An aerial enclosure for use in distributing above ground fiber optic communications signals from a signal source such as a central office to a customer site. The enclosure has first and second enclosure segments that can be separated to expose an enclosure interior where a termination panel is mounted that includes a row of terminal contact pairs to which copper cables are connected for routing conventional telecommunications signals away from the enclosure interior to a customer site. The enclosure includes a communications subsystem mounted within the enclosure having a first fiber optic portion for routing outgoing light signals to an optical network unit outside the enclosure for conversion to electrical signals. A copper portion of the communications subsystem incoming telecommunications signals back into the enclosure where they are redistributed from one or more of the plurality of terminal contact pairs by copper cables to one or more customer sites. A splice connection between a fiber optic strand from an overhead cable is spliced to the first fiber optic portion of the communications subsystem and then positioned within a splice enclosure for environmentally sealing the splice within the aerial enclosure.

Patent
   5696864
Priority
Sep 18 1996
Filed
Sep 18 1996
Issued
Dec 09 1997
Expiry
Sep 18 2016
Assg.orig
Entity
Large
64
39
EXPIRED
9. A method for use in tapping into an above ground communications transmission cable having multiple fiber optic strands comprising the steps of:
a) providing an enclosure having first and second enclosure portions that open to expose an enclosure interior;
b) supporting a termination panel within the enclosure interior that includes a plurality of terminal contact pairs to which communications cables are connected for routing communications signals away from the enclosure interior to a customer site;
c) supporting the enclosure by connecting the enclosure to the above ground communications transmission cable;
d) tapping a portion of the communications signals transmitted through the communications transmission cable by cutting into one fiber optic strand carried by the cable and routing the one strand into the enclosure;
e) splicing the one strand to a second fiber optic strand for routing communications signals transmitted by the one strand away from the enclosure;
f) converting communications signals transmitted by the one strand into a second type of communications signal and routing the second type of communications signal back into the enclosure; and
g) coupling said second signals to one or more sets of the terminal contact pairs within the enclosure for transmission to one or more subscriber locations outside the enclosure.
1. An aerial enclosure for use in distributing above ground communications signals from a signal source to a customer site comprising:
a) a housing having first and second housing segments that can be opened to expose a housing interior;
b) a separation panel mounted to the housing within a housing interior and including a plurality of terminal contact pairs to which communications cables are connected for routing signals away from the housing interior to a customer site;
c) a support for positioning the housing for receipt of communications signals originating at the signal source;
d) a communications subsystem having a first transmission segment for routing communications signals of a first type originating from the signal source away from the enclosure to a location outside the housing for conversion to a second type of signal, said subsystem having a second transmission segment for routing communications signals of the second type back into the housing to the separation panel for distribution to a customer site through one or more of the plurality of terminal contact pairs by means of the communications cables leading to one or more customer sites; and
e) structure for coupling signals from the signal source of the first type to the first transmission segment of the communications subsystem for conversion to signals of the second type.
12. An aerial enclosure for use in distributing above ground fiber optic communications signals transmitted on an overhead fiber optic cable that extend from a central office to a telecommunications customer site comprising:
a) housing structure including:
i) first and second housing panels that can be opened to expose a housing interior and including end walls that define access openings for routing communication cables into said housing interior;
ii) a support panel having closure latches that engage the first and second housing panels to allow the first and second housing panels to be opened and closed to access a housing interior; and
iii) a hanger coupled to the support panel for positioning the housing for receipt of fiber optic signals originating at the central office;
b) a separation panel mounted to the housing structure within a housing interior and including a plurality of terminal contact pairs to which communications cables are connected for routing signals away from the housing interior to a customer site;
c) a communications subsystem including:
i) a first fiber optic transmission segment for routing fiber optic light signals from the central office that enter the housing interior through the overhead fiber optic cable through the access openings away from the enclosure to a converter located outside the housing for conversion to electrical signals, and ii) a second electrical conductor transmission segment for routing electrical signals from the converter back into the housing to the separation panel for distribution to a customer site through one or more of the plurality of terminal contact pairs; and
d) splice structure for coupling signals from the central office to the first fiber optic transmission segment of the communications subsystem including a splice housing coupled to the separation panel for enclosing a splice connection and including elastomeric entry defining grommet means for sealing the one or more fiber optic strands extracted from the overhead fiber optic cable at an entry location of the splice housing and for sealing the first fiber optic transmission segment at an exit location from the splice housing.
2. The apparatus of claim 1 wherein the signal source is coupled to a plurality of fiber optic strands and wherein the structure for coupling signals comprises means for splicing or joining one or more fiber optic strands to a second set of one or more fiber optic strands that forms a part of the first transmission segment of the communications subsystem.
3. The apparatus of claim 2 wherein the means for splicing comprises a splice housing mounted to the separation panel that encloses a splice connection between the one or more fiber optic strands and the second set of one or more fiber optic strands.
4. The apparatus of claim 3 wherein the splice housing has a removable lid and sidewalls that define at least two gaps to allow the one or more fiber optic strands to be routed into the splice housing and to allow the one or more fiber optic strands of the second set of fiber optic strands to be routed away from the splice housing.
5. The apparatus of claim 4 wherein an inner portion of each of the at least two gaps is bounded by elastomeric grommet.
6. The apparatus of claim 5 wherein each elastomeric grommet has a hole through which one or more fiber optic strands are inserted prior to splicing together the fiber optic strands.
7. The apparatus of claim 1 wherein the communications subsystem comprises co-axial cable for delivering video signals.
8. The apparatus of claim 1 wherein the communications subsystem comprises means for transmitting radio frequency signals.
10. The method of claim 9 wherein subsequent to the splicing step a splice connection between the one strand and the second fiber optic strand is positioned within a second enclosure for environmentally shielding the splice connection.
11. The method of claim 9 wherein prior to splicing the fiber optic cables each cable is inserted through an elastomeric grommet and after splicing the grommet is inserted into walls of a splice enclosure to seal the splice connection within said splice enclosure.

