A gas turbine engine (10) includes a translating sleeve (38) disposed within a downstream portion of an outer nacelle (20). A variable area fan exhaust nozzle (30) is defined between the trailing edge (32) of the translating sleeve (38) and a conical core cowl (26) disposed radially inwardly of the outer nacelle (20) and spaced apart therefrom. The translating sleeve (38) translates downstream to cooperate with the decreasing diameter of the core cowl (26) to increase the area of the fan exhaust nozzle (30).
|
1. A variable area exhaust nozzle for a gas turbine engine having a longitudinally extending axis, comprising:
an aerodynamically streamlined outer nacelle having an upstream portion and a downstream portion, the downstream portion including: a thrust reverser having a moveable body and a plurality of blocker doors radially spaced apart from the moveable body, the thrust reverser being positionable at an engaged position and a disengaged position, and a fixed geometry translatable sleeve having a trailing edge aft of the moveable body, the sleeve being translatable between and deployable at a stowed position, a fully deployed position and a plurality of intermediate positions, the sleeve in its stowed position being nested radially intermediate the moveable body and the blocker doors so that the sleeve inhibits movement of the thrust reverser to its engaged position; a fixed geometry, aftwardly convergent core cowl radially spaced from the outer nacelle and cooperating therewith to define a longitudinally extending annular exhaust duct the exhaust duct having a throat defined by the core cowl and the trailing edge of the sleeve, the throat being the exclusive outlet for discharging a quantity of working medium gases from the duct for producing forward thrust, the duct having, for all positions of the sleeve, an aftwardly generally diminishing annular area including a throat area, the throat area being the minimum area of the duct; a sleeve actuation system including a plurality of sleeve actuators for effecting translatory movement of the sleeve, the translatory movement being the exclusive means for varying the throat area and the quantity of forward thrust producing gases discharged from the duct, aftward movement of the sleeve causing an increase in the throat area and forward movement of the sleeve causing a decrease in the throat area; a thrust reverser actuation system including a plurality of thrust reverser actuators for positioning the thrust reverser at the disengaged position whereby working medium gases are discharged from the duct exclusively through the throat to produce forward thrust, and at the engaged position whereby at least a portion of the working medium gases are diverted to produce reverse thrust; and the thrust reverser actuation system being mechanically independent of the sleeve actuation system so that translation of the sleeve does not actively contribute to engagement of the reverser.
2. The exhaust nozzle of
4. The exhaust nozzle of
5. The exhaust nozzle of
6. The exhaust nozzle of
7. The exhaust nozzle of
|
This is a continuation in part of U.S. application Ser. No. 08/572,839, filed Dec. 14, 1995, which in turn is a continuation in part of U.S. application Ser. No. 08/326,621, filed Oct. 20, 1994, now abandoned.
The present invention relates to a gas turbine engine and, more particularly, to a variable area fan exhaust nozzle therefor.
Important performance criteria for modern aircraft gas turbine engines include greater thrust, minimization of weight, and reduction in noise levels and fuel consumption. As is well known in the art, a reduction in the fan pressure ratio improves the propulsive efficiency of a gas turbine engine. As the fan pressure ratio is reduced, the mass flow rate through the fan must be increased to maintain the same engine thrust. Longer fan blades increase the mass flow rate. However, reduction of the fan pressure ratio and an increase in the length of the fan blades adversely affect the fan stability. Longer fan blades rotating at lower speeds pump additional air through the fan. At cruise, the additional mass flow at the lower fan pressure ratio contributes to the engine thrust as the air exists through a fan exhaust nozzle disposed downstream of the fan. However, at takeoff, climb, and descent, the additional air is restricted through the fan exhaust nozzle and the resulting back pressure on the fan negatively affects the aerodynamic stability of the fan. Thus, fan stability is a limiting factor to low fan pressure ratio engines.
Varying the pitch of the fan blades is one approach to control fan stability. The pitch of the fan blades changes to tailor the amount of airflow passing through the fan during the different modes of operation of the gas turbine engine. During takeoff, climb and descent, the amount of air pumped by the fan blades is reduced, thereby reducing back pressure and avoiding instability conditions.
Another approach to improve performance of the gas turbine engine is described in U.S. Pat. No. 5,181,676 to Lair, entitled "Thrust Reverser Integrating A Variable Exhaust Area Nozzle". The patent discloses two clam shells that rotate about a pivot upon actuation to increase the exhaust area of the nozzle. A limitation of the disclosed fan nozzle is that only a small increase in the nozzle area is possible without adversely affecting external or internal aerodynamics. Moreover, the nozzle can suffer undesirable leakage of airflow, thereby reducing the performance of the gas turbine engine. Additionally, since the fan exhaust nozzle functions as a pressure vessel, it is subjected to significant internal pressure that tends to deform each clam shell, since they are supported only at discrete points. The clam shell, as disclosed in the above-mentioned patent, must carry a significant weight penalty to control such deformation of the fan exhaust nozzle.
U.S. Pat. No. 4,922,713 to Barbarin et al shows a thrust reverser with a variable exhaust cross section. The patent discloses a translating cowl moving downstream to open an auxiliary passageway, thereby increasing the area available for discharging gases from the exhaust nozzle. However, the disclosed invention is not suitable for low pressure ratio fans, because the actuation system of the disclosed configuration is limited to a sequence of operations which, for low pressure ratio fan designs, will cause instability of the fan during transition to reverse thrust. The configuration dictates that the translating cowl must be stowed prior to activation of the thrust reverser. For low pressure ratio fans, the reduction in the fan nozzle area will be detrimental to stability and will result in stalling of the fan.
Furthermore, the described configuration has significant aerodynamic and acoustic limitations. The disclosed configuration has an adverse impact on an aerodynamic efficiency of both the overall aircraft and the propulsion system. The adverse effect to the aircraft is two-fold. At high speed operations, the radial velocity component due to the auxiliary nozzle flow is a potential safety hazard because of its detrimental effect on flow as it approaches the wing. At low speed operations, the radial velocity component disturbs airflow around the wing degrading lift at low speeds and thereby degrading the performance of the aircraft.
The auxiliary airflow path of the disclosed configuration adversely affects the propulsion system by introducing three aerodynamic performance loss mechanisms: shock losses produced by supersonic turning; increasing pressure drag; and increased friction losses.
Moreover, the disclosed configuration negatively impacts internal aerodynamic performance by incorporating struts that span the auxiliary airflow path. The struts reduce the aerodynamic performance of the internal flow path and also increases the scrubbing drag and pressure drag of the internal flow.
Additionally, the disclosed configuration significantly degrades acoustic performance of the aircraft because the auxiliary nozzle introduces multiple noise sources.
Another major shortcoming of the U.S. Pat. No. 4,922,713 is that the second moveable cowl, once translated to the maximum area position, must be retracted prior to entering the reverse thrust mode so that the second moveable cowl can be locked to the first moveable cowl. Thus, any malfunction which prevents retraction of the second moveable cowl will prevent deployment of the thrust reverser.
There is still a great need to provide a high performance gas turbine engine having minimized weight, lower noise, and lower fuel consumption levels without jeopardizing other performance characteristics thereof.
According to the present invention, a gas turbine engine having a core engine enclosed in a conical core cowl and an aerodynamically contoured outer nacelle with the outer nacelle being disposed radially outwardly of the core cowl and spaced apart therefrom and defining a duct therebetween, includes a translating sleeve disposed in the downstream portion of the outer nacelle to increase the effective throat area of the fan exhaust nozzle as the translating sleeve translates axially downstream and cooperates with a decreasing downstream diameter of the conical core cowl. The fan exhaust nozzle throat is defined between the trailing edge of the translating sleeve and the core cowl. The translating sleeve comprises an aerodynamically-shaped body and a plurality of actuating means moving the translating sleeve from a fully stowed position axially downstream into a fully deployed position during climb, takeoff, and descent. The translating sleeve is also capable of having a plurality of intermediate deployed positions.
