The uses of lignans of the sesamin family to treat infection and inflammation is disclosed. These lignans may be delivered enterally or parenterally and either in the form of sesame oil or in purified form. A total parenteral nutrition solution or dietary supplement are the preferred forms of administration.

Patent
   5762935
Priority
Feb 25 1994
Filed
Apr 26 1995
Issued
Jun 09 1998
Expiry
Jun 09 2015
Assg.orig
Entity
Small
2
42
EXPIRED
1. A method of treating infection and minimizing the possibility of infection in at risk persons comprising administration of an effective amount of sesame oil to the at risk persons.
8. A method for treating infection or protecting against infection associated with abdominal sepsis, comprising administering to an animal in need thereof an effective amount of sesame oil.
2. The method of claim 1 wherein said sesame oil is administered enterally.
3. The method of claim 2 wherein said enteral administration comprises administration of a dietary supplement containing an effective amount of said sesame oil.
4. The method of claim 3 wherein said dietary supplement further comprises essential vitamins and minerals.
5. The method of claim 1 wherein said sesame oil is administered parenterally.
6. The method of claim 5 wherein said parenteral administration comprises administration of said sesame oil as part of a total parenteral nutrition diet.
7. The method of claim 5 wherein said sesame oil is administered as part of an oil included in a parenteral diet.
9. The method of claim 8, wherein said sesame oil is administered enterally.
10. The method of claim 8, wherein said enteral administration comprises administration of a dietary supplement containing an effective amount of said sesame oil.
11. The method of claim 10, wherein said dietary supplement further comprises essential vitamins and minerals.
12. The method of claim 8, wherein said sesame oil is administered parenterally.
13. The method of claim 8, wherein said parenteral administration comprises administration of said sesame oil as part of a total parenteral nutrition diet.

This application is a continuation of application Ser. No. 08/201,682 filed on Feb. 25, 1994 Entitled: ANTI-INFLAMMATORY AND INFECTION PROTECTIVE EFFECTS OF SESAMIN-BASED LIGNANS. The contents of all of the aforementioned applications are expressly incorporated by reference.

The present invention relates to the formulation and use of dietary supplements and nutritional solutions for enteral and parenteral treatment of the effects of infection. These same dietary supplements or nutritional solutions may also be used as anti-inflammatory agents. The active ingredient in the dietary supplement or nutritional solution is a lignan of the sesamin family. This same active ingredient has particular effectiveness in total parenteral nutrition solutions to provide similar benefits.

The last decade has seen an explosion in the exploration of the interaction between diet and disease. In particular, the effects of various amino acids and lipids in the diet on a variety of conditions including heart disease, hypercatabolic states, liver disease, immunosupresssion, and infection treatment have been uncovered. Often, the effects are far removed from the norm and as such are unexpected. One of the most important developments of this type has been the discovery that by changing the dietary lipid content, positive effects in health treatment beyond plasma fat modification could be achieved. While the early work in modifying lipid content and type in diet came from an understanding that saturated fats cause particular problems in heart disease, later work determined that not just the use of polyunsaturated fats but also the type of polyunsaturated fat was important.

There are three major families of polyunsaturated fatty acids: ω3, ω6 and ω9. The names are based on location of the closest double bonds to the methyl end of the fatty acid; that is, if the closest double bond is between the third and fourth carbon atoms from the methyl group, the molecule is classified as an ω3 fatty acid while if the double bond is between the 6th and 7th carbon atoms, it is classified as an ω6 fatty acid. Mammals can desaturate or elongate fatty acid chains but cannot interconvert fatty acids from one family to another. The most important dietary fatty acids are the C18 and C20 fatty acids, primarily linoleic (C18:2ω6), linolenic acid (C18:3ω3) and dihomo-γ- linolenic acid (C18:3ω6). Manipulation of the content of these fatty acids changes the arachidonic eicosapentanoic and docosahexanoic acid (C20:4ω6, C20:5ω3, and C22:6ω receptively) ratios and can cause far reaching effects in terms of immunosuppression, response to hypercatabolic states, and infection. For example, U.S. Pat. No. 4,752,618, issued Jun. 21, 1988, on an application of Mascioli et al., the disclosure of which is incorporated herein by reference, discloses the beneficial effects of ω3 fatty acids in the treatment of infection. In U.S. Pat. No. 5,260,336, issued Nov. 3, 1993, on an application of Forse et al., the disclosure of which is also incorporated herein by reference, concerns a method of minimizing the effect of catabolic illness or infection using an oil such as oleic acid which is rich in ω9 fatty acids. Other similar patents and articles, such as U.S. Pat. No. 4,810,726, issued Mar. 7, 1989, on an application of Bistrian et al., the disclosure of which is also incorporated herein by reference, disclose other means of treating illness using fatty acid dietary manipulation.