The present invention concerns an aerial enclosure for enclosing splice connections used to tap into a communications line such as a telephone communications line.

Telephone communications is presently accomplished in most parts of the United States by routing overhead copper cable from a central office to a customer site. The overhead cable that is routed away from the central office is made up of many strands that are bundled together and supported by a support strand that is strung from one telephone pole to the next along a street or highway. In certain areas of the country fiber optic cable is being used to deliver telephone communications signals. The fiber optic cable tends to be used in more populous areas since a higher concentration of signals can be routed through the fiber optic cable than through the copper cable.

Splicing of telecommunications cables is commonly performed both during installation of the cable and when tapping into the cable to service a customer site. As the cable is initially installed, a splice is required at each end of the cable to a next subsequent and immediately previous cable. This type of splice is performed at both ends of the cable as the cable is installed. Cable splicing is also required to form a branch or drop connection from the main cable to a particular subdivision, facility or customer. If the cable that is being tapped into is copper, one strand is cut into and the drop or branch cable is spliced to the cut strand and routed to the customer site.

U.S. Pat. Nos. 5,322,973 and 4,721,830 concern aerial enclosures for protecting an electrical or optical cable splice connections. The disclosure of these two patents is incorporated herein by reference. The aerial enclosures disclosed in the '973 and the '830 patents house a splice connection and also provide termination posts to which multiple sets of drop cables are connected for routing signals to different locations in the vicinity of the enclosure.

When copper cable is used for signal transmission both from the central office to the aerial enclosure and from the enclosure to the customer site, a simple splice connection is made within the aerial enclosure. When the drop connection requires a conversion from the light communications signals that are transmitted through the fiber to electrical signals for transmission through copper, however, a simple splice is not possible.

Optical network units (ONU's) are known that include circuitry to convert the light signals transmitted from the central office to suitable electric signals that can be coupled to the customer site. The ONU receives an optical signal on an ONU fiber optic cable and converts the signal to an electric signal for transmission along a conductor output from the ONU. Use of the ONU requires that a first splice be performed to access the signals from the optical strand from the central office and a second splice to couple electric signals from the ONU to conductors that can then be routed to the customer site.

The present invention concerns an aerial enclosure for distributing above ground communications signals from a signal source such as a central office to a customer site. The aerial enclosure includes a housing having first and second housing segments that can be separated to expose a housing interior. A separation panel is mounted within the housing interior and supports a number of terminal contact pairs to which communications cables are connected for routing signals away from the enclosure interior to one or more customer sites. A support strand positions the housing relative to a communications delivery system that delivers communications signals from the signal source. The structure and method of the invention allow signals from the delivery system to be taken from the communications delivery system and delivered to individual customers.