The variable area fan exhaust nozzle allows gas turbine engines to have higher efficiency at cruise without adversely effecting fan stability at other modes of operation. With the translating sleeve in the fully stowed position at cruise, propulsive efficiency is high as the air exits through the fan exhaust nozzle. At takeoff, climb, and descent, the translating sleeve is translated axially downstream into the deployed position so that the effective throat area of the fan exhaust nozzle, defined between the trailing edge of the axially extended translating sleeve and reduced diameter core cowl, is increased. Therefore, at takeoff, climb, and descent, the additional airflow, generated by the fan blades having a lower pressure ratio and a greater mass flow, exits through the increased area of the fan exhaust nozzle without causing sufficient back pressure to stall the fan. Additionally, the present invention improves the fuel consumption at cruise and reduces noise levels at takeoff, climb, and approach. Moreover, the plurality of intermediate deployed positions of the translating sleeve results in a gradual and continuous variation of area of the fan exhaust nozzle, allowing further optimization of performance of the gas turbine engine by improving weight of the overall engine and fuel consumption.
One feature of the present invention is that the translating sleeve comprises two semi-cylinders mating with each other to provide a continuous inner surface of the nozzle to withstand internal pressure and to minimize the leakage of airflow. Another feature of the present invention is that a generally convergent cross-sectional area of the duct is maintained during all positions of the translating sleeve so that the minimum cross-sectional area of the duct occurs at a throat defined by the trailing edge of the translating sleeve and the core cowl. A further feature of the present invention is that as the translating sleeve moves downstream, the throat area is monotonically increasing as a function of the length of the translation of the translating sleeve.
A major advantage of the present invention is that the translating sleeve is relatively simple structurally and is able to withstand "hoop" loading with relatively light weight structure. Another advantage of the present invention is that it overcomes aerodynamic, acoustic, and safety deficiencies of the prior art.
The foregoing and other objects and advantages of the present invention will become more apparent in light of the following detailed description of the exemplary embodiments thereof, as illustrated in the accompanying drawings.
FIG. 1 is a simplified, cross-sectioned elevation of a gas turbine engine and a nacelle with a thrust reverser and a translating sleeve, according to the present invention.
FIG. 2 is an enlarged, sectioned elevation of the thrust reverser and the translating sleeve of FIG. 1 at cruise with the thrust reverser and translating sleeve being depicted in a stowed position.
FIG. 3 is a sectioned elevation of the thrust reverser and the translating sleeve of FIG. 2, at takeoff, climb, and descent with the translating sleeve being depicted in deployed position.
FIG. 4 is a sectioned elevation of the thrust reverser and the translating sleeve of FIG. 3 at reverse with both the thrust reverser and the translating sleeve being depicted in deployed position.
FIG. 5 is a diagrammatic, cross-sectioned elevation of the thrust reverser and the translating sleeve of FIG. 4, taken along line 5--5.
FIG. 6 is a graph illustrating the area of an exhaust duct defined by the sleeve and a core cowl with the sleeve in stowed, partially deployed and fully deployed positions.
FIG. 7 is a graph illustrating the area of an exhaust nozzle throat as a function of the amount of sleeve translation.
Referring to FIG. 1, a gas turbine engine 10 having a core engine 12 with a fan 14 disposed about a center longitudinal axis 16 includes an annular nacelle 18 encasing the core engine 12. The annular nacelle 18 comprises an aerodynamically streamlined outer nacelle 20 having an upstream portion 22 and a downstream portion 24 and a conical, aftwardly convergent, fixed geometry core cowl 26 disposed radially inwardly from the outer nacelle 20 and spaced apart therefrom. The outer nacelle 20 cooperates with the core cowl 26 to define a longitudinally extending annular flow path or exhaust duct 28 therebetween. The discharge plane of the exhaust duct is a throat 30 defined between a trailing edge 32 of the outer nacelle 20 and the core cowl 26. The throat is the exclusive outlet for discharging a quantity of working medium gases from the duct for producing forward thrust.
Referring to FIGS. 2-4, the downstream portion 24 of the outer nacelle 20 includes a thrust reverser mechanism 36 positionable at an engaged position (FIG. 4) and at a disengaged position (FIGS. 2 and 3) and a fixed geometry fan exhaust nozzle translating sleeve 38. The thrust reverser mechanism 36 is of a conventional type, having a plurality of thrust reverser blocker doors 50 and a thrust reverser movable body 52 with a recess 54 to accommodate a plurality of turning vanes 56 and a plurality of thrust reverser actuators 58 therein. The turning vanes 56, that include a plurality of guide vanes 60, are secured onto a torque box 62 on the upstream end thereof and a support ring 64 on the downstream end thereof. A thrust reverser actuation system includes thrust reverser actuators 58 which are hydraulic actuators of the conventional type, having a cylinder 66 and a moveable rod 68, wherein the cylinder is secured onto the torque box 62 and the rod 68 is secured onto an inner surface of the recess 54. Hydraulic pressure to the actuators is provided through tubing 70. The thrust reverser blocker door 50 is disposed radially inwardly of the thrust reverser body 52 and is in a substantially parallel relationship to the longitudinal axis 16 when in the disengaged position, as shown in FIGS. 1 through 3. The thrust reverser blocker door 50 pivots about a pivot point 71 into an engaged position, as shown in FIG. 4 so that at least a portion of the working medium gases flowing through duct 28 are diverted through the turning vanes to produce reverse thrust.
The fan exhaust nozzle translating sleeve 38, having an aerodynamically shaped outer surface 72 and inner surface 74, is disposed radially inwardly of the thrust reverser 36 and radially outwardly of the blocker door 50. The sleeve is translatable between and deployable at a stowed position (FIG. 2), a deployed position (FIG. 3) and a plurality of intermediate positions, and translatory movement of the sleeve is the exclusive means for varying the throat area and the quantity of forward thrust produces gases discharged from the duct. Aftward movement of the sleeve causes a nondiscontinuous increase in the throat area while forward movement causes a nondiscontinuous decrease in the throat area. The sleeve extends downstream of the thrust reverser 36 and, when in its stowed position, is nested radially intermediate the movable body and the blocker doors. A sleeve actuation system includes a plurality of translating sleeve actuators 76 to provide axial translation to the translating sleeve 38. Each actuator 76 is of a hydraulic type, having a cylinder 78 and a moveable rod 80, with the cylinder 78 being secured onto the torque box 62 and the rod 80 being secured onto the translating sleeve 38. An aerodynamic flap seal 82 is fixedly attached to the most downstream portion of the thrust reverser 36 to bridge the gap between the thrust reverser 36 and the translating sleeve 38 to ensure an aerodynamically smooth exterior surface of the outer nacelle 20. An inflatable seal 84 is disposed between the translating sleeve 38 and the thrust reverser 36 to reduce air leakage, therebetween during translation. Alternatively, a lip seal or any other type of a seal may be used to prevent air leakage. A translating sleeve bumper seal 85 is disposed on a leading edge of the translating sleeve 38 and bears against the pivot point 71, when the translating sleeve 38 is in a fully stowed position. A thrust reverser bumper seal 86 is disposed on the leading edge of the inner wall of the thrust reverser body 52 and bears against the torque box 62 when the thrust reverser 36 is in the fully stowed position to reduce air leakage.
Referring to FIG. 5, the thrust reverser body 52 and the translating sleeve 38 each comprise two semi-cylinders 88, 89 and 90, 91, respectively. Each semi-cylinder 90, 91 of the translating sleeve 38 includes longitudinal edges 92-93, 94-95, respectively. Each longitudinal edge 92-95 has a T-slider 96 attached thereto. The T-sliders 96 of the longitudinal edges 92, 94 slidingly engage tracks 97 of a hinge 99 securing the hinge mechanism 98 onto a pylon (not shown), which is attached to the wing of the airplane (not shown). The T-sliders 96 of the longitudinal edges 92-95 of the translating sleeve 38 slidingly engage tracks 97 of a latch mechanism 100, which is disposed substantially diametrically from the hinge mechanism 98. The semi-cylinders 90, 91 of the translating sleeve 38 and the latch and hinge mechanisms 100, 98 form a substantially continuous annulus with the substantially continuous surface 74. The thrust reverser 36 has a mounting structure analogous to that of the translating sleeve 38. T-sliders 96 of longitudinal edges 101-104 of the semi-cylinders 88,89 of the thrust reverser body 52 slidingly engage the tracks 97 of the hinge and latch mechanisms 98,100. The latch mechanism 100 can be opened to allow the two sets of semi-cylinders 88-89, 90-91 of the thrust reverser 36 and of the translating sleeve 38 to pivot about the hinge mechanism 98 to allow access to the core engine 12 disposed therein. O-ring seals (not shown) are disposed at the ends of the tracks 97 to prevent air leakage between the tracks 97 and the T-sliders 96.