The "culprit" in many diets appears to be the high level of ω6 fatty acids, primarily linoleic acid, a precursor for the formation of arachidonic acid which is a substrate for the production of proinflamatory dienoic eicosanoids including PGE2 and TxA2 which can lead to elevated levels of thromboxane A2 and related prostanoids. Elevation of these prostanoids has been linked to problems in response to endotoxin challenge and other infection states. Accordingly, the new wave in diets has been to minimize the ω6 fatty acid content (which, although an essential fatty acid, is not needed in the quantities found in most commercial oils) while maximizing the ω3 fatty acids (e.g., fish oil) and ω9 fatty acids (e.g., canola oil).

One byproduct of the recent exploration of the relationship between dietary modification and health has been a renewed look at traditional homeopathic remedies. One of these is sesame oil, which has long been known as a traditional health or medicinal food. Recent studies of sesame oil, which contains primarily ω6 fatty acids, indicate that the health benefits from use of sesame oil is based not on the fatty acid content, but rather on a lignan included therein, sesamin. In fact, sesamin is but one of several related lignans found in sesame oil. These lignans include sesaminol, sesamolin, episesamin and episesaminol. A recent article entitled "Sesamin: A Multifunctional Gift From Nature", by M. Sugano and K. Akimoto, Journal of Chinese Nutrition Society 18, 1-11 (1993), is a summary of known and projected effects of sesamin. This article suggests that the possible benefit of sesamin arise from its interference with linoleic acid metabolism, hypothesizing that the methodology is with interference with δ-5-desaturate, an enzyme that catabolizes the reaction from dihomo-γ-linolenic acid (DGLA) to arachidonic acid (AA), an important step in linoleic acid metabolism. The article also cites other papers discussing other possible beneficial effects of sesamin including hypocholesterolemic action, enhancement of hepatic detoxification of chemicals and alcohol, a protective effect against chemically induced mammary cancer, in vivo antioxidative action and more problematic, a potential link to immunopotentiation.

Although this list of possible beneficial effects of sesamin and its related lignans is impressive, nothing has been said or discussed on its possible effects on infection and/or inflammation. In fact, if the mechanism of action hypothesized is correct, i.e., affecting δ-5-desaturase, feedback inhibition might turn off this anti-infective activity and there would be no basis for any inflammatory activity. As is disclosed herein, there is now reason to believe that this proposed mode of operation is incorrect, and that the actual means of activity of sesamin and its related lignans is on either phospholipase A2 or cyclooxygenase. Either of these mechanisms could cause anti-inflammatory effects. It should be noted, however, that identifying the mode of operation is not required to practice the invention.

Accordingly, an object of the invention is to treat infection and those at risk with infection with a dietary supplement or nutrition solution which provides added health benefits.

A further object of the invention is to provide a dietary supplement or nutrition solution, e.g., a parenteral nutrition solution, which provides anti-inflammatory activity.

Another object of the invention is to provide a parenteral nutrition solution, preferably a total parenteral nutrition solution, which has both anti-inflammatory and anti-infection characteristics.

These and other objects and features of the invention will be apparent from the following description and the claims.

The present invention features a method of treating infection and inflammation as well as dietary supplements and parenteral nutrition solutions useful in the methods of the invention. These dietary supplements and parenteral nutrition solutions have lignans in the sesamin family as the active ingredient.