A communications subsystem mounted within the aerial enclosure has a first communications signal transmission portion for routing outgoing communications signals of a first type transmitted from the signal source away from the enclosure to a location outside the enclosure. At the location outside the housing the signal is converted into a second type communications signal suitable for delivery to a customer site. The communications subsystem includes a second communications signal transmission portion for muting incoming communications signals of the second type back to the separation panel for distribution to a customer site. Signals coupled to the terminal contact pairs route the second type of signal through communications cables leading away from the enclosure to customer sites.

Within the housing signals from the communications delivery system that are of the first type are coupled to the first transmission portion of the communications subsystem for conversion to signals of the second type outside the enclosure. In accordance with one embodiment of the present invention, the communications delivery system includes a bundle of fiber optic overhead cables and the enclosure is mounted to a support strand that also supports the bundle of cables. In this embodiment, the light signals passing through the optical fiber are converted to electrical signals by an ONU outside the aerial enclosure. One housing accomplishes both splicing and distribution.

According to another aspect of the present invention the splice connection between a fiber optic cable from the overhead bundle and a fiber optic cable that forms a part of the subsystem is performed and the splice is then placed within a splice housing inside the aerial enclosure housing. This splice housing provides a degree of environmental sealing so that water seeping into the aerial enclosure will not affect the splice connection. Additionally, the splice housing shields the fiber optic splice connection from possible damage due to vibration and contact with installers making connections to the terminal support after initial installation of the enclosure.

These and other objects, advantages, and features of the invention will become better understood from a review of a description of a preferred embodiment of the invention which is described in conjunction with the accompanying drawings.

FIG. 1 is a perspective view of an aerial enclosure and telecommunications cable mounted to a support strand that extends between spaced apart telephone poles for routing communications cabling to a customer;

FIG. 2 is a section view of an aerial enclosure constructed in accordance with the present invention;

FIG. 3 is a perspective view of a separation panel that is mounted within the aerial enclosure of FIG. 2;

FIG. 4 is a plan view of the separation panel on a side of the separation panel where a fiber optic splice is performed;

FIG. 5 is a plan view of a side of the separation panel opposite to the side depicted in FIG. 4;

FIG. 6 is a end elevation view of an aerial enclosure installation site including a splice table supported by the same support strand shown in FIG. 1;

FIG. 7 is a front elevation view showing the splice table and wiring connections inside the aerial enclosure;

FIG. 8 is a perspective view of a top segment of the aerial enclosure and one side segment of the enclosure;

FIG. 9 is a elevation view of the one side segment depicted in FIG. 8;

FIG. 10 is a bottom plan view of the one side segment depicted in FIG. 8;

FIG. 11 is an end elevation view of the one side segment depicted in FIG. 8;

FIG. 12 is a perspective view of a splice housing that is supported inside the aerial enclosure;

FIG. 12A is an enlarged perspective view of a portion of a sidewall of the splice housing;

FIG. 13 is a perspective view of a splice housing cover; and

FIGS. 14A and 14B illustrate in a schematic manner other communications arrangements for use with the present invention.

Turning to the drawings, FIG. 1 depicts an aerial enclosure 10 for use in distributing above ground communications signals from a signal source to a customer site. The enclosure 10 is supported by a support strand 12 that is attached to spaced apart telephone poles 14, one of which is shown in FIG. 1. The strand 12 supports a power cable 16 and a communications cable 18 which are attached to the strand 12 by means of spacers 20 extending downward from the strand 12 to the power cable 16. Cable supports 21 connect the power and communications cables 16, 18 together.

The strand 12 also supports an optical network unit 23 (ONU) at a location a short distance from the enclosure 10. The optical network unit 23 includes circuitry for converting optical signals carried by the cable 18 into electrical signals for delivery to a customer site in proximity to the aerial enclosure 10. The optical network unit 23 is installed by the telephone company and typically produced by the telephone company. One example of an end user of such a unit 23 are the Regional Bell Operating Companies (RBOCS). The ONU 23 shown in FIG. 1 is supported by a pair of clamps 22 attached to a spacer 24 that defines a throughpassage 26 for allowing the two cables 16, 18 to pass the ONU 23.