The inner surface 74 of the translating sleeve 38 cooperates with the core cowl 26 to define a longitudinally extending annular exhaust duct 28 whose discharge plane is a throat 30 defined by the core cowl and the trailing edge 32 of the sleeve. The throat is the exclusive outlet for discharging a quantity of working medium gases from the duct for producing forward thrust. For all positions of the sleeve, the duct has an annular area which generally diminishes in the aft direction so that the area at the throat is the minimum area of the duct. This is seen most clearly in FIGS. 6 and 7. FIG. 6 shows the ratio of duct cross-sectional area to the minimum throat area (the throat area with the sleeve in its stowed position). The horizontal axis of FIG. 6 is a longitudinal distance, expressed in inches, along duct 28 where the value "30" corresponds to the longitudinal position at which the core cowl diameter is maximum. The area variation as a function of longitudinal distance is shown for stowed, partially deployed and fully deployed positions of sleeve 38. The rightmost terminus of each line represents the throat and demonstrates that the minimum duct area always occurs at the throat (i.e. at the exit plane of the duct 28). FIG. 7 shows the throat area as a function of the amount of sleeve translation and demonstrates that the area variation is approximately linear.
Additionally, the cross-sectional exit area of the throat is monotonically increasing as a function of aftward translation of the translating sleeve 38. Although any monotonically increasing behavior of the cross-sectional throat area of the nozzle is acceptable, for simplified control and greater accuracy in the positioning of the translating sleeve 38, it is most desirable to have a linear change in the cross-sectional area with respect to the position of the translating sleeve.
In cruise mode, shown in FIGS. 1 and 2, the moveable rods 68 of the thrust reverser actuators 58 are in their retracted positions so that the thrust reverser 36 is in its disengaged position. Working medium gases are therefore discharged from duct 28 exclusively through the throat 30 to produce forward thrust. The moveable rods 80 of the translating sleeve actuators 76 are also in their retracted positions so that the sleeve is in a fully stowed position where it is nested radially between the moveable body 52 and the blocker doors 50. As shown in FIG. 5, there are six thrust reverser actuators 58 and six translating sleeve actuators 76. The actuators and their respective actuating systems are mechanically independent of each other in that there is no mechanical interconnection between the actuating system of the reverser and the actuating system of the area modulating sleeve. Aftward translation of sleeve 38 by actuators 76 does not actively contribute to engagement of the reverser since continued operation of the sleeve actuation system, subsequent to deployment of the sleeve, will neither engage the reverser nor pre-position the reverser components in anticipation of subsequent reverser engagement. This independent arrangement is advantageous since malfunction of the sleeve actuation system cannot cause or actively contribute to uncommanded engagement of the thrust reverser. Uncommanded thrust reverser engagement can only result from a highly improbable dual malfunction of both the sleeve actuation system and the mechanically independent reverser actuation system. The sleeve does, however, passively contribute to engagement of the reverser since the sleeve, when in the stowed position of FIGS. 1 and 2, inhibits aftward movement of the moveable body 52 and accompanying aftward and pivotal movement of blocker doors 50. Thus, even if the reverser actuation system malfunctions and commands engagement of the reverser during cruise operation, the sleeve guards against such engagement.
At takeoff, climb, and descent, shown in FIG. 3, the translating sleeve 38 is fully deployed. The reverser remains at its disengaged position during and after translation of the sleeve and consequently the aerodynamically streamlined character of the outer nacelle is preserved. The hydraulic pressure activates the plurality of translating sleeve actuators 76 so that the moveable rods 80 extend axially downstream, thereby transmitting axial, downstream movement to the translating sleeve 38. The sliding downstream movement is effectuated as the T-sliders 96 disposed along the longitudinal edges 92-95 of the semi-cylinders 90, 91 of the translating sleeve 38 slidingly engage the tracks 97 of the hinge and latch mechanisms 98, 100. As the translating sleeve 38 is translated downstream, the annular area of the exhaust nozzle throat 30' defined by the trailing edge 32 of the translating sleeve 38 and the core cowl 26 is increased. The effective increase in the annular area of the fan nozzle is due to the decreasing downstream diameter of the conical core cowl 26. The greater area fan nozzle throat 30' becomes the controlling area for the exiting airflow 28 at takeoff, climb, and descent. The aerodynamically shaped inner surface 74 of the translating sleeve 38 insures that the airflow is not choked upstream of the fan exhaust nozzle 30'. A number of intermediate deployed positions between the fully stowed position and fully deployed position for the translating sleeve are possible with the hydraulic actuators being activated gradually.
After aircraft touch down, the thrust reverser 36 may be positioned at its engaged position to produce reverse thrust. For the thrust reverser 36 to be activated and effective, the translating sleeve 38 must first be translated aftwardly to expose the turning vanes 56 to the gases in the duct 28 and to enable aftward movement of the reverser. The translating sleeve 38 is activated and translates downstream in the same manner as described above. The thrust reverser 36 is moved axially downstream when the hydraulic pressure builds up in the thrust reverser cylinders 66 and extends the moveable rods 68 axially downstream. The thrust reverser 36 then slidingly moves downstream as the thrust reverser T-slides 96 slide downstream in the tracks 97. The reverser door 50 pivots radially inwardly to block the gases in duct 28 from exiting through the fan exhaust nozzle throat 30', thereby diverting the gases through the guide vanes 60.
The gas turbine engines that employ the present invention can achieve higher propulsive efficiency with a lower pressure ratio and high mass flow without sacrificing engine thrust and without fan stability problems. At cruise, as the translating sleeve is in the fully stowed position, the gas turbine engines with lower pressure ratios enjoy higher thrust, reduced noise levels and improved fuel consumption. At takeoff, climb, and approach, as the translating sleeve is in one of the deployed positions, the increased area of the fan exhaust nozzle 30' allows the additional air flow generated by the fan to exit the engine 10 without causing excessive back pressure on the fan blades and thus without stalling the fan 14. Moreover, gradually and continuously varying area of the fan exhaust nozzle allows further optimization of the performance by reducing the overall weight of the gas turbine engine and improving fuel consumption.
Furthermore, the combination of the lower fan pressure ratio and the higher fan mass flow reduces noise levels at approach, takeoff and climb. The noise reduction is a result of two factors. First, the fan rotating at lower speeds thereby producing less noise. Second, the extended downstream translating sleeve affords an additional attenuation path that reduces noise levels. Moreover, the combination of the lower fan pressure ratio and the higher fan mass flow improves fuel consumption at cruise.
The variable area fan exhaust nozzle having the translating sleeve 38 of the present invention allows an increase in the area of the nozzle throat in excess of 40%. The translating sleeve 38 achieves a significant increase in the area of the nozzle 30' without a significant weight penalty to the gas turbine engine 10. Furthermore, the two semi-cylinders 90, 91 of the translating sleeve 38 form a continuous inner surface 74 of the fan exhaust nozzle. The continuous surface 74 allows the nozzle to withstand the internal pressure of the airflow without excessive weight and to avoid air leakage.
The variable area fan nozzle of the present invention overcomes the major shortcomings of the prior art. The increase in throat area is achieved exclusively as a result of a downstream translation of the translating sleeve. Thus, the present invention avoids implementation of an auxiliary nozzle which introduces a radial velocity component to the nozzle efflux. When the engine is installed under the wing, this radial velocity component will adversely effect the basic wing lift generation at all speeds and degrade the effect of wing leading edge high lift devices at low speed operations. The present invention also avoids the adverse effect of an auxiliary nozzle to the propulsion system and to the internal aerodynamic performance of the engine.
The invention is also less susceptible to uncommanded engagement of the reverser. The mechanical independence of the reverser and sleeve actuation systems guarantees that a malfunction of either system alone cannot cause uncommanded reverser engagement. Instead, such uncommanded engagement can only occur following a far less probable malfunction of both systems.