More particularly, the present invention concerns a method of treating infection and minimizing the possibility of infection in at risk persons by administering an effective amount of a lignan selected from the group consisting of sesamin, episesamin, sesaminol, sesamolin, episesaminol, and mixtures thereof. An "effective amount", as used herein, means an amount sufficient to show statistically significant anti-infection or anti-inflammatory effects. The range of effective amount is about 1-10 mg/kg body weight. These lignans can be administered in purified form, such as purified sesamin, or administered in the form of sesame oil. For certain uses, enteral administration in the form of a dietary supplement containing an effective amount of the lignan is preferred, while for others, parenteral administration may be preferred. The dietary supplement should include essential fatty acids and, possibly, essential vitamins and minerals in addition to lignan. In its most fulsome form, the parenteral nutrition solution may be used as a total parenteral solution, containing all essential nutrients for health. These same solutions may be used not just for treating infection but also for treating inflammation.

The present invention is based on the beneficial effects of sesamin and its related lignans on treatment of infection and/or inflammation. As noted, the common hypothesis for all actions of sesamin described to date has been the theory that it affects the enzyme δ-5-desaturase. In contrast, it appears that this scientific theory may be wrong and that it appears instead to be that sesamin inhibits the activity of cyclooxygenase (an enzyme which converts arachidonic acid to its metabolites) or the activity of phospholipase A2 (an enzyme which releases arachidonic acid from membrane phospholipids). As such, since drugs which inhibit the activity of phospholipase A2 (such as aspirin and several steroids) or cyclooxygenase (such as indomethacin) have anti-inflammatory effects, it appears that sesamin and its related lignans could be used as anti-inflammatory agents. Further, as will be shown herein, direct testing shows that sesamin has surprising anti-infection capabilities.

The following non-limiting examples show the activity of these lignans in terms of lipid metabolism and infection treatment.

In this example, the effects of a sesame oil diet on circulating lipids and the mode of activity of the lignans is investigated.

More particularly, if, as has been postulated by others, sesamin inhibits δ-5-desaturase activity, it would be expected that a decrease in arachidonic acid levels would coincide with an accumulation of dihomo-γ-linoleic acid from the sesame oil diet. However, under this mode of operation, there should be no effect on PGE2 or TxB2 levels. In contrast, if the PGE2 and TxB2 values are modified, this would not support the δ-5-desaturase mode of activity but rather a cyclooxygenase or phospholipase A2 activity mode.

In this and the following example, a comparison was made between two diets which were as close in fatty acid and nutritional content as possible except one contained sesame oil, and its associated sesamin lignans, while the other was based on safflower oil. Sesame oil (Welch, Holme & Clark Company, Inc., Newark, N.J.), and safflower oil (SVO Specialty Products, Culberton, Mont.), provided the ω6 fats. Palm oil and Trisum (high oleic sunflower oil) were used as fat fillers. Table 1 shows the fat portion of the diet.

TABLE 1
______________________________________
Safflower Oil Sesame Oil Palm Oil Trisum
______________________________________
SO 52 g 0 88 g 10 g
SSO 34 g 34 g 82 g 0
______________________________________

The lipid portions of each diet were approximately equal in the amounts of saturated, monounsaturated and polyunsaturated fats (approximately 10% each) and also equal in the amount of linoleic acid.

One hundred fifty grams of the lipid was added to 850 g. of AIN-76 basel diet, a fat-free basel diet which contains essential minerals and vitamins. The diets each had 30% of the calorie value and 15% by weight formed from the oil. An antioxidant, t-butyl hydroxytoluene (0.05%) was added and the resulting diets were thoroughly mixed. The diets were prepared in bulk, partitioned into daily rations, and stored at 4° C.

Balb/c mice (Jackson Laboratories) were fed the diets ad libium for a period of three weeks. The animals were fed every day before dusk. The phospholipid fatty acid compositions of plasma and of the liver cell membranes were determined by gas chromatography following thin layer of chromatography. The results showed a 1-3% incorporation of DGLA into the phospholipids from both the plasma and liver cell membranes for those mice fed with the sesame oil diets while none was found in those fed with the safflower oil diets. In addition, ten animals of each group were injected with 10μ g/kg body weight lypopolysacchride which induces the production of proinflamatory mediators. Plasma samples were collected 90 minutes later, stored at -90°C, and used to determine if there were any effects on the concentration of the pro-inflammatory mediators, TNF-α, PGE 2 and TxB2. These mediators decreased by approximately by 50% in the sesame oil diets when compared with the safflower oil diet.