The aerial enclosure 10 includes a housing having first and second molded plastic housing side segments or panels 40a, 40b (FIG. 2) connected together by an elongated hinge 42 that extends along a bottom of the housing. The hinge 42 allows the two side segments or panels 40a, 40b to be pivoted with respect to each other to allow access to an elongated housing interior. The housing interior is closed at its top (opposite the hinge) by a support panel 50.

A metal separation panel 44 is oriented vertically within the housing interior approximately midway between the two panels 40a, 40b and connected to the support panel. The separation panel 44 supports a copper termination assembly 45 that includes an array of twenty five termination posts. This array is divided into two rows 46a, 46b of contact posts so that a pair of contacts is made up of one contact from the top row 46a and an associated contact from the row 46b.

To convey communications signals to one or more customer sites, one or more communications cables 52 are connected to these termination posts. These cables 52 are routed through openings 54 in a bottom section 60 of one housing side panel 40a. By opening the enclosure and making the proper connections to the contact pairs an installer can provide service to a customer site either at the time of installation of the enclosure 10 or subsequent to such installation.

As seen in FIG. 1, the enclosure is supported by two hangers 62, 64 that position the housing relative to the pole 14. The enclosure is most preferably mounted within a few feet of the telephone pole 14. FIG. 1 shows the enclosure 10 after splicing connections to the cables 16, 18. Prior to mounting the enclosure, the two cables 16, 18 extend through the passageway of the ONU's spacer 24 and extend through the region occupied by the enclosure in FIG. 1 to the telephone pole 14. Once the enclosure is attached to the support strand 12, the cables are spliced by a person standing on a support many feet above the ground using a special splice table or tray 66 depicted in FIGS. 6 and 7. The table 66 is suspended from the strand 12 by cables 67 at both ends of the tray 66 and by a hanger 68 attached to the middle of the tray 67.

The enclosure 10 has two latches 72, 73 attached to the housing's support panel 50 by connectors 51 that also connect the separation panel 44 to the support panel 50. The latches 72, 73 engage corresponding tabs 74, 75 on the side panels 40a, 40b. One or the other or both of the side segments can be detached from the top segment 50 and pivoted downward out of the way during installation of the enclosure to expose the housing interior. If both panels 40a, 40b are detached from the support panel, a tether (not shown) prevents the panels from falling away from the installer to the ground.

The housing interior is roughly divided into two equally sized spaces by the separation panel 44. Two groupings of three endcaps 76a, 76b, 76c and 78a, 78b, 78c are attached to the separation panel 44. With the side portions 40a, 40b attached to the top portion 50 these endcaps extend through openings 80 in end walls 82, 84 of the enclosure 10 defined by the side panels 40a, 40b. As depicted in the perspective view of FIG. 3 each of these end caps are split along their length so they can be separated into two generally equal halves. One half remains connected to the separation panel 44 and a second half is removed to allow cabling to be routed through the endcap. With one half of the end cap removed, the cables 16, 18 fit into a semicircular channel or slot 86 of the endcap portion that remains attached to the separation panel 44. After fitting the cable within this channel, the segmented part of the end cap that was removed is replaced. In this way, the cables 16, 18 can be routed next to the separation panel 44 on a splice side S of the panel. Splicing is most preferably accomplished with both the side panels pivoted out of the way, but may also be accomplished with only the panel 40a covering the splice side S pivoted down away from the support panel 50.

Within the enclosure, a communications subsystem for tapping into the cable 18 includes a first transmission cable 110 for routing outgoing communications signals of a first type transmitted from the central office from a splice connection C within the enclosure 10 outside the enclosure to the ONU 23. Circuitry within the ONU converts the first type signal to an electrical signal of a second type and routes this second type signal back into the enclosure through a second transmission cable 112.