Finally, the invention ensures stable fan operation since the reverser is engageable with the area modulating sleeve in its aftmost, maximum throat area position. Unlike the apparatus disclosed in U.S. Pat. No. 4,922,713, the present invention does not require that engagement of the reverser be preceded by a potentially destabilizing reduction in the nozzle discharge area.
The present invention is also acoustically superior to the prior art in general, and to U.S. Pat. No. 4,922,713 in particular. All of the airflow exiting through the nozzle is acoustically treated and attenuated.
Although the invention has been shown and described with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that various changes, omissions, and additions may be made thereto, without departing from the spirit and scope of the invention. For example, this invention can be used with a thrust reverser having translating turning vanes, rather than stationary turning vanes 56, as described in the preferred embodiment.
Loffredo, Constantino V., Jones, Christopher W., Duesler, Paul W., Prosser, Jr., Harold T.
Patent | Priority | Assignee | Title |
10006406, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine variable area fan nozzle control |
10012150, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
10030543, | May 31 2012 | RTX CORPORATION | Turbine gear assembly support having symmetrical removal features |
10030586, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
10047628, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with fan variable area nozzle for low fan pressure ratio |
10047699, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10047700, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10047701, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10047702, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10054058, | Jan 13 2015 | RTX CORPORATION | Geared gas turbine engine with reduced oil tank size |
10060357, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
10060391, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10077739, | Apr 24 2014 | Rohr, Inc. | Dual actuation system for cascade and thrust reverser panel for an integral cascade variable area fan nozzle |
10082105, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine with geared architecture |
10087885, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
10107120, | Jan 30 2012 | RTX CORPORATION | Internal manifold for turning mid-turbine frame flow distribution |
10107231, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine with geared architecture |
10113434, | Jan 31 2012 | RTX CORPORATION | Turbine blade damper seal |
10119466, | Oct 02 2012 | RTX CORPORATION | Geared turbofan engine with high compressor exit temperature |
10125724, | Jan 17 2012 | RTX CORPORATION | Start system for gas turbine engines |
10125858, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
10138809, | Apr 02 2012 | RTX CORPORATION | Geared turbofan engine with a high ratio of thrust to turbine volume |
10145335, | Sep 28 2012 | RTX CORPORATION | Turbomachine thrust reverser |
10151240, | Jan 31 2012 | RTX CORPORATION | Mid-turbine frame buffer system |
10161358, | Mar 14 2013 | RTX CORPORATION | Twin target thrust reverser module |
10167813, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with fan variable area nozzle to reduce fan instability |
10174715, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
10174716, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
10184340, | Mar 15 2013 | RTX CORPORATION | Geared turbofan engine having a reduced number of fan blades and improved acoustics |
10184483, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10196989, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine gear train |
10215053, | Jul 07 2013 | RTX CORPORATION | Fan drive gear system manifold radial tube filters |
10215094, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine shaft bearing configuration |
10227893, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
10233773, | Nov 17 2015 | RTX CORPORATION | Monitoring system for non-ferrous metal particles |
10233868, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
10240526, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section |
10240561, | Mar 15 2013 | RTX CORPORATION | Aerodynamic track fairing for a gas turbine engine fan nacelle |
10267233, | Oct 23 2015 | RTX CORPORATION | Method and apparatus for monitoring lubrication pump operation during windmilling |
10287914, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
10287917, | May 09 2013 | RTX CORPORATION | Turbofan engine front section |
10288009, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
10288010, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
10288011, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
10294871, | Feb 06 2013 | RTX CORPORATION | Exhaust nozzle arrangement for geared turbofan |
10294894, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10301968, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
10301971, | Dec 20 2012 | RTX CORPORATION | Low pressure ratio fan engine having a dimensional relationship between inlet and fan size |
10302042, | Jan 31 2012 | RTX CORPORATION | Variable area fan nozzle with wall thickness distribution |
10309232, | Feb 29 2012 | RTX CORPORATION | Gas turbine engine with stage dependent material selection for blades and disk |
10309315, | Oct 12 2006 | RTX CORPORATION | Variable area nozzle assisted gas turbine engine restarting |
10309343, | Nov 06 2014 | ROHR, INC | Split sleeve hidden door thrust reverser |
10309414, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10316757, | Feb 06 2013 | RTX CORPORATION | Exhaust nozzle arrangement for geared turbofan |
10352331, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10358924, | Mar 18 2015 | RTX CORPORATION | Turbofan arrangement with blade channel variations |
10358925, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10370974, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10371061, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
10378479, | Oct 19 2015 | General Electric Company | Variable effective area fan nozzle |
10385866, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10393139, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10400621, | Mar 04 2013 | RTX CORPORATION | Pivot door thrust reverser with variable area nozzle |
10400671, | Oct 31 2011 | RTX CORPORATION | Gas turbine engine thermal management system |
10414509, | Feb 23 2017 | RTX CORPORATION | Propulsor mounting for advanced body aircraft |
10415468, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
10421554, | Oct 05 2015 | RTX CORPORATION | Double propulsor imbedded in aircraft tail with single core engine |
10422226, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10428763, | Apr 01 2016 | Rohr, Inc.; ROHR, INC | Controlling a relative position at an interface between translating structures of an aircraft nacelle |
10436116, | Mar 30 2012 | RTX CORPORATION | Gas turbine engine geared architecture axial retention arrangement |
10451004, | Jun 02 2008 | RTX CORPORATION | Gas turbine engine with low stage count low pressure turbine |
10458270, | Jun 23 2015 | RTX CORPORATION | Roller bearings for high ratio geared turbofan engine |
10465549, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
10465702, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10487734, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
10495106, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10502135, | Jan 31 2012 | RTX CORPORATION | Buffer system for communicating one or more buffer supply airs throughout a gas turbine engine |
10502162, | Dec 09 2015 | ROHR, INC | Dielectric seal device |
10502163, | Nov 01 2013 | RTX CORPORATION | Geared turbofan arrangement with core split power ratio |
10502229, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10514004, | Dec 14 2015 | ROHR, INC | Cascade assembly for a thrust reverser of an aircraft nacelle |
10519971, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10527151, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine with geared architecture |
10533447, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
10539222, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
10544741, | Mar 05 2007 | RTX CORPORATION | Flutter sensing and control system for a gas turbine engine |
10544802, | Jan 31 2012 | RTX CORPORATION | Compressor flowpath |
10550713, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
10550714, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
10550852, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10557477, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10563576, | Mar 15 2013 | RTX CORPORATION | Turbofan engine bearing and gearbox arrangement |
10570855, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine with geared architecture |
10570915, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10570916, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10577965, | Aug 15 2006 | RTX CORPORATION | Epicyclic gear train |
10578018, | Nov 22 2013 | RTX CORPORATION | Geared turbofan engine gearbox arrangement |
10578053, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine variable area fan nozzle with ice management |
10584660, | Jan 24 2012 | RTX CORPORATION | Geared turbomachine fan and compressor rotation |
10584715, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10590775, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10590802, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
10591047, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
10605167, | Apr 15 2011 | RTX CORPORATION | Gas turbine engine front center body architecture |
10605172, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
10605202, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
10605259, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10605351, | Jul 05 2006 | RTX CORPORATION | Oil baffle for gas turbine fan drive gear system |
10655538, | Feb 29 2012 | RTX CORPORATION | Geared gas turbine engine with reduced fan noise |
10655564, | May 13 2016 | ROHR, INC | Thrust reverser system with hidden blocker doors |
10662880, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
10662895, | May 24 2016 | ROLLS -ROYCE plc | Aircraft gas turbine engine nacelle |
10677192, | Oct 12 2006 | RTX CORPORATION | Dual function cascade integrated variable area fan nozzle and thrust reverser |
10697375, | Mar 05 2007 | RTX CORPORATION | Flutter sensing and control system for a gas turbine engine |
10711703, | Mar 05 2007 | RTX CORPORATION | Flutter sensing and control system for a gas turbine engine |
10724431, | Jan 31 2012 | RTX CORPORATION | Buffer system that communicates buffer supply air to one or more portions of a gas turbine engine |
10724479, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
10731559, | Apr 27 2015 | RTX CORPORATION | Lubrication system for gas turbine engines |
10731563, | Jan 31 2012 | RTX CORPORATION | Compressed air bleed supply for buffer system |
10753285, | Jul 05 2006 | RTX CORPORATION | Method of assembly for gas turbine fan drive gear system |
10760488, | Nov 22 2013 | RTX CORPORATION | Geared turbofan engine gearbox arrangement |
10781755, | Jan 31 2012 | RTX CORPORATION | Turbine engine gearbox |
10794291, | Sep 30 2013 | RTX CORPORATION | Geared turbofan architecture for regional jet aircraft |
10794292, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
10794293, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
10801355, | Dec 01 2015 | RTX CORPORATION | Geared turbofan with four star/planetary gear reduction |
10808617, | Sep 28 2012 | RTX CORPORATION | Split-zone flow metering T-tube |
10815888, | Jul 29 2011 | RTX CORPORATION | Geared turbofan bearing arrangement |
10823051, | Oct 02 2012 | RTX CORPORATION | Geared turbofan engine with high compressor exit temperature |
10823052, | Oct 16 2013 | RTX CORPORATION | Geared turbofan engine with targeted modular efficiency |
10830130, | Apr 25 2012 | RTX CORPORATION | Geared turbofan with three turbines all counter-rotating |
10830152, | Sep 21 2007 | RTX CORPORATION | Gas turbine engine compressor arrangement |
10830153, | Apr 02 2012 | RTX CORPORATION | Geared turbofan engine with power density range |
10830178, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine variable area fan nozzle control |
10830334, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
10890195, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10890245, | Aug 15 2006 | RTX CORPORATION | Epicyclic gear train |
10907482, | Jan 31 2012 | RTX CORPORATION | Turbine blade damper seal |
10907575, | Oct 31 2012 | The Boeing Company | Methods and apparatus for sealing variable area fan nozzles of jet engines |
10907579, | Aug 15 2006 | RTX CORPORATION | Gas turbine engine with geared architecture |
10914315, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
10920603, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
10989143, | Mar 17 2009 | RTX CORPORATION | Gas turbine engine bifurcation located fan variable area nozzle |
11008947, | Mar 07 2014 | RTX CORPORATION | Geared turbofan with integral front support and carrier |
11015550, | Dec 20 2012 | RTX CORPORATION | Low pressure ratio fan engine having a dimensional relationship between inlet and fan size |
11021996, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
11021997, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
11041507, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11047337, | Jun 08 2011 | RTX CORPORATION | Geared architecture for high speed and small volume fan drive turbine |
11053811, | Jun 23 2015 | RTX CORPORATION | Roller bearings for high ratio geared turbofan engine |
11053816, | May 09 2013 | RTX CORPORATION | Turbofan engine front section |
11053843, | Apr 02 2012 | RTX CORPORATION | Geared turbofan engine with a high ratio of thrust to turbine volume |
11066954, | Jul 29 2014 | RTX CORPORATION | Geared gas turbine engine with oil deaerator and air removal |
11073106, | Jun 08 2011 | RTX CORPORATION | Geared architecture for high speed and small volume fan drive turbine |
11073157, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
11079007, | Jul 05 2006 | RTX CORPORATION | Oil baffle for gas turbine fan drive gear system |
11085400, | Feb 06 2015 | RTX CORPORATION | Propulsion system arrangement for turbofan gas turbine engine |
11098644, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
11111818, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
11118459, | Mar 18 2015 | RTX CORPORATION | Turbofan arrangement with blade channel variations |
11118507, | Feb 29 2012 | RTX CORPORATION | Geared gas turbine engine with reduced fan noise |
11125155, | Nov 01 2013 | RTX CORPORATION | Geared turbofan arrangement with core split power ratio |
11125167, | May 31 2012 | RTX CORPORATION | Fundamental gear system architecture |
11136920, | Mar 12 2013 | RTX CORPORATION | Flexible coupling for geared turbine engine |
11143109, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
11149650, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11149689, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine shaft bearing configuration |
11162456, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
11168614, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
11174936, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
11181074, | Jan 31 2012 | RTX CORPORATION | Variable area fan nozzle with wall thickness distribution |
11187160, | Jan 03 2017 | RTX CORPORATION | Geared turbofan with non-epicyclic gear reduction system |
11193496, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11193497, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11199159, | Mar 15 2013 | RTX CORPORATION | Thrust efficient turbofan engine |
11208950, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with compressor inlet guide vane positioned for starting |
11209013, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11215123, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11215142, | Dec 20 2018 | Airbus Operations SAS | Nacelle of a turbojet comprising a reverser flap and a deployment system with delay |
11215143, | Nov 01 2013 | RTX CORPORATION | Geared turbofan arrangement with core split power ratio |
11221066, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
11236679, | Oct 08 2012 | RTX CORPORATION | Geared turbine engine with relatively lightweight propulsor module |
11242805, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11248494, | Jul 29 2014 | RTX CORPORATION | Geared gas turbine engine with oil deaerator and air removal |
11274631, | Feb 27 2020 | ROLLS-ROYCE NORTH AMERICAN TECHNOLOGIES INC. | Methodology for minimizing aerodynamic buzz in an exhaust nozzle |
11280267, | Nov 22 2013 | RTX CORPORATION | Geared turbofan engine gearbox arrangement |
11286811, | Dec 20 2012 | RTX CORPORATION | Low pressure ratio fan engine having a dimensional relationship between inlet and fan size |
11286852, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
11286883, | Jun 02 2008 | RTX CORPORATION | Gas turbine engine with low stage count low pressure turbine and engine mounting arrangement |
11293299, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
11293376, | Jan 22 2019 | Airbus Operations SAS | Jet engine nacelle comprising a mobile assembly and a reinforced fixed structure |
11300141, | Apr 07 2015 | RTX CORPORATION | Modal noise reduction for gas turbine engine |