The experimental determination of a marked decrease in PGE2 and TxB2 after sesame oil diet show what would be expected if cyclooxygenase or phospholipase A2 were the affected enzymes. Thus, it appears that the mode of operation suggested by the prior articles is probably incorrect and the modes of operation proposed herein are correct. In addition, since the modes of operation now postulated (and confirmed by experiment) are the same as are shown for a variety of steroidal and other anti-inflammatory drugs such as aspirin or indomecithin, these lignans should have similar anti-inflammatory properties.

In this example, the same diets and mice were used to determine if diet modification had any effect on the ability of the animals to withstand infection. The animals were fed the diets for three weeks ad libium.

At the end of the three week feeding period, twenty animals in each group underwent cecal ligation and puncture. The mice were anaesthetized and then shaved over the anterior abdominal wall. A midline incision approximately 2 cm long was made, sufficient to expose the cecum and adjoining intestine. With a 3-0 silk suture, the cecum was tightly ligated at its base without causing bowel obstruction. The cecum was then punctured twice with a 22 gauge needle, gently squeezed to exude feces and to ensure that the two puncture holes did not close. The overlapping abdominal incision was then closed and 1 ml of saline was administered subcutaneously for fluid resuscitation. This cecal ligation and puncture is a widely accepted form of infection model to resemble abdominal sepsis. See, e.g., C. Baker et al., "Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model," Surgery(Aug. 1983), 331-335. Survival of the mice is the normal measure of treatment effectiveness.

Thirteen of the twenty mice in the group maintained on the sesame oil diet survived (65%) while only four of the twenty mice in the safflower oil diet survived (20%). Using a student t-test, the mortality rates were significantly different (p<0.01). Accordingly, it is clear that not only does a diet including sesamin reduce the levels of inflammatory molecules such as TNF-α, PGE2 and TxB2 but it also provides protection against infection.

Those skilled in the art will recognize other alternative forms of the invention besides those disclosed in the above examples. There examples are merely exemplary of the invention which is defined by the following claims.

