The present invention relates to a personalized security system, in which a portable transmitter may be carried or worn by an individual and activated by the individual in need of assistance to transmit data relating specifically to the individual. The data is received by a transceiver located nearby to the individual and transmitted with additional data to a remote receiver. The remote receiver then forwards information relating to the data to emergency personnel who use the information to determine the location of the individual, as well as particulars relating specifically to the individual, such as a name and a physical description.
|
9. A method of procuring assistance, said method comprising the steps
(a) accepting, at a totable transmitter, a first signal from a user, said signal indicating assistance is needed; (b) transmitting a second signal from the totable transmitter to a transceiver located at a bank self-service facility, wherein said second signal includes user identifying information; (c) transmitting a third signal from said transceiver to a receiver, wherein said third signal includes location identifying information; (d) receiving said third signal from said transceiver at a remote station; (e) accessing a storage device at the remote station retrieve a plurality of updateable data elements relating to the user; and (f) forwarding from the remote station a fourth signal corresponding to said plurality of data elements and the location of the transceiver.
1. For use in combination with a self-service bank transaction facility, an assistance procuring system comprising:
a totable transmitter including means for activation by a user, and means responsive to said activation means for transmitting a first signal, said first signal being encoded to uniquely identify the transmitter; a transceiver installed in close proximity to the self-service bank transaction facility including means for receiving said first signal, and means for transmitting a second signal encoded to include transceiver location information and transmitter identification information derived from said first signal; a remote station including a database having a plurality of updateable data elements including personal information relating to the user, the remote station further including means responsive to the second signal for indexably retrieving one or more of the data elements.
6. For use in an assistance procuring system for a bank self-service facility, said system including a totable transmitter adapted to transmit a first signal containing a first set of one or more data elements representative of personal information relating to a user, and a transceiver located in close proximity to the bank self-service facility and adapted to receive said first signal and further adapted to transmit a second signal including said first set of said data elements and one or more additional data elements; a remote station comprising:
a memory device adapted to store a plurality of updateable data elements corresponding to personal information relating to the user; means for receiving said second signal; and means for generating a third signal corresponding to said first set of said one or more data elements, said one or more additional data elements, and said plurality of data elements.
2. The assistance procuring system of
(a) the user's address; (b) a description of the user; (c) a digitized picture of the user; (d) the user's vehicle tag number; (e) the user's vehicle identification number; (f) the user's vehicle LOJACK number; (g) the user's nearest relatives or friends; (h) the addresses of the user's nearest relative or friend; (i) medical information of the user; (j) an I.D. number assigned to the user; and (k) the user's name.
3. The system of
4. The assistance procuring system of
5. The assistance procuring system of
7. The remote station according to
8. The remote station of
10. The assistance procuring method of
(a) the user's address; (b) a description of the user; (c) a digitized picture of the user; (d) the user's vehicle tag number; (e) the user's vehicle identification number; (f) the user's vehicle LOJACK number; (g) the user's nearest relatives or friends; (h) the addresses of the user's nearest relatives or friends; (i) an ID number assigned to the user; (j) medical information of the user; and (k) the user's name.
|
This is a continuation of application Ser. No. 08/243,263, filed on May 16, 1994, abandoned.
1. Technical Field
The present invention relates to security systems. More specifically, the present invention relates to a personalized security system, in which a portable transmitter may be carried or worn by an individual and activated by the individual in need of assistance to transmit data relating specifically to the individual. The data is received by a transceiver located nearby to the individual and transmitted with additional data to a remote receiver. The remote receiver then forwards information relating to the data to emergency personnel who use the information to determine the location of the individual, as well as particulars relating specifically to the individual, such as a name and a physical description.
2. Description of the Prior Art
Emergency type situations, such as burglaries, fires, and sickness, have previously given rise to the introduction of a variety of remote emergency warning systems. In particular, many homeowners use security systems which are installed in the home and can be remotely monitored. These systems typically have the ability to indicate the type of assistance needed, such as the police, fire department, or an ambulance and the location of the home. A drawback to these systems is that they are of no use once the individual leaves his or her home.
Modern day trends show an increase in random acts of violence, such as robberies, assaults, and batteries. For this reason, personal remote emergency warning systems have also been introduced. These systems typically allow an individual to carry or wear a transmitter which may be manually or automatically activated when the individual encounters an emergency type situation. Once activated, the transmitter typically sends a signal containing information identifying the particular transmitter and the nature of the emergency to a remote transceiver which forwards the information to emergency personnel.
A drawback to these latter systems is that no data relating specifically to the individual is transmitted by the transmitter. Therefore, though emergency personnel could identify the transmitter and the nature of the emergency, no information regarding the user, such as the name of the user, the description of the user, the user's vehicle tag number, and the like, is immediately available to the emergency personnel. Due to this inadequacy, precious time may be wasted as the emergency personnel arrives at the scene of an emergency with no information regarding the individual they have arrived to assist.
In accordance with the teachings of the present invention, a new system for personalized security is provided. The present invention overcomes the inadequacies of prior art personalized security systems by providing a means for data related specifically to a user of the system to be transmitted to emergency personnel when assistance is needed. For example, an individual at an Automated Teller Machine (ATM) could notify the police of a robbery at the ATM as it is occurring, where the notice to the police could include the location of the crime, the individual's name, a description of the individual, the individual's vehicle tag number and much more. By having this information immediately accessible, the police could then more precisely and efficiently act to rescue the individual.