11319831, | Aug 15 2006 | RTX CORPORATION | Epicyclic gear train |
11339726, | Jul 05 2006 | RTX CORPORATION | Method of assembly for gas turbine fan drive gear system |
11346286, | Apr 02 2012 | RTX CORPORATION | Geared turbofan engine with power density range |
11346289, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11371427, | Oct 16 2013 | RTX CORPORATION | Geared turbofan engine with targeted modular efficiency |
11378039, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
11384657, | Jun 12 2017 | RTX CORPORATION | Geared gas turbine engine with gear driving low pressure compressor and fan at a common speed and a shear section to provide overspeed protection |
11391216, | Feb 06 2013 | RTX CORPORATION | Elongated geared turbofan with high bypass ratio |
11391240, | Mar 17 2009 | RTX CORPORATION | Gas turbine engine bifurcation located fan variable area nozzle |
11391294, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11396847, | Mar 05 2007 | RTX CORPORATION | Flutter sensing and control system for a gas turbine engine |
11401831, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine shaft bearing configuration |
11401889, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine variable area fan nozzle control |
11408370, | Dec 15 2017 | Short Brothers Plc | Variable area fan nozzle for turbofan aircraft engine |
11408372, | Aug 28 2007 | RTX CORPORATION | Gas turbine engine front architecture |
11408436, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11434850, | Nov 06 2014 | Rohr, Inc. | Split sleeve hidden door thrust reverser |
11448124, | Apr 02 2012 | RTX CORPORATION | Geared turbofan engine with a high ratio of thrust to turbine volume |
11448310, | Jul 05 2006 | RTX CORPORATION | Oil baffle for gas turbine fan drive gear system |
11454193, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
11459957, | Jan 03 2017 | RTX CORPORATION | Gas turbine engine with non-epicyclic gear reduction system |
11466572, | Mar 18 2015 | RTX CORPORATION | Gas turbine engine with blade channel variations |
11480108, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11486269, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine shaft bearing configuration |
11486311, | Aug 01 2007 | RTX CORPORATION | Turbine section of high bypass turbofan |
11499476, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
11499502, | Oct 12 2006 | RTX CORPORATION | Dual function cascade integrated variable area fan nozzle and thrust reverser |
11499624, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
11506084, | May 09 2013 | RTX CORPORATION | Turbofan engine front section |
11512631, | Feb 29 2012 | RTX CORPORATION | Geared gas turbine engine with reduced fan noise |
11525406, | Jan 31 2012 | RTX CORPORATION | Turbine engine gearbox |
11536203, | Mar 12 2013 | RTX CORPORATION | Flexible coupling for geared turbine engine |
11536204, | Jan 03 2018 | RTX CORPORATION | Method of assembly for gear system with rotating carrier |
11549387, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
11560839, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine buffer system |
11560849, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
11560851, | Oct 02 2012 | RTX CORPORATION | Geared turbofan engine with high compressor exit temperature |
11566586, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine shaft bearing configuration |
11566587, | Jan 24 2012 | RTX CORPORATION | Geared turbomachine fan and compressor rotation |
11578651, | Nov 01 2013 | RTX CORPORATION | Geared turbofan arrangement with core split power ratio |
11578665, | Mar 07 2014 | RTX CORPORATION | Geared turbofan with integral front support and carrier |
11585268, | Oct 16 2013 | RTX CORPORATION | Geared turbofan engine with targeted modular efficiency |
11585276, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
11585293, | Oct 01 2012 | RTX CORPORATION | Low weight large fan gas turbine engine |
11598223, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
11598286, | Nov 01 2013 | RTX CORPORATION | Geared gas turbine engine arrangement with core split power ratio |
11598287, | Mar 15 2013 | RTX CORPORATION | Thrust efficient gas turbine engine |
11608779, | Mar 15 2013 | RTX CORPORATION | Turbofan engine bearing and gearbox arrangement |
11608786, | Apr 02 2012 | RTX CORPORATION | Gas turbine engine with power density range |
11614036, | Aug 01 2007 | RTX CORPORATION | Turbine section of gas turbine engine |
11635043, | Jun 08 2011 | RTX CORPORATION | Geared architecture for high speed and small volume fan drive turbine |
11661894, | Oct 08 2012 | RTX CORPORATION | Geared turbine engine with relatively lightweight propulsor module |
11661906, | Feb 06 2015 | RTX CORPORATION | Propulsion system arrangement for turbofan gas turbine engine |
11680492, | Aug 15 2006 | RTX CORPORATION | Epicyclic gear train |
11698007, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
11708170, | Nov 12 2018 | RATIER-FIGEAC SAS | Thrust control assembly |
11713713, | Apr 15 2011 | RTX CORPORATION | Gas turbine engine front center body architecture |
11719161, | Mar 14 2013 | RTX CORPORATION | Low noise turbine for geared gas turbine engine |
11719245, | Jul 19 2021 | RTX CORPORATION | Compressor arrangement for a gas turbine engine |
11725589, | Jul 01 2014 | RTX CORPORATION | Geared gas turbine engine with oil deaerator |
11725670, | Jan 31 2012 | RTX CORPORATION | Compressor flowpath |
11731773, | Jun 02 2008 | RTX CORPORATION | Engine mount system for a gas turbine engine |
11753951, | Oct 18 2018 | RTX CORPORATION | Rotor assembly for gas turbine engines |
11754000, | Jul 19 2021 | RTX CORPORATION | High and low spool configuration for a gas turbine engine |
11754019, | Dec 17 2021 | Rohr, Inc.; ROHR, INC | Articulating slider for nacelle |
11754094, | Apr 07 2015 | RTX CORPORATION | Modal noise reduction for gas turbine engine |
11767856, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11773786, | May 31 2012 | RTX CORPORATION | Fundamental gear system architecture |
11773787, | Jul 05 2006 | RTX CORPORATION | Method of assembly for gas turbine fan drive gear system |
11781447, | Dec 20 2012 | RTX CORPORATION | Low pressure ratio fan engine having a dimensional relationship between inlet and fan size |
11781490, | Oct 09 2012 | RTX CORPORATION | Operability geared turbofan engine including compressor section variable guide vanes |
11781505, | Dec 20 2012 | RTX CORPORATION | Low pressure ratio fan engine having a dimensional relationship between inlet and fan size |
11781506, | Jun 03 2020 | RTX CORPORATION | Splitter and guide vane arrangement for gas turbine engines |
11814968, | Jul 19 2021 | RTX CORPORATION | Gas turbine engine with idle thrust ratio |
11814976, | Jul 29 2014 | RTX CORPORATION | Geared gas turbine engine with oil deaerator and air removal |
11815001, | Oct 12 2010 | RTX CORPORATION | Planetary gear system arrangement with auxiliary oil system |
11846238, | Sep 21 2007 | RTX CORPORATION | Gas turbine engine compressor arrangement |
11859538, | Oct 16 2013 | RTX CORPORATION | Geared turbofan engine with targeted modular efficiency |
11867195, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
11885252, | Oct 12 2010 | RTX CORPORATION | Planetary gear system arrangement with auxiliary oil system |
11913349, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
5996937, | Jun 12 1997 | Societe Hispano Suiza Aerostructures | Variable cross-section turbofan exhaust duct with door type thrust reverser for aircraft |
6592074, | Mar 08 2001 | Aircelle | System driving the displaceable fairing of a turbojet-engine thrust reverser |
6751944, | Oct 23 2001 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Confluent variable exhaust nozzle |
6824101, | Feb 17 2003 | The Boeing Company | Apparatus and method for mounting a cascade support ring to a thrust reverser |
6915984, | Feb 17 2003 | The Boeing Company | Apparatus and method for mounting a cascade support ring to a thrust reverser |
6945031, | Feb 21 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Recessed engine nacelle |
6966175, | May 09 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Rotary adjustable exhaust nozzle |
6971229, | Feb 26 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Confluent exhaust nozzle |
7007454, | Sep 27 2001 | Aircelle | Locking system on a cascade thrust reverser |
7010905, | Feb 21 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Ventilated confluent exhaust nozzle |
7055329, | Mar 31 2003 | General Electric Company | Method and apparatus for noise attenuation for gas turbine engines using at least one synthetic jet actuator for injecting air |
7093793, | Aug 29 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Variable cam exhaust nozzle |
7127880, | Aug 29 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Induction coupled variable nozzle |
7174704, | Jul 23 2004 | General Electric Company | Split shroud exhaust nozzle |
7278258, | Nov 12 2004 | Honeywell International, Inc. | Floating flexible firewall seal |
7600384, | Jul 26 2006 | SAFRAN AIRCRAFT ENGINES | Gas exhaust nozzle for a bypass turbomachine having an exhaust or throat section that can be varied by moving the secondary cowl |
7673442, | Nov 14 2006 | General Electric Company | Turbofan engine cowl assembly |
7681399, | Nov 14 2006 | General Electric Company | Turbofan engine cowl assembly and method of operating the same |
7690190, | May 11 2005 | The Boeing Company | Aircraft systems including cascade thrust reversers |
7735778, | Nov 16 2007 | Gulfstream Aerospace Corporation | Pivoting fairings for a thrust reverser |
7837141, | Mar 22 2006 | The Boeing Company | Reaction drive rotor/wing variable area nozzle |
7861513, | Apr 20 2006 | Rolls-Royce plc | Aeroengine ventilation system |
7866142, | May 06 2006 | Rolls-Royce plc | Aeroengine thrust reverser |
7874142, | Apr 07 2006 | Rolls Royce PLC | Aeroengine thrust reverser |
7886518, | Nov 14 2006 | General Electric Company | Turbofan engine cowl assembly and method of operating the same |
8006479, | Oct 15 2007 | RTX CORPORATION | Thrust reversing variable area nozzle |
8015796, | Jun 05 2007 | RTX CORPORATION | Gas turbine engine with dual fans driven about a central core axis |
8015797, | Sep 21 2006 | Gulfstream Aerospace Corporation | Thrust reverser nozzle for a turbofan gas turbine engine |
8051639, | Nov 16 2007 | Gulfstream Aerospace Corporation | Thrust reverser |
8052085, | Nov 16 2007 | Gulfstream Aerospace Corporation | Thrust reverser for a turbofan gas turbine engine |
8052086, | Nov 16 2007 | Gulfstream Aerospace Corporation | Thrust reverser door |
8061119, | Nov 29 2007 | RTX CORPORATION | Actuation mechanism for a convertible gas turbine propulsion system |
8074440, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
8091334, | Nov 14 2006 | General Electric Company | Method of operating a turbofan engine cowl assembly |
8091827, | Nov 16 2007 | Gulfstream Aerospace Corporation | Thrust reverser door |
8109466, | Jun 23 2008 | Rohr, Inc.; ROHR, INC | Thrust reverser cascade assembly and AFT cascade ring with flow deflector portion |
8127529, | Mar 29 2007 | RTX CORPORATION | Variable area fan nozzle and thrust reverser |
8127531, | Nov 11 2008 | The Boeing Company | Radially translating fan nozzle nacelle |
8127532, | Nov 26 2008 | The Boeing Company | Pivoting fan nozzle nacelle |
8141366, | Aug 19 2008 | RTX CORPORATION | Gas turbine engine with variable area fan nozzle |
8172175, | Nov 16 2007 | Gulfstream Aerospace Corporation | Pivoting door thrust reverser for a turbofan gas turbine engine |
8347633, | Jul 27 2007 | RTX CORPORATION | Gas turbine engine with variable geometry fan exit guide vane system |
8356483, | Apr 10 2008 | RTX CORPORATION | Gas turbine engine systems involving variable nozzles with sliding doors |
8402765, | Aug 08 2007 | Rohr, Inc. | Translating variable area fan nozzle providing an upstream bypass flow exit |
8418436, | Mar 29 2007 | RTX CORPORATION | Variable area fan nozzle and thrust reverser |
8443585, | Oct 15 2007 | RTX CORPORATION | Thrust reversing variable area nozzle |
8443586, | Nov 24 2009 | RTX CORPORATION | Variable area fan nozzle bearing track |
8459035, | Jul 27 2007 | RTX CORPORATION | Gas turbine engine with low fan pressure ratio |
8459036, | Dec 26 2008 | Rolls-Royce Corporation | Aircraft nozzle having actuators capable of changing a flow area of the aircraft nozzle |
8505307, | Aug 08 2007 | Rohr, Inc. | Translating variable area fan nozzle with split beavertail fairings |
8511058, | Nov 29 2007 | RTX CORPORATION | Convertible gas turbine propulsion system |
8511062, | Aug 08 2007 | ROHR, INC; GOODRICH ACTUATION SYSTEMS LIMITED | Actuation system for a translating variable area fan nozzle |
8511973, | Jun 23 2010 | Rohr, Inc.; ROHR, INC | Guide system for nacelle assembly |
8549834, | Oct 21 2010 | RTX CORPORATION | Gas turbine engine with variable area fan nozzle |
8567745, | Dec 15 2011 | RAYTHEON TECHNOLOGIES CORPORATION | Apparatuses and systems with vertically and longitudinally offset mounting flanges |
8578699, | Feb 13 2008 | Aircelle | Control system for turbojet engine nacelle |
8615982, | Jul 05 2011 | Hamilton Sundstrand Corporation | Integrated electric variable area fan nozzle thrust reversal actuation system |
8646251, | Mar 05 2007 | RTX CORPORATION | Flutter sensing system for a gas turbine engine |
8713911, | Dec 15 2010 | WOODWARD HRT, INC | System and method for operating a thrust reverser for a turbofan propulsion system |
8720182, | Oct 12 2006 | RTX CORPORATION | Integrated variable area nozzle and thrust reversing mechanism |
8720183, | Mar 02 2011 | Spirit AeroSystems, Inc. | Thrust reverser translating sleeve assembly |
8869504, | Nov 22 2013 | RTX CORPORATION | Geared turbofan engine gearbox arrangement |
8869505, | Mar 29 2007 | RTX CORPORATION | Variable area fan nozzle and thrust reverser |
8875486, | May 17 2010 | Rohr, Inc. | Guide system for nacelle assembly |
8875518, | Aug 20 2007 | Safran Nacelles | Nacelle with an adaptable outlet section |
8904750, | Nov 05 2008 | Rolls-Royce plc | Gas turbine engine variable area exhaust nozzle |
8915060, | Nov 11 2008 | The Boeing Company | Method of varying a fan duct throat area |
8919667, | Sep 24 2008 | Safran Nacelles | Nacelle with a variable nozzle section |
8919784, | Jun 29 2011 | RTX CORPORATION | Fan duct blocker actuation tab seal |
8931253, | Oct 04 2007 | Safran Nacelles | Double-acting telescopic linear actuator with single-motor drive system |
8959889, | Nov 26 2008 | The Boeing Company | Method of varying a fan duct nozzle throat area of a gas turbine engine |
8973364, | Jun 26 2008 | RTX CORPORATION | Gas turbine engine with noise attenuating variable area fan nozzle |
8978356, | Dec 03 2010 | The Boeing Company | Thrust reverser and variable area fan nozzle actuation system and method |
9010126, | Feb 20 2008 | RTX CORPORATION | Gas turbine engine with variable area fan nozzle bladder system |
9017037, | Jan 24 2012 | RTX CORPORATION | Rotor with flattened exit pressure profile |
9062612, | Oct 21 2010 | SAFRAN ELECTRONICS & DEFENSE | Actuation system for a propulsive unit of an airplane |
9074531, | Mar 05 2008 | RTX CORPORATION | Variable area fan nozzle fan flutter management system |
9074554, | Nov 05 2009 | Safran Nacelles | Reverse thrust device |
9086034, | Oct 13 2011 | Rohr, Inc. | Thrust reverser cascade assembly with flow deflection shelf |
9109540, | May 17 2010 | Safran Nacelles | Airplane jet engine thrust reverser having gratings or cascades |
9255546, | Feb 02 2012 | Spirit AreoSystems, Inc. | Cascade-style variable area fan duct nozzle |
9267463, | Mar 25 2008 | RTX CORPORATION | Gas turbine engine systems involving variable nozzles with flexible panels |
9303590, | May 22 2012 | Spirit AeroSystems, Inc. | Variable area fan nozzle actuation system |
9352843, | Dec 31 2012 | RTX CORPORATION | Gas turbine engine having fan rotor driven by turbine exhaust and with a bypass |
9366201, | Oct 31 2011 | Safran Nacelles | Cascade-type thrust reverser with one-piece mobile cowl |
9394852, | Jan 31 2012 | RTX CORPORATION | Variable area fan nozzle with wall thickness distribution |
9399917, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9410483, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
9410500, | Aug 05 2011 | Safran Nacelles | Movable cascade turbojet thrust reverser having translatable reverser cowl causing variation in jet nozzle |
9410608, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
9416677, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
9416751, | Dec 07 2010 | Hamilton Sundstrand Corporation | Actuation system |
9429103, | Jan 31 2012 | RTX CORPORATION | Variable area fan nozzle with wall thickness distribution |
9464708, | Sep 21 2012 | RTX CORPORATION | Gear carrier flex mount lubrication |
9482097, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9482181, | Nov 03 2010 | Safran Nacelles | Thrust reverser device without a control rod in the stream |
9488130, | Oct 17 2013 | Honeywell International Inc.; Honeywell International Inc | Variable area fan nozzle systems with improved drive couplings |
9494084, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with fan variable area nozzle for low fan pressure ratio |
9500126, | Nov 22 2013 | RTX CORPORATION | Geared turbofan engine gearbox arrangement |
9506423, | Mar 14 2013 | RTX CORPORATION | Flow control device for a three stream turbofan engine |
9518534, | Jun 19 2013 | Rohr, Inc. | Reverse scissor thrust reverser for a turbine engine |
9523422, | Jun 08 2011 | RTX CORPORATION | Flexible support structure for a geared architecture gas turbine engine |
9551298, | Jul 24 2012 | ROHR, INC | Variable area fan nozzle with one or more integrated blocker doors |
9574574, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9580183, | Nov 29 2007 | Sikorsky Aircraft Corporation | Actuation mechanism for a convertible gas turbine propulsion system |
9599064, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9611808, | Mar 21 2014 | ROHR, INC | Blocker door lock mechanism of a thrust reverser for a turbofan engine |
9611859, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
9617871, | Jul 24 2012 | ROHR, INC | AFT cascade translating variable area fan nozzle |
9624834, | Sep 28 2012 | RTX CORPORATION | Low noise compressor rotor for geared turbofan engine |
9631558, | Jan 03 2012 | RTX CORPORATION | Geared architecture for high speed and small volume fan drive turbine |
9637218, | Nov 12 2012 | RTX CORPORATION | Aircraft with forward sweeping T-tail |
9650965, | Sep 28 2012 | RTX CORPORATION | Low noise compressor and turbine for geared turbofan engine |
9657572, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
9663239, | Nov 12 2012 | RTX CORPORATION | Clocked thrust reversers |
9664114, | Mar 30 2012 | RTX CORPORATION | Gas turbine engine geared architecture axial retention arrangement |
9695751, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
9701415, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
9726019, | Sep 28 2012 | RTX CORPORATION | Low noise compressor rotor for geared turbofan engine |
9733266, | Sep 28 2012 | RTX CORPORATION | Low noise compressor and turbine for geared turbofan engine |
9739205, | Dec 23 2013 | RTX CORPORATION | Geared turbofan with a gearbox upstream of a fan drive turbine |
9739206, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
9739235, | Mar 21 2014 | ROHR, INC | Thrust reverser for a turbofan engine |
9745918, | Jun 26 2008 | RTX CORPORATION | Gas turbine engine with noise attenuating variable area fan nozzle |
9752439, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9752510, | Feb 29 2012 | RTX CORPORATION | Gas turbine engine driving multiple fans |
9752511, | Jun 08 2011 | RTX CORPORATION | Geared architecture for high speed and small volume fan drive turbine |
9759087, | Aug 08 2007 | Rohr, Inc. | Translating variable area fan nozzle providing an upstream bypass flow exit |
9759309, | Jul 05 2006 | RTX CORPORATION | Oil baffle for gas turbine fan drive gear system |
9771893, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
9777580, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9777671, | Aug 08 2007 | Rohr, Inc. | Actuation system for a translating variable area fan nozzle |
9784212, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
9784214, | Nov 06 2014 | ROHR, INC | Thrust reverser with hidden linkage blocker doors |
9816443, | Sep 27 2012 | RTX CORPORATION | Method for setting a gear ratio of a fan drive gear system of a gas turbine engine |
9816462, | Aug 07 2013 | Aircelle | Integrated thrust reverser device and aircraft engine nacelle equipped therewith |
9822732, | Aug 23 2007 | RTX CORPORATION | Gas turbine engine with axial movable fan variable area nozzle |
9828943, | Jun 09 2014 | RTX CORPORATION | Variable area nozzle for gas turbine engine |
9828944, | Jan 31 2012 | RTX CORPORATION | Geared turbofan gas turbine engine architecture |
9835052, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section and bearing support features |
9840969, | May 31 2012 | RTX CORPORATION | Gear system architecture for gas turbine engine |
9845726, | Jan 31 2012 | RTX CORPORATION | Gas turbine engine with high speed low pressure turbine section |
9856742, | Mar 13 2015 | ROHR, INC | Sealing system for variable area fan nozzle |
9863367, | Nov 01 2013 | The Boeing Company | Fan nozzle drive systems that lock thrust reversers |
9879602, | Jan 31 2012 | RTX CORPORATION | Compressed air bleed supply for buffer system |
9879608, | Mar 17 2014 | RTX CORPORATION | Oil loss protection for a fan drive gear system |
9885249, | Jan 10 2012 | RTX CORPORATION | Gas turbine engine forward bearing compartment architecture |
9885313, | Mar 17 2009 | RTX CORPORATION | Gas turbine engine bifurcation located fan variable area nozzle |
9909457, | Jan 28 2015 | RTX CORPORATION | Method of assembling gas turbine engine section |
9909505, | Jul 05 2011 | RAYTHEON TECHNOLOGIES CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
9915226, | Jun 18 2015 | ROHR, INC | Variable area fan nozzle hidden blocker door thrust reverser |
9926885, | Jul 05 2011 | RTX CORPORATION | Efficient, low pressure ratio propulsor for gas turbine engines |
9932932, | Oct 29 2012 | Rolls-Royce Deutschland Ltd & Co KG | Aeroengine thrust reverser arrangement |
9944401, | Dec 11 2012 | RTX CORPORATION | Asymmetric thrust reversers |
9951860, | Aug 15 2006 | RTX CORPORATION | Ring gear mounting arrangement with oil scavenge scheme |
9963981, | Jun 10 2015 | General Electric Company | Pitch change mechanism for shrouded fan with low fan pressure ratio |
9970387, | Aug 08 2007 | ROHR, INC; GOODRICH ACTUATION SYSTEMS LIMITED | Variable area fan nozzle with bypass flow |
9976437, | Aug 15 2006 | RTX CORPORATION | Epicyclic gear train |
9976696, | Jun 21 2016 | Rohr, Inc.; ROHR, INC | Linear actuator with multi-degree of freedom mounting structure |
9988908, | Feb 19 2014 | RTX CORPORATION | Gas turbine engine airfoil |
9989009, | Oct 31 2012 | The Boeing Company | Methods and apparatus for sealing variable area fan nozzles of jet engines |
Patent | Priority | Assignee | Title |
3262271, | |||
3662556, | |||
3665709, | |||
3747855, | |||
3779010, | |||
3797785, | |||
3820719, | |||
3829020, | |||
3841091, | |||
3981450, | Sep 22 1975 | The United States of America as represented by the Secretary of the Air | In-flight modulating thrust reverser |
4005822, | Dec 22 1975 | ROHR INDUSTRIES, INC | Fan duct thrust reverser |
4145877, | Jul 13 1976 | Short Brothers & Harland Limited | Actuating mechanism for the thrust reversal doors of a gas turbine engine |
4501393, | Mar 17 1982 | The Boeing Company | Internally ventilated noise suppressor with large plug nozzle |
4732535, | Jan 25 1986 | Rolls-Royce plc | Fluid flow reversing apparatus |
4802629, | Oct 22 1982 | The Boeing Company | Plug-type exhaust nozzle having a variable centerbody and translating shroud |
4807434, | Dec 21 1987 | The Boeing Company | Thrust reverser for high bypass jet engines |
4922713, | Nov 05 1987 | Hispano-Suiza Aerostructures | Turbojet engine thrust reverser with variable exhaust cross-section |
5090196, | Jul 21 1989 | The Boeing Company | Ducted fan type gas turbine engine power plants |
5181676, | Jan 06 1992 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Thrust reverser integrating a variable exhaust area nozzle |
5228641, | Aug 15 1991 | ROHR, INC A CORP OF DE | Cascade type aircraft engine thrust reverser with hidden link actuator |
5313788, | Aug 07 1991 | General Electric Company | Thrust reversing arrangement for a long duct mixed flow exhaust turbofan engine |
EP109219, | |||
EP315524, | |||
GB1421153, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 21 1997 | United Technologies Corporation | (assignment on the face of the patent) | / | |||
Apr 01 1997 | JONES, CHRISTOPHER W | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008724 | /0500 | |
Apr 21 1997 | PROSSER, JR , HAROLD T | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008724 | /0500 | |
Apr 23 1997 | DUESLER, PAUL W | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008724 | /0500 | |
Apr 23 1997 | LOFFREDO, CONSTANTINO V | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008724 | /0500 |
Date | Maintenance Fee Events |
Jan 14 2002 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 15 2005 | ASPN: Payor Number Assigned. |
Dec 28 2005 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 16 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 14 2001 | 4 years fee payment window open |
Jan 14 2002 | 6 months grace period start (w surcharge) |
Jul 14 2002 | patent expiry (for year 4) |
Jul 14 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 14 2005 | 8 years fee payment window open |
Jan 14 2006 | 6 months grace period start (w surcharge) |
Jul 14 2006 | patent expiry (for year 8) |
Jul 14 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 14 2009 | 12 years fee payment window open |
Jan 14 2010 | 6 months grace period start (w surcharge) |
Jul 14 2010 | patent expiry (for year 12) |
Jul 14 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |