND ENGINEERING, INC | X-ray inspection by coherent-scattering from variably disposed scatterers identified as suspect objects |
6754304, | Feb 11 2000 | Method for obtaining a picture of the internal structure of an object using x-ray radiation and device for the implementation thereof | |
6839402, | Feb 05 2002 | Kimberly-Clark Worldwide, Inc | Method and apparatus for examining absorbent articles |
6879657, | May 10 2002 | GE Medical Systems Global Technology, LLC; GE Medical Systems Global Technology Company, LLC | Computed tomography system with integrated scatter detectors |
7023950, | Feb 11 2004 | Method and apparatus for determining the position of an x-ray cone beam produced by a scanning electron beam | |
7034310, | Feb 02 1996 | NOVA R&D, INC | Method and apparatus for radiation detection |
7060983, | Feb 02 1996 | NOVA R&D, INC | Method and apparatus for radiation detection |
7103137, | Jul 24 2002 | VAREX IMAGING CORPORATION | Radiation scanning of objects for contraband |
7162005, | Jul 19 2002 | VAREX IMAGING CORPORATION | Radiation sources and compact radiation scanning systems |
7203276, | Aug 27 2004 | University of New Brunswick | X-ray scatter image reconstruction by balancing of discrepancies between detector responses, and apparatus therefor |
7257188, | Mar 01 2004 | VAREX IMAGING CORPORATION | Dual energy radiation scanning of contents of an object |
7356115, | Dec 04 2002 | VAREX IMAGING CORPORATION | Radiation scanning units including a movable platform |
7369640, | Jul 24 2002 | VAREX IMAGING CORPORATION | Radiation scanning of objects for contraband |
7400701, | Apr 09 2004 | AMERICAN SCIENCE AND ENGINEERING, INC | Backscatter inspection portal |
7423273, | Mar 01 2004 | VAREX IMAGING CORPORATION | Object examination by delayed neutrons |
7477725, | Nov 11 2003 | KONINKLIJKE PHILIPS ELECTRONICS, N V | Computed examination of an object by using coherent-scattered radiation |
7505562, | Apr 21 2006 | AMERICAN SCIENCE AND ENGINEERING, INC | X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams |
7551709, | May 28 2003 | Koninklijke Philips Electronics N V | Fan-beam coherent-scatter computer tomography |
7551718, | Aug 23 2006 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter attenuation tomography |
7566879, | Feb 02 1996 | NOVA R&D, INC | Method and apparatus for radiation detection |
7573039, | Mar 13 2007 | Compton camera configuration and imaging method | |
7593506, | Apr 09 2004 | American Science and Engineering, Inc. | Backscatter inspection portal |
7636417, | Mar 01 2004 | VAREX IMAGING CORPORATION | Dual energy radiation scanning of contents of an object |
7672422, | Jul 24 2002 | VAREX IMAGING CORPORATION | Radiation scanning of objects for contraband |
7672426, | Dec 04 2002 | VAREX IMAGING CORPORATION | Radiation scanning units with reduced detector requirements |
7796734, | Apr 09 2004 | AMERICAN SCIENCE AND ENGINEERING, INC | Multiple image collection and synthesis for personnel screening |
7809109, | Apr 09 2004 | AMERICAN SCIENCE AND ENGINEERING, INC | Multiple image collection and synthesis for personnel screening |
7924979, | Aug 23 2006 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter attenuation tomography |
7929664, | Feb 13 2007 | Sentinel Scanning Corporation | CT scanning and contraband detection |
8000436, | Jul 24 2002 | Varian Medical Systems, Inc | Radiation scanning units including a movable platform |
8137976, | Jul 12 2006 | VAREX IMAGING CORPORATION | Dual angle radiation scanning of objects |
8254517, | Feb 13 2007 | Sentinel Scanning Corporation | CT scanning and contraband detection |
8263938, | Mar 01 2004 | VAREX IMAGING CORPORATION | Dual energy radiation scanning of objects |
8340245, | Jun 05 2009 | Sentinel Scanning Corporation | Transportation container inspection system and method |
8345819, | Jul 29 2009 | American Science and Engineering, Inc. | Top-down X-ray inspection trailer |
8515011, | Jun 02 2009 | Mayo Foundation for Medical Education and Research | System and method for dose verification radiotherapy |
8551785, | Jul 12 2006 | VAREX IMAGING CORPORATION | Dual angle radiation scanning of objects |
8576982, | Feb 01 2008 | Rapiscan Systems, Inc | Personnel screening system |
8576989, | Mar 14 2010 | Rapiscan Systems, Inc | Beam forming apparatus |
8605859, | Apr 19 2007 | American Science and Engineering, Inc. | Multiple image collection and synthesis for personnel screening |
8824632, | Jul 29 2009 | AMERICAN SCIENCE AND ENGINEERING, INC | Backscatter X-ray inspection van with top-down imaging |
8837670, | May 05 2006 | Rapiscan Systems, Inc. | Cargo inspection system |