The system includes a portable transmitter, a transceiver, and a remote receiver. The portable transmitter sends a signal containing the personalized data to a nearby transceiver, the transceiver forwards the data to a remote receiver, and the remote receiver forwards the data to the emergency personnel.
The portable transmitter is a hand held unit, which may be very small such that it is easily carried in an individual's pocket or on a key ring. The personal transmitter preferably transmits an FSK tone modulation signal to the transceiver, where the signal contains data relating to a distinct user identification code. In addition, the signal may also include other data specific to the individual such as the individual's name, address, description, vehicle tag number, vehicle identification number, LOJACK car number, nearest relative, and much more.
The transceiver receives the data from the portable transmitter, decodes the data, and adds data related to the location of the transceiver. The transceiver then transmits the data to the remote receiver, preferably over a telephone line via a modem. The location of the transceiver is anywhere in the proximate area to where the individual activates the personal transmitter. For example, the transceiver may be located in an ATM or in a building such as a grocery store, in the vicinity of the individual.
The remote receiver receives the data and uses a database to obtain any further data relating to the user and to obtain information on the emergency personnel closest to the location of the transceiver. The remote receiver then transmits the data to the emergency personnel identified from the database, such as the closest police department. The emergency personnel may then provide more efficient and precise assistance to the individual activating the system due to the personalized data.
One example of a situation in which the personalized security system of the present invention would provide improved security is a robbery and kidnapping situation at an ATM. For instance, if a user is attacked at an ATM, the user may activate the system, and emergency personnel may be quickly notified of the particulars on the user. Therefore, the police may be notified to be on the lookout for an individual and a car meeting certain descriptions. With this information, the police might catch the criminal driving off with the user, in the user's car, or both.
In another example, if a user incurred a medical problem in a crowded public area, medical personnel may be summoned quickly. The medical personnel may then arrive at the scene with information relating to the physical description and the medical condition of the individual in need of assistance.
The aforementioned and other aspects of the present invention are described in the detailed description and attached illustrations which follow.
FIG. 1 depicts a block diagram illustrating the interaction between the portable transmitter device, the transceiver, and the remote receiver.
FIG. 2 depicts a block diagram of the portable transmitter device.
FIG. 3 depicts a block diagram of the transceiver.
FIG. 4 depicts a block diagram of the remote receiver.
The following is a preferred implementation of the personalized security system 100 of the present invention as shown in FIG. 1. The system 100 includes a portable transmitter device 120, a transceiver 130, and a remote receiver 140. The portable transmitter device 120 transmits a signal 115 containing data specific to an individual to the transceiver 130. The signal is then decoded by the transceiver 130 and forwarded with additional data over a telephone line 135 to the remote receiver 140. Emergency personnel is then notified by the remote receiver 140 of the location and the particular individual needing assistance.
The portable transmitter device 120 is a hand held unit which may be carried or worn by an individual. In one embodiment, the portable transmitter device 120 is encompassed in a plastic housing 250. A ring 240 may be mounted to the plastic housing 250 such that an individual may carry the portable transmitter device 120 on a key ring.
In one embodiment, the portable transmitter device 120 includes a top button 210 and bottom button 220 which are mounted on the top and bottom or other opposed sides of the plastic housing 250, respectively. The buttons 210 and 220 are wired to a transmitter 230 located within the portable transmitter device 120. When the two buttons 210 and 220 are pressed simultaneously by the user, the transmitter 230 is activated.
In a second embodiment, the portable transmitter includes two or more top buttons 210 and one bottom button 220. In this embodiment, each of the top buttons represents a particular emergency type condition. For example, the first top button 210 could represent that police assistance is needed and the second top button 210 could represent that medical assistance is required. While it is impossible to describe every conceivable type of emergency condition in which the present invention may be used, other top buttons 210 could represent a fife or automobile trouble. When a top button 210 and bottom button 220 are then pressed simultaneously, the transmitter is activated and a signal containing the type of emergency condition is sent to the transceiver 130 (see FIG. 1).
Though the simultaneous pressed button configuration for activating the transmitter is described for the two embodiments, those of ordinary skill in the art would appreciate that there are many other equivalent means that could be used for the same purpose.
The transmitter 230 transmits an FSK tone modulation signal 115 (see FIG. 1), similar to that of a cellular phone, which preferably reaches a minimum of 150 feet away. In one embodiment, the signal transmitted contains a distinct identification code for the user. The PT-2D portable transmitter device available from Transcience of Stamford, Conn. may be utilized to transmit up to 65,536 distinct four digit codes to identify the user. The PT-2D uses dip switches located on the exterior of the portable transmitter device 120 to set the user identification code.
In another embodiment, the portable transmitter device 120 includes a Read Only Memory (ROM) device in which the user identification code is programmed into it. This embodiment improves on the PT-2D because the number of user identification codes for the personalized security system of the present invention is no longer limited by the number of dip switches. Further, the user no longer has the capability of purposefully or accidentally. flipping a dip switch thereby sending an improper user identification code when the portable transmitter device 120 is activated.