Forse, R. Armour, Chavali, Sambasiva

Patent Priority Assignee Title
10172896, Dec 09 2015 Oy Granula Ab Ltd. Use of a composition for lowering cholesterol level in a mammal, a method for its preparation and a product and a food additive comprising said composition
8987325, Feb 06 2006 SEARS IP LLC Inhibitors of arachidonic acid formation
Patent Priority Assignee Title
3901875,
3920440,
4317816, Aug 13 1979 Osaka Chemical Laboratory Co., Ltd. Saponin containing composition effective against adrenal atrophy
4339442, Mar 11 1980 Gynosaponins, their use and a process for preparing the same
4375480, Jun 22 1981 TYRA COSMETICS, INC , Facial skin activator emulsion and method of skin moisturizing and cleansing
4427694, Jun 11 1982 The Vinoxen Company, Inc. Sesamin as a psychotropic agent
4442092, Apr 19 1982 GREENBELT DEHYDRATING CO , INC Sesame nematocidal composition
4501734, Mar 06 1981 Wakunaga Seiyaku Kabushiki Kaisha Promotion of absorption of drugs administered through the alimentary system
4649206, Sep 03 1985 Takemoto Yushi Kabushiki Kaisha Lignan compound
4708820, Jun 26 1985 Takemoto Yushi Kabushiki Kaisha Method of producing phenol-type natural antioxidative materials from processed sesame seed products
4722941, May 31 1978 Solvay Pharmaceuticals GmbH Readily absorbable pharmaceutical compositions of per se poorly absorbable pharmacologically active agents and preparation thereof
4752618, Jul 12 1984 BETH ISRAEL DEACONESS MEDICAL CENTER, INC , THE Method of minimizing efects of infection through diet
4755504, Oct 03 1985 Pharmaceutical composition from Tienchi
4767626, Mar 11 1985 Remedy for anemia and arthritis
4774229, Jun 19 1979 ACCESS PHARMACEUTICALS, INC Modification of plant extracts from zygophyllaceae and pharmaceutical use therefor
4774343, Mar 31 1986 Takemoto Yushi Kabushiki Kaisha Method of producing active antioxidant
4780475, Sep 30 1983 Novartis Nutrition AG Preparation for the prevention of catabolism
4803153, Mar 19 1985 Nippon Paint Co., Ltd. Process for separating blood serum from blood
4810726, Apr 01 1987 BETH ISRAEL DEACONESS MEDICAL CENTER, INC , THE Kernel oils and disease treatment
4920098, Sep 17 1986 Baxter International Inc Nutritional support or therapy for individuals at risk or under treatment for atherosclerotic vascular, cardiovascular, and/or thrombotic diseases
4966893, Jan 13 1989 PANG, PETER K T Method for treatment of senile dementia
4981844, Oct 04 1988 University of Cincinnati Method to improve immune response and resistance to infection following surgery by diet composition
5053387, Jan 12 1987 Shriners Hospitals for Crippled Children Omega-3 fatty acids in traumatic injury treatment
5055446, Oct 21 1988 UNIVERSITY OF CINCINNATI, Method to improve survival of patients during sepsis by diet composition
5089268, May 02 1990 AMINOTEK SCIENCES, INC A CORP OF NEW JERSEY Egg phosphatide lipid emulsions altered for a specific therapeutic fatty acid composition
5166139, Feb 26 1987 Indena, S.p.A. Complexes of saponins and their aglycons with phospholipids and pharmaceutical and cosmetic compositions containing them
5180588, Jul 21 1989 SUNTORY HOLDINGS LTD Liver function improver
5209826, Feb 26 1991 Takemoto Yushi Kabushiki Kaisha Method of separating sesamin and episesamin
5211953, Jul 21 1989 SUNTORY HOLDINGS LTD Liver function improver
5214062, Apr 08 1992 TRANSCEND THERAPEUTICS, INC Method and composition for treating immune disorders, inflammation and chronic infections
5229136, May 21 1992 Nestec Ltd Low caloric density enteral formulation designed to reduce diarrhea in tube-fed patients
5231085, Oct 31 1988 Nestec S A Compositions and methods for the enhancement of host defense mechanisms
5260336, Apr 30 1992 BETH ISRAEL DEACONESS MEDICAL CENTER, INC , THE Monounsaturated fat as dietary supplement to minimize the effects of catabolic illness
5270335, Oct 22 1990 SUNTORY HOLDINGS LTD Method of inhibiting metabolism of cholesterol
5273965, Jul 02 1992 ANTIGENICS INC Methods for enhancing drug delivery with modified saponins
5397778, Feb 25 1994 SAMBASIVA CHAVALI; R ARMOUR FORSE Enteral formulations for treatment of inflammation and infection
EP387000,
EP409654,
EP519673,
JP2138120,
JP3027319,
JP4368326,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 26 1995Beth Israel Deaconess Medical Center, Inc.(assignment on the face of the patent)
Oct 01 1996New England Deaconess Hospital CorporationBETH ISRAEL DEACONESS MEDICAL CENTER, INC , THEMERGER SEE DOCUMENT FOR DETAILS 0084540489 pdf
Dec 16 2003BETH ISRAEL DEACONESS MEDICAL CENTER F K A NEW ENGLAND DEACONESS HOSPITAL CORPORATIONAMERIFIT, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0148360230 pdf
Apr 01 2005AMERIFIT NUTRITION, INC CAPITALSOURCE FINANCE LLCSECURITY AGREEMENT0161450010 pdf
Apr 01 2005AMERIFIT, INC CAPITALSOURCE FINANCE LLCSECURITY AGREEMENT0161450010 pdf
Apr 01 2005MEDICAL FOODS, INC CAPITALSOURCE FINANCE LLCSECURITY AGREEMENT0161450010 pdf
Date Maintenance Fee Events
Dec 10 2001M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 05 2002ASPN: Payor Number Assigned.
Dec 28 2005REM: Maintenance Fee Reminder Mailed.
Jun 09 2006EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 09 20014 years fee payment window open
Dec 09 20016 months grace period start (w surcharge)
Jun 09 2002patent expiry (for year 4)
Jun 09 20042 years to revive unintentionally abandoned end. (for year 4)
Jun 09 20058 years fee payment window open
Dec 09 20056 months grace period start (w surcharge)
Jun 09 2006patent expiry (for year 8)
Jun 09 20082 years to revive unintentionally abandoned end. (for year 8)
Jun 09 200912 years fee payment window open
Dec 09 20096 months grace period start (w surcharge)
Jun 09 2010patent expiry (for year 12)
Jun 09 20122 years to revive unintentionally abandoned end. (for year 12)