As seen most clearly in FIG. 7 the second transmission cable 112 enters the enclosure through the endcap 76b by which the cable 110 exits the enclosure. Inside the enclosure 10 an outer insulator of the cable is removed to expose a plurality of individual insulated wires 114 which are coupled to a wiring harness 116 by an electrical connector 118. The wires that make up the wiring harness 116 pass through an opening 117 in the separation panel 44 to the other side of the panel having the termination assembly 45 of contact posts. The wiring harness is assembled in advance and the wires are connected to the contacts through surge suppression devices D mounted to the contact assembly above the two rows of contacts 46a, 46b. Incoming signals from the central office are thus converted and made available within the enclosure for routing to the customer sites by means of the cables 52. Within the enclosure 10 an outer insulator is removed from the power cable 16 and power is spliced from the individual insulated conductors of the cable 16. A splice power cable is connected to an endmost pair P of the termination assembly 45.

A splice housing 120 is mounted to the separation panel 44 inside the enclosure 10. The splice housing 120 provides a secure environment for the splice connection C to maintain reliable transmission of optical signals received from the central office to the cable 110 which routes signals to the ONU 23 for conversion to electrical signals. To access the optical signals of the first type sent from the central office, an installer must first extract one or more strands 122 of the multiple strands 124 contained within the cable 18. An outer jacket of insulating material is removed from the cable 18 to expose the strands 124 with the cable and one or more strands 122 are pulled from the cable 18 and cut to form a splice end. Cable downstream from the enclosure 10 that is originally connected to the strand or strands 122 is now isolated from the central office and no signal is present within these strands. The strands 124 of the cable passing through the enclosure are supported by a channel forming base 128 of the separation panel 44.

Using the splice tray 67 and a cable splicer 130 supported by the tray 67, the installer forms a splice connection C between the cut end of the strand or strands 122 and the strands 126 that extend out of the end of the cable 110. A suitable splice tray and cable splicer can be purchased from Communications Technology Corp. Of Atlanta, Ga., assignee of the present invention.

The splice housing is secured to the separation panel 44 by means of connectors 150, 151 that extend through a generally planar surface 152 of the separation panel 44. Two channel defining fingers 154, 156 are integral with a back wall 158 of the splice housing 120 that rests against the planar surface 152. These fingers define two channels 160, 162 which allow the housing 120 to be oriented in either of two orientations and slid along the panel 44 to a desired position. The splice housing 120 is then fixed by tightening the two connectors 150, 151.

The housing has four side walls 164-167 that define a rectangular interior bounded by the back wall 158. Extending inwardly from three of the four walls are cable guides 170 that retain coiled fiber optic cable within the housing 120. Extending outwardly away from the back wall 158 is a cable restraint 180 constructed from plastic that defines four parallel channels 182 into which fiber optic cable can be inserted. The splice connection C of spliced together ends of the fiber optic cables is inserted within the channels 182 to hold the splice connection relatively immobile.

The fiber optic cable is routed into the housing 120 through two rubber grommets 190, 192 that fit within openings 196 in one endwall 167 of the housing 120. To splice the ends of two strands together an end of each strand is pushed through an opening 190a, 192a of one of the grommets and the splice connection made. The connection C is then placed within one of the channels 182 inside the housing 120 and the grommet inserted into the one of the openings 196. Grooves 198 extend around three sides of the grommet that engage edges of the openings in the housing wall.

A housing cover 200 encloses the connection C within the housing 120. The cover 200 defines an opening through which a threaded portion of a post 202 is pushed. A knurled knob 220 is attached to the post and remains on an opposite side of the cover. The threaded portion of the post 202 engages a threaded opening of a stud 204 extending away from the back wall 158. The cover is sized such that flanged side walls 210-213 of the cover overlie the walls 164-167 and the stud 204 enters the post 202. The cover 200 is secured in place by rotating the knurled knob 220 connected to the threaded post 202.

A generally planar pad 222 fits within the cover and butts against edges of the walls 164-167. An opening in the pad 222 allows the pad to be pushed over the stud 204 that extends away from the back wall 158. The pad is held in place by a suitable adhesive and is preferably constructed from an elastomer material. When the pad is compressed against edges of the walls 164-167 as the knob 220 is tightened, the connection is sealed within the confines of the housing 120 which inhibits seepage of water and other foreign materials into contact with the connection C. The two grommets are constructed of a similar elastomer material and grip against the fibers that pass through the grommet as well as form a seal between the grommet and the edge of the openings that contain the grommet. Subsequent to insertion of the connection C into the splice enclosure 120 and placement of the cover 200 over the connection the two panels 40a, 40b are secured to the support panel 50 to enclose the two rows of terminal posts within the enclosure. With the panels closed 40a, 40b the cables shown in FIG. 7 extend out both sides of the enclosure 10 through the endcaps 76a-76c, 78a-78c. Cone shaped covers 230 are placed over the region where the cables exit the enclosure. These covers seal a region of the cable where the cable enters the closure and impede entry of moisture into the enclosure along the cable.