8842808, | Aug 11 2006 | American Science and Engineering, Inc. | Scatter attenuation tomography using a monochromatic radiation source |
8908831, | Feb 08 2011 | Rapiscan Systems, Inc | Covert surveillance using multi-modality sensing |
8929509, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Four-sided imaging system and method for detection of contraband |
8995619, | Mar 14 2010 | Rapiscan Systems, Inc | Personnel screening system |
9020100, | Apr 19 2007 | Rapiscan Systems, Inc | Multiple image collection and synthesis for personnel screening |
9052403, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
9057679, | Feb 03 2012 | Rapiscan Systems, Inc | Combined scatter and transmission multi-view imaging system |
9058909, | Mar 14 2010 | Rapiscan Systems, Inc. | Beam forming apparatus |
9091628, | Dec 21 2012 | L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC | 3D mapping with two orthogonal imaging views |
9182516, | Feb 01 2007 | Rapiscan Systems, Inc. | Personnel screening system |
9218933, | Jun 09 2011 | Rapiscan Systems, Inc | Low-dose radiographic imaging system |
9223049, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
9223050, | Apr 15 2005 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
9250200, | Aug 15 2011 | MERCURY MISSION SYSTEMS, LLC | Compton tomography system |
9279901, | May 05 2006 | Rapiscan Systems, Inc. | Cargo inspection system |
9285325, | Feb 01 2007 | Rapiscan Systems, Inc. | Personnel screening system |
9285498, | Jun 20 2003 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
9291741, | Feb 01 2007 | Rapiscan Systems, Inc. | Personnel screening system |
9332624, | May 20 2008 | Rapiscan Systems, Inc. | Gantry scanner systems |
9557427, | Jan 08 2014 | Rapiscan Systems, Inc | Thin gap chamber neutron detectors |
9562866, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
9594033, | Jul 22 2014 | The Boeing Company | Visible X-ray indication and detection system for X-ray backscatter applications |
9625606, | Oct 16 2013 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
9632205, | Feb 08 2011 | Rapiscan Systems, Inc | Covert surveillance using multi-modality sensing |
9791590, | Jan 31 2013 | Rapiscan Systems, Inc.; Rapiscan Systems, Inc | Portable security inspection system |
9823201, | Feb 03 2012 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
9891314, | Mar 07 2014 | Rapiscan Systems, Inc | Ultra wide band detectors |
9958569, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Mobile imaging system and method for detection of contraband |
Patent | Priority | Assignee | Title |
5179581, | Sep 13 1989 | AMERICAN SCIENCE AND ENGINEERING, INC A CORP OF MASSACHUSETTS | Automatic threat detection based on illumination by penetrating radiant energy |
5420905, | Aug 15 1990 | Massachusetts Institute of Technology | Detection of explosives and other materials using resonance fluorescence, resonance absorption, and other electromagnetic processes with bremsstrahlung radiation |
5430787, | Dec 03 1992 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF COMMERCE | Compton scattering tomography |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 24 1999 | GRODZINS, LEE | AMERICAN SCIENCE AMD ENGINEERING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009996 | /0109 | |
May 24 1999 | PARSONS, CHARLES G | AMERICAN SCIENCE AMD ENGINEERING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009996 | /0109 | |
Nov 30 2000 | AMERICAN SCIENCE AND ENGINEERING, INC | EXPORT-IMPORT BANK OF THE UNITED STATES | SECURITY AGREEMENT | 011277 | /0608 | |
Aug 11 2003 | AMERICAN SCIENCE AND ENGINEERING, INC | SILICON VALLEY BANK DBA SILICON VALLEY EAST | SEURITY AGREEMENT | 014007 | /0604 | |
Nov 18 2009 | Silicon Valley Bank | AMERICAN SCIENCE AND ENGINEERING, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 023556 | /0062 |
Date | Maintenance Fee Events |
May 09 2001 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Dec 09 2000 | 4 years fee payment window open |
Jun 09 2001 | 6 months grace period start (w surcharge) |
Dec 09 2001 | patent expiry (for year 4) |
Dec 09 2003 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 09 2004 | 8 years fee payment window open |
Jun 09 2005 | 6 months grace period start (w surcharge) |
Dec 09 2005 | patent expiry (for year 8) |
Dec 09 2007 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 09 2008 | 12 years fee payment window open |
Jun 09 2009 | 6 months grace period start (w surcharge) |
Dec 09 2009 | patent expiry (for year 12) |
Dec 09 2011 | 2 years to revive unintentionally abandoned end. (for year 12) |