In yet another embodiment, the transmitter 230 transmits the signal containing two or more data elements stored on a ROM where the data elements are specific to the user. These data elements may include as the user's identification code, name, address, description, digitized picture, medical condition, vehicle tag number, vehicle identification number, LOJACK number, nearest relative or friend, and much more.
Though preferred embodiments for transmitting a signal with data related specifically to the user are described, one of ordinary skill in the art would appreciate that other types of transmitters may be used. For example, a transmitter that transmits a satellite signal, and a transmitter that transmits billions of distinct codes to identify different users may be used in the personalized security system of the present invention.
The transceiver 130 receives the data from the portable transmitter, decodes the data, and adds data related to the location of the transceiver 130. The data is then transmitted by the transceiver 130 to the remote receiver 140.
In one embodiment, the transceiver 130 includes an antenna 305, a receiver/decoder 310, an interface unit 320, a central processing unit (CPU) 330, a modem 340, and a battery pack 350. For external mountings, the transceiver 130 components may be housed in a metal box or any other housing that accommodates electrical components. For internal mountings, such as a computer or ATM, the transceiver components may be manufactured onto a small circuit board.
The signal sent by the portable transmitter device 120 is received by the antenna 305. The antenna 305 is coupled to the receiver/decoder 310 and is capable of receiving a FSK tone modulation signal.
In one embodiment, referred to as the remote antenna embodiment, the antenna 305 is mounted to the top of a structure, such as a grocery store, and wiring, such as coaxial cable, is used to connect the antenna 305 to the receiver/decoder 310. In a second embodiment, referred to as the solid mount embodiment, the antenna is mounted to the transceiver box housing the components of the transceiver, and wiring is used to couple the antenna 305 to the receiver/decoder 310.
The receiver/decoder 310 receives the signal 115 (see FIG. 1) from the antenna 305. The data within the signal 115 is then decoded by the receiver/decoder 310 and forwarded to the interface unit 320.
The interface unit 320 receives the data from the receiver/decoder 310 and conditions the data for the CPU 330. The data is then forwarded by the interface unit 320 to the CPU 330.
The CPU 330 includes memory capacity to store at least 65,536 four digit user identification codes, but preferably billions of user codes. These user codes are downloaded from the remote receiver 140 (see FIG. 1) as users are added and deleted to the system. The user identification code forwarded from the interface unit 320 is then verified against the user identification codes stored in the CPU 330. If the user identification code is confirmed and validated, then the CPIJ 330 appends a location code to the conditioned data which identifies the location of the transceiver 130. The CPU then forwards the conditioned data to the modem and commands the modem 340 to dial up the remote receiver 140.
The modem 340 is a standard telephone modem. Once the modem receives the conditioned data and the command to dial the remote receiver 140 from the CPU, the modem transmits a "Request for Assistance" over a telephone line 135 to the remote receiver 140. After the modem 340 receives an acknowledgement from the remote receiver 140, the modem 340 transmits the conditioned data to the remote receiver 140 over the telephone line 135.
The RT-232 receiver/decoder device available from Transceiver, which recognizes up to 65,536 distinct codes, may be used for the transceiver. However, as one of ordinary skill in the art would appreciate, an equivalent device or one which recognizes billions of distinct user codes could also be used. Also, it would be readily understood by one of ordinary skill in the art that the transceiver 130 may communicate with the remote receiver 140 over many equivalent means other than telephone lines, such as cellular and satellite links.
In a second embodiment, the CPU 330 of the transceiver 130 also includes memory capacity to store data elements for different users. The transceiver 130 then uses the data, such as the user identification code or any other data element related to the user, received from the portable transmitter device 120 and database software to obtain additional data in connection with the user. This data may include information related specifically to characteristics of the user, such as size, weight, height, hair color, eye color, birth marks, age, medical condition and race. Moreover, this data may include information of the user's vehicle, such as type, model, year, color, tag, identification number, and LOJACK number. Further, the data may include information on the user's nearest relatives and friends and much more user specific information. The CPU 330 may then append the additional data to the conditioned data and forward all of the data to the remote receiver 140.
The transceiver 130 is located a distance in close proximity to where the user activates the portable transmitter device 120, preferably within 150 feet. The structure for locating the transceiver 130 may be almost any structure, including an automatic teller machine (ATM), a grocery store, or the like. The transceiver 130 may be mounted on a wall, floor or almost anywhere else. The structure that the transceiver 130 is located preferably includes a 110 volt electrical outlet and a telephone line.
The transceiver 130 preferably runs off of 110 volts. However, a battery pack trickle charger battery pack 350 is also included in the transceiver 130 to provide backup power for power outages instances. In one embodiment, the battery pack 350 provides 12 volts, 12 amps, and 24 hours of power. In another embodiment, the battery pack 350 provides 12 volts, 15 amps, and 48 hours of power.
The remote receiver 140 is a computer which includes a modem 410 and a CPU 420. The remote receiver 140 uses database software and the CPU 420 to store further data related specifically to the users of the system, as well as data related to emergency personnel.