The preferred enclosure 10 has been described for distribution of signals from a central office to a customer that require conversion of fiber optic light signals into electric signals for retransmission through copper cable. As seen in FIGS. 14A and 14B, however, the disclosed enclosure could be used in other delivery systems for converting signals of one type to another. In FIG. 14A a rf communications signal is extracted by an antenna supported on the aerial enclosure housing and routed from the housing to a radio transceiver that converts the RF signals to standard electric telecommunications signals for transmission to a customer site. In FIG. 14B a fiber optic signal is converted to either a video signal or a standard electrical signal and then retransmitted to a customer site.

While multiple embodiments of the present invention have been described with a degree of particularity, it is the intent that the invention include all modifications and alterations from the disclosed embodiments falling within the spirit or scope of the appended claims.

Smith, William D., Hicks, George

Patent Priority Assignee Title
10042136, Nov 03 2004 CommScope Technologies LLC Fiber drop terminal
10215946, Aug 15 2014 Hubbell Incorporated Apparatus for supporting cable
10890729, Nov 03 2004 CommScope Technologies LLC Fiber drop terminal and bracket
11347008, Apr 19 2005 CommScope Technologies LLC Fiber optic connection device with ruggedized tethers
11567278, Nov 03 2004 CommScope Technologies LLC Fiber drop terminal
5907653, May 01 1997 Fitel USA Corporation Racetrack grommet for optical fiber cable splice closure
6351592, Jun 12 1998 Netrix Technologies, Inc. Multi-purpose communications cabinet
6396990, Jun 12 1998 Netrix Technologies, Inc. Multi-purpose communications cabinet
6427042, Apr 22 1999 CIENA LUXEMBOURG S A R L ; Ciena Corporation Optical fibre ducting system
6603660, Aug 12 2002 Netrix Technologies, Inc. Remote distribution frame
6614980, Aug 12 1999 Bellsouth Intellectual Property Corporation Connectorized outside fiber optic drop
6668127, Aug 12 1999 Bellsouth Intellectual Property Corporation Connectorized inside fiber optic drop
6853796, Mar 14 2001 CommScope Connectivity Belgium Cable termination device with a clamped retention member
6856748, Sep 30 2003 Corning Optical Communications LLC Interconnection enclosure having a connector port and preterminated optical connector
6950593, May 21 2001 ARRIS SOLUTIONS, INC Cable splice enclosure
6965080, Dec 15 2003 Cap for cable conduit
6974908, Jul 19 2002 Bellsouth Intellectual Property Corporation Adjustable aerial terminal
7016592, Dec 15 2003 Corning Optical Communications LLC Fiber optic communications network comprising pre-connectorized fiber optic distribution cable
7251411, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with “Y” block
7289714, Sep 26 2006 CommScope EMEA Limited; CommScope Technologies LLC Tubing wrap procedure
7317863, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with retention block
7333708, Jan 27 2004 Corning Optical Communications LLC Multi-port optical connection terminal
7349605, Apr 19 2005 CommScope EMEA Limited; CommScope Technologies LLC Fiber breakout with radio frequency identification device
7403685, Oct 13 2006 CommScope EMEA Limited; CommScope Technologies LLC Overmold zip strip
7418177, Nov 10 2005 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout system, packaging arrangement, and method of installation
7422378, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with excess fiber length
7424189, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Mid-span breakout with potted closure
7454106, Aug 14 2006 CommScope EMEA Limited; CommScope Technologies LLC Factory spliced cable assembly
7480436, Oct 10 2006 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for securing a tether to a distribution cable
7489843, Feb 06 2007 CommScope EMEA Limited; CommScope Technologies LLC Polyurethane to polyethylene adhesion process
7489849, Nov 03 2004 CommScope EMEA Limited; CommScope Technologies LLC Fiber drop terminal
7532799, Apr 12 2007 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic telecommunications cable assembly
7558458, Mar 08 2007 CommScope EMEA Limited; CommScope Technologies LLC Universal bracket for mounting a drop terminal
7565055, Apr 19 2005 CommScope EMEA Limited; CommScope Technologies LLC Loop back plug and method
7590321, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Mid-span breakout with helical fiber routing
7599598, Aug 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Cable payout systems and methods
7609925, Apr 12 2007 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with tensile reinforcement
7627222, Nov 03 2004 CommScope EMEA Limited; CommScope Technologies LLC Fiber drop terminal
7630606, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with retention block
7653282, Jan 27 2004 Corning Optical Communications LLC Multi-port optical connection terminal
7657148, Aug 31 2005 BISON PATENT LICENSING, LLC Cabinet including optical bulkhead plate for blown fiber system
7669323, Dec 14 2001 Cisco Technology, Inc Method for electrically connecting a stinger into a network node
7680388, Nov 03 2004 CommScope EMEA Limited; CommScope Technologies LLC Methods for configuring and testing fiber drop terminals
7740409, Sep 19 2007 Corning Optical Communications LLC Multi-port optical connection terminal
7756372, Feb 22 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable systems and kits and methods for terminating the same
7769261, Sep 05 2007 CommScope Technologies LLC Fiber optic distribution cable
7805044, Nov 03 2004 CommScope EMEA Limited; CommScope Technologies LLC Fiber drop terminal
7840109, Aug 14 2006 CommScope EMEA Limited; CommScope Technologies LLC Factory spliced cable assembly
7869684, Aug 31 2005 BISON PATENT LICENSING, LLC Cabinet including optical bulkhead plate for blown fiber system
7941918, Dec 14 2001 Cisco Technology, Inc Method for electrically connecting a stinger into a network node
8001686, Jun 27 2003 AFL Telecommunications LLC Method for taut sheath splicing of all-dielectric, self-supporting fiber optic cable
8041178, Apr 19 2005 CommScope EMEA Limited; CommScope Technologies LLC Loop back plug and method
8121456, Aug 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Cable payout systems and methods
8126304, Feb 22 2006 CommScope EMEA Limited; CommScope Technologies LLC Methods for terminating optical fiber cables
8341829, Jun 27 2003 AFL Telecommunications LLC Taut sheath splicing apparatus
8731354, Jul 30 2010 Corning Optical Communications LLC Array cable assemblies
8755663, Oct 28 2010 Corning Optical Communications LLC Impact resistant fiber optic enclosures and related methods
8873926, Apr 26 2012 Corning Optical Communications LLC Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods
8885998, Dec 09 2010 CommScope EMEA Limited; CommScope Technologies LLC Splice enclosure arrangement for fiber optic cables
8915659, May 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Splice enclosure arrangement for fiber optic cables
9069151, Oct 26 2011 Corning Optical Communications LLC Composite cable breakout assembly
9528289, Aug 15 2014 Hubbell Incorporated Apparatus for supporting cable
9798085, May 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Splice enclosure arrangement for fiber optic cables
9851522, Nov 03 2004 CommScope Technologies LLC Fiber drop terminal
Patent Priority Assignee Title
3836696,
3852114,
3919495,
4032212, Nov 28 1975 Bell Telephone Laboratories, Incorporated Strand adapter for aerial closures and cable terminals
4479196, Nov 15 1982 AT&T Bell Laboratories Hyperedge entity-relationship data base systems
4489830, Dec 12 1983 Nortel Networks Limited Retainer for packaged optical fiber splices and organizing tray utilizing such retainers
4503283, May 27 1983 Avaya Technology Corp Cable stub assembly and methods of making
4646229, Nov 15 1982 AT&T Bell Laboratories Time-ordered data base
4698752, Nov 15 1982 NCR Corporation Data base locking
4704499, Jun 18 1986 American Telephone and Telegraph Company AT&T Bell Laboratories Locking mechanism for aerial cable closure and terminals
4708430, Oct 29 1984 SIECOR TECHNOLOGY, INC Cabinet for optical cable terminating equipment
4721830, Jun 25 1987 Thomas & Betts International, Inc Cable enclosure
4761053, Aug 28 1985 Avaya Technology Corp Communications transmission media
4818824, Aug 19 1987 Avaya Technology Corp Closure for aerial telephone cable splices
4861134, Jun 29 1988 American Telephone and Telegraph Company, AT&T Bell Laboratories Opto-electronic and optical fiber interface arrangement
4898448, May 02 1988 SIECOR PUERTO RICO, INC Fiber distribution panel
4932744, Oct 04 1988 Thomas & Betts International, Inc Closure for optical fiber splice connectors
5017155, Dec 18 1989 COMMSCOPE, INC OF NORTH CAROLINA Terminal boards and frame therefor
5046811, Jul 17 1989 MARCONI UK INTELLECTUAL PROPERTY LTD Junction box for optical communications cords, and gland assembly for cord
5090792, Apr 28 1989 ERICSSON RAYNET, A DE GENERAL PARTNERSHIP Optical fiber tap handling tray
5093886, Oct 10 1985 MARCONI UK INTELLECTUAL PROPERTY LTD Optical communication system
5117476, Jan 19 1990 AMP Incorporated Optical transceiver package with insertable subassembly
5133039, Oct 29 1990 Fitel USA Corporation Aerial fiber optic cable case
5136121, Mar 29 1991 Avaya Technology Corp Cable terminals
5155304, Jul 25 1990 Avaya Technology Corp Aerial service wire
5155794, Apr 11 1984 Raychem Corporation Electrofit fibre optics butt splice
5222183, Nov 07 1988 N.V. Raychem S.A.; N V RAYCHEM S A , A COMPANY OF BELGIUM Splice case for optical fibre cable
5285515, Feb 21 1992 Mars Actel Adaptable cassette for coiling and splicing optical fibers
5313546, Nov 18 1992 SIRTI S P A ; SISTEMI TECNOLOGICI S P A Hermetically sealed joint cover for fibre optic cables
5322973, Mar 06 1992 Thomas & Betts International, Inc Aerial closure
5323480, Nov 25 1992 TYCO ELECTRONICS CORPORATION, A CORPORATION OF PENNSYLVANIA Fiber optic splice closure
5387763, May 13 1993 BELDEN INC Enclosure for straight cable splice
5408571, Dec 13 1993 CHARTER ONE BANK, F S B Aerial storage unit for fiber optic cable
5440665, Apr 16 1993 TYCO ELECTRONICS CORPORATION, A CORPORATION OF PENNSYLVANIA Fiber optic cable system including main and drop cables and associated fabrication method
5440666, Jun 22 1994 FURUKAWA ELECTRIC NORTH AMERICA, INC Splice closure and grip block
5446823, Jan 26 1994 Raychem Corporation Aerial, pedestal, below grade, or buried optical fiber closure
5459808, Jun 30 1994 Minnesota Mining and Manufacturing Company Fiber optic housing with removable chassis and method using same
5479553, Apr 19 1993 TYCO ELECTRONICS CORPORATION, A CORPORATION OF PENNSYLVANIA Fiber optic splice closure
5509099, Apr 26 1995 AFL Telecommunications LLC Optical fiber closure with sealed cable entry ports
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 17 1996SMITH, WILLIAM D Communications Technology CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0082270703 pdf
Sep 17 1996HICKS, GEORGECommunications Technology CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0082270703 pdf
Sep 18 1996Communications Technology Corporation(assignment on the face of the patent)
Aug 10 2000Communications Technology CorporationThomas & Betts International, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0111110463 pdf
Date Maintenance Fee Events
Feb 09 2001ASPN: Payor Number Assigned.
Jun 08 2001M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 29 2005REM: Maintenance Fee Reminder Mailed.
Dec 09 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 09 20004 years fee payment window open
Jun 09 20016 months grace period start (w surcharge)
Dec 09 2001patent expiry (for year 4)
Dec 09 20032 years to revive unintentionally abandoned end. (for year 4)
Dec 09 20048 years fee payment window open
Jun 09 20056 months grace period start (w surcharge)
Dec 09 2005patent expiry (for year 8)
Dec 09 20072 years to revive unintentionally abandoned end. (for year 8)
Dec 09 200812 years fee payment window open
Jun 09 20096 months grace period start (w surcharge)
Dec 09 2009patent expiry (for year 12)
Dec 09 20112 years to revive unintentionally abandoned end. (for year 12)