The remote receiver 140 receives the data from the transceiver 130 over the telephone line via the modem 410, and uses the database software and the user's identification code or any other data element related to the user to obtain further information in connection with the user. This information may include information related specifically to characteristics of the user, such as size, weight, height, hair color, eye color, birth marks, age, medical condition and race. Moreover, this information may include information of the user's vehicle, such as type, model, year, color, tag, identification number, and LOJACK number. Further, the information may include the user's nearest relatives and friends and much more user specific information. Finally, the location identifier data element for the transceiver may be used to obtain information from the database on the address of where the transceiver 130 (see FIG. 1) is located, the cross streets nearest to the transceiver 130, and the emergency personnel, such as the police department, fire department, and ambulance, closest to the transceiver 130.
The remote receiver 140 then uses the modem 410 to notify the emergency personnel closest to the transceiver 130 about the user in need of assistance. During the notification process, the information relating specifically to the user who activated the portable transmitter device 120 (see FIG. 1) is sent to the emergency personnel. The emergency personnel is then able to provide more efficient and precise assistance to the user of the personalized security system of the present invention. As one of ordinary skill in the art would appreciate, the remote receiver 140 may communicate with the emergency over many equivalent means, such as cellular and satellite links. Moreover, communication with emergency personnel may include direct communication with police officers in their cars, firemen in their fire trucks and many others with access to communication links.
In addition to identifying pertinent user information and notifying emergency personnel, the remote receiver 140 may store the time, date, and location of the transceiver 130 (see FIG. 1) for each instance the personalized security system is activated. Further, activated and deactivated user identification numbers may be downloaded by the remote receiver 140 to the CPU 330 of the transceiver 130 (see FIG. 3). Moreover, the remote receiver 140 may perform random operation checks on the transceiver 130.
Petite, Thomas D., Hosmer, J. W.
Patent | Priority | Assignee | Title |
10039018, | Oct 27 2011 | Mueller International, LLC | Systems and methods for recovering an out-of-service node in a hierarchical network |
10060636, | Apr 05 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Heat pump system with refrigerant charge diagnostics |
10085393, | Feb 04 2005 | The Toro Company | Long range, battery powered, wireless environmental sensor interface devices |
10101311, | Mar 15 2013 | Mueller International, LLC | Systems for measuring properties of water in a water distribution system |
10149129, | Oct 24 2001 | SIPCO, LLC | Systems and methods for providing emergency messages to a mobile device |
10172522, | Apr 11 2014 | Hill-Rom Services, Inc. | Patient-need prediction system |
10180414, | Mar 15 2013 | Mueller International, LLC | Systems for measuring properties of water in a water distribution system |
10200476, | Oct 18 2011 | Itron, Inc | Traffic management and remote configuration in a gateway-based network |
10203315, | Mar 15 2013 | Mueller International LLC | Systems for measuring properties of water in a water distribution system |
10234854, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
10262518, | Oct 27 2008 | Mueller International LLC | Method of disseminating monitoring information relating to contamination and corrosion within an infrastructure |
10274945, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
10335906, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
10352602, | Jul 30 2007 | Emerson Climate Technologies, Inc. | Portable method and apparatus for monitoring refrigerant-cycle systems |
10356687, | Jan 25 2005 | SIPCO, LLC | Wireless network protocol systems and methods |
10362739, | Aug 12 2008 | Rain Bird Corporation | Methods and systems for irrigation control |
10443863, | Apr 05 2013 | Emerson Climate Technologies, Inc. | Method of monitoring charge condition of heat pump system |
10458404, | Nov 02 2007 | Emerson Climate Technologies, Inc. | Compressor sensor module |
10488090, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
10558229, | Aug 11 2004 | Emerson Climate Technologies Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
10687194, | Oct 24 2001 | SIPCO, LLC | Systems and methods for providing emergency messages to a mobile device |
10716269, | Aug 07 2009 | Rain Bird Corporation | Methods and systems for irrigation control |
10775084, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
10884403, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
10980120, | Jun 15 2017 | Rain Bird Corporation | Compact printed circuit board |
10980461, | Nov 07 2008 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
11000215, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11020031, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11039371, | Jan 25 2005 | SIPCO, LLC | Wireless network protocol systems and methods |
11041839, | Jun 05 2015 | Mueller International, LLC | Distribution system monitoring |
11064664, | Aug 12 2008 | Rain Bird Corporation | Methods and systems for irrigation control |
11163274, | Jun 23 2011 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
11255835, | Mar 15 2013 | Mueller International, LLC | Systems for measuring properties of water in a water distribution system |
11262343, | Mar 15 2013 | Mueller International, LLC | Systems for measuring properties of water in a water distribution system |
11307190, | Mar 15 2013 | Mueller International, LLC | Systems for measuring properties of water in a water distribution system |
11382539, | Oct 04 2006 | DexCom, Inc. | Analyte sensor |
11503782, | Apr 11 2018 | Rain Bird Corporation | Smart drip irrigation emitter |
11725366, | Jul 16 2020 | Mueller International, LLC | Remote-operated flushing system |
11768472, | Jun 23 2011 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
11917956, | Apr 11 2018 | Rain Bird Corporation | Smart drip irrigation emitter |
5926103, | May 16 1994 | StatSignal IPC, LLC | Personalized security system |
6014080, | Oct 28 1998 | 3M ATTENTI LTD | Body worn active and passive tracking device |
6104783, | May 01 1996 | Instant Alert Security, LLC | Method and apparatus for securing a site utilizing a security apparatus in cooperation with telephone systems |
6118380, | Feb 17 1999 | Switch arrangement for child finder apparatus | |
6405213, | May 27 1997 | DMATEK LTD ; PRO-TECH MONITORING; ELMO TECH LTD | System to correlate crime incidents with a subject's location using crime incident data and a subject location recording device |
6559620, | Mar 21 2001 | LONGHORN AUTOMOTIVE GROUP LLC | System and method for remote monitoring utilizing a rechargeable battery |
6671586, | Aug 15 2001 | Landis+Gyr Technologies, LLC | System and method for controlling power demand over an integrated wireless network |
6747981, | Feb 12 1997 | Elster Electricity, LLC | Remote access to electronic meters using a TCP/IP protocol suite |
6774797, | May 10 2002 | Securus Technologies, LLC | Wireless tag and monitoring center system for tracking the activities of individuals |
6847892, | Oct 29 2001 | LONGHORN AUTOMOTIVE GROUP LLC | System for localizing and sensing objects and providing alerts |
6862498, | Aug 15 2001 | Landis+Gyr Technologies, LLC | System and method for controlling power demand over an integrated wireless network |
7053770, | Sep 10 2004 | Nivis , LLC | System and method for communicating alarm conditions in a mesh network |
7079810, | Feb 14 1997 | StatSignal IPC, LLC | System and method for communicating with a remote communication unit via the public switched telephone network (PSTN) |
7103511, | Oct 14 1998 | HUNT TECHNOLOGIES, INC | Wireless communication networks for providing remote monitoring of devices |
7126494, | Feb 12 1997 | Elster Electricity, LLC | Remote access to electronic meters using a TCP/IP protocol suite |
7137550, | Feb 14 1997 | STAT SIGNAL IPC, LLC; StatSignal IPC, LLC | Transmitter for accessing automated financial transaction machines |
7142106, | Jun 15 2004 | Elster Electricity, LLC | System and method of visualizing network layout and performance characteristics in a wireless network |
7145474, | Jun 27 2002 | Elster Electricity, LLC | Dynamic self-configuring metering network |
7170425, | Sep 24 2004 | Elster Electricity, LLC | System and method for creating multiple operating territories within a meter reading system |
7176807, | Sep 24 2004 | Elster Electricity, LLC | System for automatically enforcing a demand reset in a fixed network of electricity meters |
7184861, | Aug 15 2001 | Landis+Gyr Technologies, LLC | System and method for controlling generation over an integrated wireless network |
7187906, | Apr 26 2004 | Elster Electricity, LLC | Method and system for configurable qualification and registration in a fixed network automated meter reading system |
7239250, | Apr 26 2004 | Elster Electricity, LLC | System and method for improved transmission of meter data |
7239860, | Oct 27 2000 | LWS 2007 LIMITED | Method and apparatus for generating an alert message |
7262709, | Apr 26 2004 | Elster Electricity, LLC | System and method for efficient configuration in a fixed network automated meter reading system |
7263073, | Mar 18 1999 | HUNT TECHNOLOGIES, INC | Systems and methods for enabling a mobile user to notify an automated monitoring system of an emergency situation |
7295128, | Jun 22 1998 | HUNT TECHNOLOGIES, INC | Smoke detection methods, devices, and systems |
7301476, | Jun 27 2002 | Elster Electricity, LLC | Dynamic self-configuring metering network |
7308369, | Sep 28 2005 | Elster Electricity, LLC | Ensuring automatic season change demand resets in a mesh type network of telemetry devices |
7308370, | Mar 22 2005 | Elster Electricity, LLC | Using a fixed network wireless data collection system to improve utility responsiveness to power outages |
7312721, | Jun 27 2002 | Elster Electricity, LLC | Data collector for an automated meter reading system |
7327998, | Dec 22 2004 | Elster Electricity, LLC | System and method of providing a geographic view of nodes in a wireless network |
7346333, | Apr 27 2001 | Qualcomm Incorporated | Method and apparatus for effectuating a predetermined communications connection |
7397907, | Feb 14 1997 | StatSignal IPC, LLC | Multi-function general purpose transceiver |
7424328, | Jan 03 2006 | INDUSTRIAL TELEMETRY, INC | Apparatus and method for wireless process control |
7424527, | Oct 30 2001 | Statsignal Systems, Inc | System and method for transmitting pollution information over an integrated wireless network |
7427927, | Feb 16 2006 | Elster Electricity, LLC | In-home display communicates with a fixed network meter reading system |
7480501, | Oct 24 2001 | SIPCO LLC | System and method for transmitting an emergency message over an integrated wireless network |
7495578, | Sep 02 2005 | Elster Electricity, LLC | Multipurpose interface for an automated meter reading device |
7505734, | Sep 10 2004 | Nivis, LLC | System and method for communicating broadcast messages in a mesh network |
7518500, | Apr 06 2006 | SIERRA WIRELESS AMERICA, INC | System and method for monitoring alarms and responding to the movement of individuals and assets |
7545285, | Feb 16 2006 | Elster Electricity, LLC | Load control unit in communication with a fixed network meter reading system |
7554941, | Sep 10 2004 | Nivis, LLC | System and method for a wireless mesh network |
7606210, | Sep 10 2004 | Nivis, LLC | System and method for message consolidation in a mesh network |
7650425, | Mar 18 1999 | HUNT TECHNOLOGIES, INC | System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system |
7676195, | Sep 10 2004 | Nivis, LLC | System and method for communicating messages in a mesh network |
7697492, | Jun 22 1998 | SIPCO LLC | Systems and methods for monitoring and controlling remote devices |
7702594, | Sep 24 2004 | Elster Electricity, LLC | System and method for automated configuration of meters |
7719432, | Feb 04 2005 | JLH LABS, LLC; The Toro Company | Long range, battery powered, wireless environmental sensor interface devices |
7742430, | Sep 24 2004 | Elster Electricity, LLC | System for automated management of spontaneous node migration in a distributed fixed wireless network |
7756086, | Mar 03 2004 | SIPCO, LLC | Method for communicating in dual-modes |
7761310, | Dec 09 2005 | CAREVIEW COMMUNICATIONS, INC | Methods and systems for monitoring quality and performance at a healthcare facility |
7786874, | Dec 09 2005 | CAREVIEW COMMUNICATIONS, INC | Methods for refining patient, staff and visitor profiles used in monitoring quality and performance at a healthcare facility |
7864047, | May 06 2005 | SIERRA WIRELESS AMERICA, INC | System and method for monitoring alarms and responding to the movement of individuals and assets |
7911348, | Dec 09 2005 | CAREVIEW COMMUNICATIONS, INC | Methods for refining patient, staff and visitor profiles used in monitoring quality and performance at a healthcare facility |
7987069, | Nov 12 2007 | CAREVIEW COMMUNICATIONS, INC | Monitoring patient support exiting and initiating response |
8000314, | Dec 06 1996 | IPCO, LLC | Wireless network system and method for providing same |
8013732, | Jun 22 1998 | SIPCO, LLC | Systems and methods for monitoring and controlling remote devices |
8031650, | Mar 03 2004 | StatSignal IPC, LLC | System and method for monitoring remote devices with a dual-mode wireless communication protocol |
8055461, | Sep 15 2006 | Itron, Inc | Distributing metering responses for load balancing an AMR network |
8064412, | Jun 22 1998 | HUNT TECHNOLOGIES, INC | Systems and methods for monitoring conditions |
8073384, | Dec 14 2006 | Elster Electricity, LLC | Optimization of redundancy and throughput in an automated meter data collection system using a wireless network |
8115621, | May 01 2007 | OMNILINK SYSTEMS, INC | Device for tracking the movement of individuals or objects |
8140667, | Nov 18 2002 | Mueller International, LLC | Method and apparatus for inexpensively monitoring and controlling remotely distributed appliances |
8171136, | Oct 30 2001 | SIPCO, LLC | System and method for transmitting pollution information over an integrated wireless network |
8203463, | Feb 13 2009 | Elster Electricity, LLC | Wakeup and interrogation of meter-reading devices using licensed narrowband and unlicensed wideband radio communication |
8212667, | Jun 22 1998 | SIPCO, LLC | Automotive diagnostic data monitoring systems and methods |
8223010, | Jun 22 1998 | SIPCO LLC | Systems and methods for monitoring vehicle parking |
8233471, | Dec 06 1996 | IPCO, LLC | Wireless network system and method for providing same |
8312103, | Aug 31 2006 | Itron, Inc | Periodic balanced communication node and server assignment |
8320302, | Apr 20 2007 | Elster Electricity, LLC | Over the air microcontroller flash memory updates |
8335304, | Feb 14 1997 | SIPCO, LLC | Multi-function general purpose transceivers and devices |
8379564, | Mar 03 2004 | SIPCO, LLC | System and method for monitoring remote devices with a dual-mode wireless communication protocol |
8407333, | Nov 18 2002 | Mueller International, LLC | Method and apparatus for inexpensively monitoring and controlling remotely distributed appliances |
8410931, | Jun 22 1998 | SIPCO, LLC | Mobile inventory unit monitoring systems and methods |
8446884, | Mar 03 2004 | SIPCO, LLC | Dual-mode communication devices, methods and systems |
8489063, | Oct 24 2001 | SIPCO, LLC | Systems and methods for providing emergency messages to a mobile device |
8489113, | Feb 09 2010 | OMNILINK SYSTEMS, INC | Method and system for tracking, monitoring and/or charging tracking devices including wireless energy transfer features |
8494792, | Sep 15 2006 | Itron, Inc. | Distributing metering responses for load balancing an AMR network |
8525692, | Jun 13 2008 | Elster Electricity, LLC | Techniques for limiting demand from an electricity meter with an installed relay |
8547222, | May 06 2005 | SIERRA WIRELESS AMERICA, INC | System and method of tracking the movement of individuals and assets |
8549131, | Nov 18 2002 | Mueller International, LLC | Method and apparatus for inexpensively monitoring and controlling remotely distributed appliances |
8620625, | Jul 30 2010 | Hill-Rom Services, Inc | Above bed sensor |
8625496, | Dec 06 1996 | IPCO, LLC | Wireless network system and method for providing same |
8649907, | Aug 07 2009 | Rain Bird Corporation | Method and system for irrigation control |
8660134, | Oct 27 2011 | Mueller International, LLC | Systems and methods for time-based hailing of radio frequency devices |
8666357, | Oct 24 2001 | SIPCO, LLC | System and method for transmitting an emergency message over an integrated wireless network |
8690117, | May 04 2006 | Capstone Metering LLC | Water meter |
8787246, | Feb 03 2009 | IPCO, LLC | Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods |
8811934, | Sep 14 2007 | Red Button Technologies Pty Ltd | Communications device, system and method |
8823509, | May 22 2009 | Mueller International, LLC | Infrastructure monitoring devices, systems, and methods |
8831627, | Apr 06 2005 | OMNILINK SYSTEMS, INC | System and method for tracking, monitoring, collecting, reporting and communicating with the movement of individuals |
8833390, | May 31 2011 | Mueller International, LLC | Valve meter assembly and method |
8849461, | Aug 12 2008 | Rain Bird Corporation | Methods and systems for irrigation control |
8855569, | Oct 27 2011 | Mueller International, LLC | Systems and methods for dynamic squelching in radio frequency devices |
8862393, | Jun 30 2000 | LONGHORN AUTOMOTIVE GROUP LLC | Systems and methods for monitoring and tracking |
8866634, | May 04 2006 | Capstone Metering LLC | System and method for remotely monitoring and controlling a water meter |
8907287, | Dec 01 2010 | Hill-Rom Services, Inc | Patient monitoring system |
8908842, | Feb 14 1997 | SIPCO, LLC | Multi-functional general purpose transceivers and devices |
8924587, | Mar 18 1999 | SIPCO, LLC | Systems and methods for controlling communication between a host computer and communication devices |
8924588, | Mar 18 1999 | SIPCO, LLC | Systems and methods for controlling communication between a host computer and communication devices |
8930571, | Mar 18 1999 | SIPCO, LLC | Systems and methods for controlling communication between a host computer and communication devices |
8931505, | Jun 16 2010 | Mueller International, LLC | Infrastructure monitoring devices, systems, and methods |
8964338, | Jan 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | System and method for compressor motor protection |
8964708, | Jun 22 1998 | SIPCO LLC | Systems and methods for monitoring and controlling remote devices |
8974573, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
8982856, | Dec 06 1996 | IPCO, LLC | Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods |
9017461, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9021819, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9023136, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9046900, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
9081394, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9086704, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9111240, | Oct 30 2001 | SIPCO, LLC. | System and method for transmitting pollution information over an integrated wireless network |
9121407, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
9129497, | Jun 22 1998 | Statsignal Systems, Inc. | Systems and methods for monitoring conditions |
9140728, | Nov 02 2007 | EMERSON CLIMATE TECHNOLOGIES, INC | Compressor sensor module |
9194894, | Nov 02 2007 | Emerson Climate Technologies, Inc. | Compressor sensor module |
9202362, | Oct 27 2008 | Mueller International, LLC | Infrastructure monitoring system and method |
9215578, | Jan 27 2012 | OMNILINK SYSTEMS, INC | Monitoring systems and methods |
9235972, | Jan 21 1997 | Personal security and tracking system | |
9241451, | Aug 12 2008 | Rain Bird Corporation | Methods and systems for irrigation control |
9282029, | Oct 24 2001 | SIPCO, LLC. | System and method for transmitting an emergency message over an integrated wireless network |
9285802, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Residential solutions HVAC monitoring and diagnosis |
9295390, | Mar 02 2012 | Hill-Rom Services, Inc | Facial recognition based monitoring systems and methods |
9301689, | Dec 01 2010 | Hill-Rom Services, Inc. | Patient monitoring system |
9304521, | Aug 11 2004 | EMERSON CLIMATE TECHNOLOGIES, INC ; THE STAPLETON GROUP, INC | Air filter monitoring system |
9310094, | Jul 30 2007 | EMERSON CLIMATE TECHNOLOGIES, INC ; THE STAPLETON GROUP, INC | Portable method and apparatus for monitoring refrigerant-cycle systems |
9310439, | Sep 25 2012 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
9311804, | Apr 11 2014 | Hill-Rom Services, Inc | Patient-need prediction system |
9373241, | May 06 2005 | SIERRA WIRELESS AMERICA, INC | System and method for monitoring a wireless tracking device |
9430936, | Jun 22 1998 | SIPCO LLC | Systems and methods for monitoring and controlling remote devices |
9439126, | Jan 25 2005 | SIPCO, LLC | Wireless network protocol system and methods |
9494249, | May 09 2014 | Mueller International, LLC | Mechanical stop for actuator and orifice |
9515691, | Oct 30 2001 | SIPCO, LLC. | System and method for transmitting pollution information over an integrated wireless network |
9551504, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
9565620, | Sep 02 2014 | Mueller International, LLC | Dynamic routing in a mesh network |
9571582, | Jun 22 1998 | SIPCO, LLC | Systems and methods for monitoring and controlling remote devices |
9590413, | Jan 11 2012 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
9612132, | Dec 26 2007 | Elster Solutions, LLC | Optimized data collection in a wireless fixed network metering system |
9615226, | Oct 24 2001 | SIPCO, LLC | System and method for transmitting an emergency message over an integrated wireless network |
9638436, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
9669498, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
9690307, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
9691263, | Jun 22 1998 | SIPCO, LLC | Systems and methods for monitoring conditions |
9703275, | Jun 23 2011 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
9703287, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
9762168, | Sep 25 2012 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
9763576, | Apr 11 2014 | Hill-Rom Services, Inc | Patient-need prediction system |
9765979, | Apr 05 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Heat-pump system with refrigerant charge diagnostics |
9799204, | May 22 2009 | Mueller International, LLC | Infrastructure monitoring system and method and particularly as related to fire hydrants and water distribution |
9803902, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
9823632, | Sep 07 2006 | Emerson Climate Technologies, Inc. | Compressor data module |
9829869, | Jun 23 2011 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
9849322, | Jun 16 2010 | Mueller International, LLC | Infrastructure monitoring devices, systems, and methods |
9860820, | Jan 25 2005 | SIPCO, LLC | Wireless network protocol systems and methods |
9861848, | Jun 16 2010 | Mueller International, LLC | Infrastructure monitoring devices, systems, and methods |
9876346, | Jan 11 2012 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
9885507, | Jul 19 2006 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
9934670, | Oct 27 2008 | Mueller International, LLC | Infrastructure monitoring system and method |
D444455, | Nov 17 2000 | Vibrating child pager and transmitter | |
D578918, | May 01 2007 | OMNILINK SYSTEMS, INC | Offender monitor |
Patent | Priority | Assignee | Title |
3665475, | |||
3723876, | |||
3914692, | |||
3925763, | |||
4083003, | Nov 05 1973 | Products of Information Technology, Inc. | Vehicle location system |
4446454, | Jan 21 1981 | Home security system | |
4495496, | Dec 15 1981 | Johnson Engineering Corp. | Personnel monitoring and locating system |
4952928, | Aug 29 1988 | B I INCORPORATED | Adaptable electronic monitoring and identification system |
4998095, | Oct 19 1989 | SPECIFIC CRUISE SYSTEMS, INC | Emergency transmitter system |
5055851, | May 16 1988 | COMCAST TM, INC | Vehicle location system |
5086391, | Oct 13 1987 | Remote controller for activating speech messages and for contacting emergency services | |
5115224, | Jul 05 1991 | Detection Systems, Inc. | Personal security system network |
5159317, | Jul 12 1991 | KONINKLIJKE PHILIPS ELECTRONICS, N V | System and method for remote telephonic station actuation |
5162776, | Jul 09 1991 | KONINKLIJKE PHILIPS ELECTRONICS, N V | Emergency service apparatus and method |
5204670, | Aug 29 1988 | B I INCORPORATED | Adaptable electric monitoring and identification system |
5223844, | Apr 17 1992 | PJC LOGISTICS LLC | Vehicle tracking and security system |
5334974, | Feb 06 1992 | SIMMS SECURITY CORPORATION | Personal security system |
5365217, | Feb 20 1992 | Frank J., Toner; Atlantic Coast Alarm | Personal security system apparatus and method |
GB2247761, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 19 2004 | Statsignal Systems, Inc | StatSignal IPC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015788 | /0684 | |
Feb 17 2012 | SIPCO LLC | PETITE, DAVID | SECURITY AGREEMENT | 027766 | /0065 | |
Feb 17 2012 | SIPCO LLC | LEE, OLIVER | SECURITY AGREEMENT | 027766 | /0065 | |
Feb 17 2012 | SIPCO LLC | PETITE, CANDIDA | SECURITY AGREEMENT | 027766 | /0065 | |
Jun 02 2015 | SIPCO, LLC | PETITE, CANDIDA | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035913 | /0631 | |
Jun 02 2015 | SIPCO, LLC | PETITE, DAVID | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035913 | /0631 | |
Jun 02 2015 | SIPCO, LLC | LEE, OLIVER | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035913 | /0631 | |
Nov 14 2019 | SIPCO, LLC | ROBBINS GELLER RUDMAN & DOWD LLP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 051057 | /0681 | |
Jul 28 2020 | ROBBINS GELLER RUDMAN & DOWD LLP | SIPCO, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 053414 | /0094 |
Date | Maintenance Fee Events |
Aug 20 2001 | M286: Surcharge for late Payment, Small Entity. |
Aug 20 2001 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 24 2005 | REM: Maintenance Fee Reminder Mailed. |
Dec 30 2005 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Dec 30 2005 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Aug 04 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Aug 04 2009 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Aug 17 2009 | R2553: Refund - Payment of Maintenance Fee, 12th Yr, Small Entity. |
Aug 17 2009 | R2556: Refund - 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Aug 17 2009 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Date | Maintenance Schedule |
Feb 03 2001 | 4 years fee payment window open |
Aug 03 2001 | 6 months grace period start (w surcharge) |
Feb 03 2002 | patent expiry (for year 4) |
Feb 03 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 03 2005 | 8 years fee payment window open |
Aug 03 2005 | 6 months grace period start (w surcharge) |
Feb 03 2006 | patent expiry (for year 8) |
Feb 03 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 03 2009 | 12 years fee payment window open |
Aug 03 2009 | 6 months grace period start (w surcharge) |
Feb 03 2010 | patent expiry (for year 12) |
Feb 03 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |