Properly-coated pigment particles for use in an electrophoretic display include pigment particles having a pre-determined density and application of a polymeric coating to the pigment particles, wherein the coating comprises a near fluoropolymer, and wherein the density of the fluoropolymer is substantially the same as the density of the pigment particles. When a polymeric coating is applied having a density that is substantially the same as the density of the pigment particles, even though the particles comprise a distribution of particle sizes, the density of the pigment particles is not significantly altered. In a preferred embodiment, the pigment particle comprises a diarylide yellow pigment, having a density of 1.43 g/ml, coated with a polymer made from the monomer 2,3,4,5,6-pentafluorostyrene, having a density of 1.41 g/ml.
|
1. An electrophoretic suspension comprising a plurality of pigment particles having a pre-determined density and suspended in a fluid medium, wherein the pigment particles are coated with polypentafluorostyrene having substantially the same density as the pigment particles.
7. A formulation for coating pigment particles with polypentafluorostyrene for use in an electrophoretic device, comprising a mixture of:
(a) a plurality of pigment particles having a certain predetermined density; (b) a radical polymerization initiator; (c) a pentafluorostyrene monomer having a density substantially equal to the density of the pigment particles; and (d) an organic solvent.
15. A method of coating pigment particles with polypentafluorostyrene for use in an electrophoretic device, comprising the steps of:
(a) combining a mixture of a plurality of pigment particles having a predetermined density; a radical polymerization initiator; a pentafluorostyrene monomer having a density substantially equal to the density of the pigment particles; and an organic solvent; and (b) heating and tumbling the mixture of step (a) such that the pentafluorostyrene monomer is polymerized and coats the pigment particles.
2. The electrophoretic suspension of
3. The electrophoretic suspension of
4. The electrophoretic suspension of
5. The electrophoretic suspension of
6. The electrophoretic suspension of
8. The formulation of
9. The formulation of
10. The formulation of
11. The formulation of
12. The formulation of
13. The formulation of
14. The formulation of
16. The method of
17. The method of
18. The method of
19. The method of
|
The present invention relates to dielectric pigment particles coated with a fluorinated polymer for use in electrophoretic image displays, electrostatic printing, or the like, and a corresponding formulation and method for producing the same.
The electrophoretic effect is well known, and the prior art is replete with a number of patents and articles which describe the effect. As will be recognized by a person skilled in the art, the electrophoretic effect operates on the principle that certain particles, when suspended in a medium, can be electrically charged and thereby caused to migrate through the medium to an electrode of opposite charge. Electrostatic printing and electrophoretic image displays (EPID) use the electrophoretic effect to produce desired images. For an example of devices using the electrophoretic effect, reference is made to U.S. Pat. No. 4,732,830, issued to Frank J. DiSanto et al., on Mar. 22, 1988, entitled ELECTROPHORETIC DISPLAY PANELS AND ASSOCIATED METHODS, and assigned to Copytele, Inc., the assignee herein.
In prior art EPIDs, dielectric particles are suspended in a fluid medium that is either clear or of an optically-contrasting color as compared with the dielectric particles. To effect the greatest optical contrast between the particles and the suspension medium, it is desirable to have either light-colored particles suspended in a dark medium or black particles suspended in a backlighted clear medium. A variety of pigment particle and dispersion medium compositions are known in the art. See, for example, U.S. Pat. No. 4,298,444, issued to K. Muller, et al., on Nov. 3, 1981, entitled ELECTROPHORETIC DISPLAY.
In the prior art, it has been proven difficult to produce black electrophoretic particles that are dielectric, of uniform size, and have a density matching that of a common suspension medium. As a result, EPIDs commonly use readily-manufactured light colored electrophoretic pigment particles suspended in media which contain dark color dyes. Such EPIDs are exemplified in U.S. Pat. No. 4,655,897 to DiSanto et al.; U.S. Pat. No. 4,093,534 to Carter et al.; U.S. Pat. No. 4,298,448 to Muller et al.; and U.S. Pat. No. 4,285,801 to Chiang. The use of a yellow pigment particle is disclosed in the following patents, all of which issued to Frederic E. Schubert and are assigned to Copytele, Inc., the assignee herein: U.S. Pat. No. 5,380,362, issued Jan. 10, 1995, entitled SUSPENSION FOR USE IN ELECTROPHORETIC IMAGE DISPLAY SYSTEMS; U.S. Pat. No. 5,403,518, issued Apr. 4, 1995, entitled FORMULATIONS FOR IMPROVED ELECTROPHORETIC DISPLAY SUSPENSIONS AND RELATED METHODS; and U.S. Pat. No. 5,411,656, issued May 2, 1995, entitled GAS ABSORPTION ADDITIVES FOR ELECTROPHORETIC SUSPENSIONS. These three patents are incorporated herein by reference.
As will be recognized by a person skilled in the art, the selection of the electrophoretic particles used in the EPID is very important in determining performance of the EPID and the quality of the image produced. Ideally, electrophoretic particles should have an optimum charge-to-mass ratio, which is dependent upon the particle size and surface charge; the optimum charge-to-mass ratio is desirable to obtain good electrostatic deposition at high velocity as well as rapid reversal of particle motion when voltages change. Also, it is desirable to use electrophoretic particles that have essentially the same density as the fluid medium in which they are suspended. By using electrophoretic particles of essentially the same density as the suspension medium, the migration of the electrophoretic particles through the medium remains independent of both the orientation of the EPID and the forces of gravity. The particles will thus remain randomly dispersed in the fluid medium.
There are advantages to polymerically coating electrophoretic particles for use in the EPID or other electrophoretic devices. A proper coating applied to the particles can have the effect of enhancing the ability of the particles to scatter light. When polymerically-coated particles impinge upon a transparent screen electrode (thereby displacing the fluid medium from the screen), a brighter color and sharper image is produced (as compared with when uncoated particles are used). Additionally, it naturally is desirable to use electrophoretic particles that are stable and resistant to interaction with the suspension medium to improve the efficiency and half-life of the EPID; the suspension medium may comprise, for example, aromatic or aliphatic solvents, including benzenes, toluenes, hydrocarbon oil, novane, decane, or the like, which may react with some typical pigment particles used in EPIDs. Polymerically-coated pigment particles produce a harder and more solvent-resistant composite when compared to uncoated particles.
Furthermore, properly-coated electrophoretic particles can be less apt to adhere to surfaces within the electrophoretic cell. Over recent years, attention has been directed to dispersion stabilization by way of adsorbed polymers on particle surfaces. See, for example, an article by P. Murau and B Singer, appearing in Vol 49, No. 9, of the Journal of Applied Physics (1978), entitled "The Understanding and Elimination of Some Suspension Instabilities in an Electrophoretic Display." See also U.S. Pat. No. 5,403,518, issued to Schubert, referenced above, and U.S. Pat. No. 4,285,801, issued to Anne A. Chiang on Aug. 25, 1981, entitled ELECTROPHORETIC DISPLAY COMPOSITION.
If two colloidal particles coated with adsorbed layers of polymers approach each other, steric repulsion can occur as soon as the polymer layers start to penetrate. According to Murau and Singer, the polymer molecules adsorbed on a colloidal particle never lie flat on the surface. Rather, parts of the long chains of hydrocarbons (loose-ends, side branches, and loops), are free from the surfaces and surrounded by liquid.
It has been discovered that highly-fluorinated polymers are advantageous for use as pigment particle coatings, as they have low critical surface tensions which tend to produce anti-stick properties. See, for example, an article by M. Hudlicry and A. E. Pavlath, appearing in Vol. 187, page 983, of ACS Monograph (1995), entitled "Properties of Fluorinated Compounds II." The lower surface tensions of perfluorinated polymers, when used as a pigment particle coatings, leads to less interaction between the pigment particle surfaces and the solvents comprising the suspension medium in which the particles are dispersed.
There are, however, disadvantages to coating electrophoretic particles. As noted, it is desirable to use electrophoretic particles that have essentially the same density as the fluid medium in which they are suspended. However, since the uncoated pigment particles comprise a fairly broad distribution of particle sizes, a coating of uniform thickness will produce a distribution of particles with varying densities.
Accordingly, it is an object of the present invention to provide polymerically-coated pigment particles in which the density of the coated particles remains substantially the same as the density of the fluid medium in which the particles are suspended. Advantages of this invention include providing properly-coated pigment particles that have an enhanced ability to scatter light to produce a brighter color; are harder, more solvent-resistant composites; and are adhesion-resistant with regard to surfaces within the electrophoretic cell.
The problems and disadvantages associated with previous methods of coating pigment particles are overcome by the present invention which includes selection of pigment particles having a predetermined density and application of a polymeric coating to the pigment particles, wherein the coating comprises a highly-fluorinated polymer, and wherein the density of the polymer is substantially the same as the density of the pigment particles. When a polymeric coating is applied having a density that is substantially the same as the density of the pigment particles, even though the particles comprise a distribution of particle sizes, the density of the pigment particles is not significantly altered.
In a preferred embodiment, the pigment particle comprises a diarylide yellow pigment, having a density of 1.43 g/ml, coated with a polymer made from the monomer 2,3,4,5,6-Pentafluorostyrene, having a density of 1.41 g/ml. These coated pigment particles preferably may be suspended in a medium comprised of a mixture of tetrachloroethylene and sec-butyl benzene, balanced to a specific gravity of 1.43 g/ml. A method in accordance with the present invention for coating the pigment particles comprises a polymerization technique in which a pentafluorostyrene monomer is polymerized with a free radical polymerization initiator in the presence of the pigment particles dispersed in an organic solvent.
FIG. 1, the sole figure, is a diagrammatic, cross-sectional view of an EPID having particles in accordance with the present invention.
Although the present invention can be used in many different applications where dispersions containing particles with opposite charges are desired, such as paint, ink, and electrostatic toner, it is especially suitable for use in connection with electrophoretic image displays (EPIDs). Accordingly, the present invention will be described in connection with a typical EPID.
Referring to FIG. 1, there is shown a cross-sectional view of a segment of a simple electrophoretic image display 10 magnified to show a single pixel. As will be recognized by a person skilled in the art, an EPID may contain a volume of an electrophoretic dispersion 12 disposed between an anode 14 and a cathode 16. The anode 14 and cathode 16 are deposited upon glass plates 18, 20 in the form of a thin layer of indium-tin-oxide (ITO) or a like compound. The ITO layer is deposited in such a manner as to be substantially transparent when viewed through the glass plates 18, 20.
The electrophoretic dispersion 12 is comprised of a plurality of dielectric electrophoretic particles 22 suspended in a fluid medium 24. The electrophoretic particles 22 have a density substantially equivalent to that of the fluid medium 24 so as to remain randomly dispersed, unaffected by the orientation of the EPID or the effects of gravity. In accordance with the present invention, the particles are covered with a polymeric-coating 26. When a sufficient electrical bias is applied between the anode 14 and the cathode 16, the particles 22 migrate to either the cathode 16 or anode 14, depending on polarity, and they displace the dark color medium adjacent the ITO layer, thereby creating a bright pixel. Reversing the voltage produces a dark pixel.
Any known manner may be used to prepare the pigment particles of the electrophoretic suspension in which the polymeric coating of the present invention is employed. Preferably, a diarylide yellow pigment is selected, which is designated as AAOT yellow, #374-73, manufactured by Sun Chemical Company. This yellow pigment has a density of 1.43 g/ml, In accordance with a preferred embodiment of the present invention, solvents used for the suspension medium 24 are tetrachloroethylene and sec-butyl benzene. The high specific gravity of tetrachloroethylene 1.62 g/ml, allows specific gravity balancing to 1.43 g/ml with the less dense sec-butyl benzene. Thus, the solvent can be balanced to arrive at a specific gravity substantially the same as the density of the pigment particles.
The density of the pigment particles is not significantly changed when the polymeric coating is applied in accordance with the present invention, even when a wide distribution of particle sizes are used. 2,3,4,5,6-Pentafluorostyrene is selected as a monomer to be polymerized and applied as a coating. When this monomer is polymerized, it produces a fluorinated polymer that functions as an effective coating for the pigment particles, with low critical surface tensions. Pentafluorostyrene has a density of 1.41 g/ml, and when used to produce a polymeric coating for the AAOT yellow pigment, #374-73, the coating is approximately the same density as the density of the pigment particles such that particles of uniform density are maintained.
With regard to the process of polymerically coating the pigment particles in accordance with the present invention, alternative polymerization recipes are listed in Tables I and II:
TABLE I |
______________________________________ |
Materials Weight(g) |
______________________________________ |
Pigment 1.18 |
4,4"-Azobis (4-cyanovaleric acid) |
0.05 |
Pentafluorostyrene 0.75 |
Decane 30.0 |
Alcohol 5.0 |
______________________________________ |
TABLE II |
______________________________________ |
Materials Weight(g) |
______________________________________ |
Pigment 1.18 |
4,4"-Azobis (4-cyanovaleric acid) |
0.05 |
Pentafluorostyrene 0.50 |
Sec-Butylbenzene 30.0 |
Alcohol 3.0 |
______________________________________ |
The materials are mixed in a temperature-controlled tumbler reactor. The reaction mixture tumbles at 32 rpm at 60 degrees Celsius for approximately twenty-four hours and then at 70 degrees Celsius for twelve hours. The resulting coated particles are cleaned by washes with hexane and alcohol. They are then dried in a vacuum oven. By varying the recipes of Table I or Table II, or by varying other reaction parameters of the method of manufacture, the physical characteristics of the coated electrophoretic pigment particles can be selectively altered as desired for a given application.
As noted, the preferred pigment is a diarylide yellow pigment, designated as AAOT yellow, #374-73, as this pigment has a density of 1.43 g/ml, and the preferred monomer, 2,3,4,5,6-Pentafluorostyrene, has a density of 1.41 g/ml. However, one skilled in the art will recognize that other pigment particles and monomers may be used, with the key being that the density of the pigment particles be substantially equivalent to the density of the monomer, and that preferably a polymeric coating be selected having a high-fluorine atom content. Other pigment particles could include, for example, Hansa yellow, Arylide yellow, Hostaperm yellow, Novopern yellow, and any other suitable organic pigment.
Also, one skilled in the art will recognize that other radical polymerization initiators or solvents may be used. 4,4'-Azobis (4-cyanovaleric acid) is preferred as a polymerization initiator; however, other radical polymerization initiators may include 2,2"-azobis (2-methylbutyrontrile), benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, and the like. Hydrocarbon solvents may be substituted for the preferred solvents of decane or sec-butylbenzene, such as phenylxylylethanes, toluene, benzene, xylene, cyclohexane, phenyloctane, octane, and hexadecane decahydronaphthalene.
All equivalents, variations and modifications that can be applied to the described present invention by a person skilled in the art, are intended to be included within the scope of this invention as defined by the appended claims.
Chen, Jing Hong, Schubert, Frederic E., Hou, Wei-Hsin
Patent | Priority | Assignee | Title |
10007165, | Aug 01 2012 | E Ink Corporation | Electrophoretic fluids |
10048562, | Jun 22 2012 | E Ink Corporation | Electrophoretic fluid |
10106686, | Jun 12 2013 | E Ink Corporation | Particles for electrophoretic displays |
10126625, | Apr 04 2012 | E Ink Corporation | Particles for electrophoretic displays comprising a core and a random-copolymer coating |
10208207, | Feb 06 2014 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
10214647, | Feb 06 2014 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
10242630, | May 14 2013 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
10308744, | Jun 12 2013 | E Ink Corporation | Particles for electrophoretic displays |
10344167, | Dec 19 2014 | E Ink Corporation | Particles for electrophoretic displays |
10353265, | Aug 01 2012 | E Ink Corporation | Electrophoretic fluids |
10400072, | Apr 25 2016 | 3M Innovative Properties Company | Composite particles for curing epoxy resin compositions and curable and cured epoxy resin compositions prepared using the particles |
10428220, | Dec 19 2014 | E Ink Corporation | Particles for electrophoretic displays |
10435566, | Dec 19 2014 | E Ink Corporation | Particles for electrophoretic displays |
10475399, | May 14 2013 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
11195481, | May 14 2013 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
11520209, | Apr 24 2019 | E Ink Corporation | Electrophoretic particles, media, and displays and processes for the production thereof |
11733580, | May 21 2010 | E Ink Corporation | Method for driving two layer variable transmission display |
12158684, | May 21 2010 | E Ink Corporation | Method for driving two layer variable transmission display |
5932633, | Aug 22 1997 | AU Optronics Corporation | Method for making polymers-coated pigment particles using initiator-treated pigments |
6017584, | Jul 20 1995 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
6020458, | Oct 24 1997 | CANON U S A , INC | Precursors for making low dielectric constant materials with improved thermal stability |
6051321, | Oct 24 1997 | CANON U S A , INC | Low dielectric constant materials and method |
6067185, | Aug 27 1998 | E Ink Corporation | Process for creating an encapsulated electrophoretic display |
6086679, | Oct 24 1997 | CANON U S A , INC | Deposition systems and processes for transport polymerization and chemical vapor deposition |
6120839, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
6140456, | Oct 24 1997 | CANON U S A , INC | Chemicals and processes for making fluorinated poly(para-xylylenes) |
6249271, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
6258407, | Oct 24 1997 | CANON U S A , INC | Precursors for making low dielectric constant materials with improved thermal stability |
6262706, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
6262833, | Oct 07 1998 | E Ink Corporation | Capsules for electrophoretic displays and methods for making the same |
6358863, | May 01 1998 | Virginia Tech Intellectual Properties, Inc | Oxide/organic polymer multilayer thin films deposited by chemical vapor deposition |
6376828, | Oct 07 1998 | E Ink Corporation | Illumination system for nonemissive electronic displays |
6377387, | Apr 06 1999 | E Ink Corporation | Methods for producing droplets for use in capsule-based electrophoretic displays |
6392785, | Aug 28 1997 | E Ink Corporation | Non-spherical cavity electrophoretic displays and materials for making the same |
6445489, | Mar 18 1998 | E Ink Corporation | Electrophoretic displays and systems for addressing such displays |
6458458, | Oct 13 1998 | Cabot Corporation | Polymer coated carbon products and other pigments and methods of making same by aqueous media polymerizations or solvent coating methods |
6473072, | May 12 1998 | E Ink Corporation | Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications |
6479571, | Jan 25 2000 | Cabot Corporation | Elastomeric compositions containing polymer coated carbon products and other pigments |
6495208, | Sep 09 1999 | VIRGNIA TECH INTELLECTUAL PROPERTIES, INC | Near-room temperature CVD synthesis of organic polymer/oxide dielectric nanocomposites |
6498114, | Apr 09 1999 | E Ink Corporation | Method for forming a patterned semiconductor film |
6515649, | Jul 20 1995 | E Ink Corporation | Suspended particle displays and materials for making the same |
6518949, | Apr 10 1998 | E Ink Corporation | Electronic displays using organic-based field effect transistors |
6534616, | Oct 24 1997 | CANON U S A , INC | Precursors for making low dielectric constant materials with improved thermal stability |
6663973, | Oct 24 1997 | CANON U S A , INC | Low dielectric constant materials prepared from photon or plasma assisted chemical vapor deposition and transport polymerization of selected compounds |
6693620, | May 03 1999 | E Ink Corporation | Threshold addressing of electrophoretic displays |
6704133, | Mar 18 1998 | E Ink Corporation | Electro-optic display overlays and systems for addressing such displays |
6727881, | Jul 20 1995 | E INK CORPORATION | Encapsulated electrophoretic displays and methods and materials for making the same |
6738050, | May 12 1998 | E Ink Corporation | Microencapsulated electrophoretic electrostatically addressed media for drawing device applications |
6822782, | May 15 2001 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
6839158, | Aug 27 1997 | E Ink Corporation | Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same |
6842657, | Apr 09 1999 | E Ink Corporation | Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication |
6864875, | Apr 10 1998 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
6865010, | Dec 13 2001 | E Ink Corporation | Electrophoretic electronic displays with low-index films |
7002728, | Aug 28 1997 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
7038655, | May 03 1999 | E Ink Corporation | Electrophoretic ink composed of particles with field dependent mobilities |
7071913, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
7075502, | Apr 10 1998 | E INK | Full color reflective display with multichromatic sub-pixels |
7109968, | Jul 20 1995 | E Ink Corporation | Non-spherical cavity electrophoretic displays and methods and materials for making the same |
7167155, | Jul 20 1995 | E Ink Corporation | Color electrophoretic displays |
7170670, | Apr 02 2001 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
7230750, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7236290, | Jul 25 2000 | E INK CORPORATIION, A CORP OF DELAWARE | Electrophoretic medium with improved stability |
7242513, | Aug 28 1997 | E Ink Corporation | Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same |
7247379, | Aug 28 1997 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
7312916, | Aug 07 2002 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
7375875, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7382514, | Feb 11 2002 | E INK CALIFORNIA, LLC | Core-shell particles for electrophoretic display |
7391555, | Jul 20 1995 | E Ink Corporation | Non-spherical cavity electrophoretic displays and materials for making the same |
7411720, | May 15 2001 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
7532388, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7603001, | Feb 17 2006 | SNAPTRACK, INC | Method and apparatus for providing back-lighting in an interferometric modulator display device |
7619822, | Jan 30 2007 | QUALCOMM MEMS Technologies, Inc. | Systems and methods of providing a light guiding layer |
7630123, | Sep 27 2004 | SNAPTRACK, INC | Method and device for compensating for color shift as a function of angle of view |
7684107, | Oct 06 2006 | QUALCOMM MEMS Technologies, Inc. | Internal optical isolation structure for integrated front or back lighting |
7706050, | Mar 05 2004 | SNAPTRACK, INC | Integrated modulator illumination |
7710636, | Sep 27 2004 | SNAPTRACK, INC | Systems and methods using interferometric optical modulators and diffusers |
7733439, | Apr 30 2007 | SNAPTRACK, INC | Dual film light guide for illuminating displays |
7746544, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
7750886, | Sep 27 2004 | SNAPTRACK, INC | Methods and devices for lighting displays |
7766498, | Jun 21 2006 | SNAPTRACK, INC | Linear solid state illuminator |
7777954, | Jan 30 2007 | SNAPTRACK, INC | Systems and methods of providing a light guiding layer |
7791789, | Jul 20 1995 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
7845841, | Aug 28 2006 | SNAPTRACK, INC | Angle sweeping holographic illuminator |
7855827, | Oct 06 2006 | SNAPTRACK, INC | Internal optical isolation structure for integrated front or back lighting |
7864395, | Oct 27 2006 | SNAPTRACK, INC | Light guide including optical scattering elements and a method of manufacture |
7880954, | Mar 05 2004 | SNAPTRACK, INC | Integrated modulator illumination |
7907319, | Nov 06 1995 | SNAPTRACK, INC | Method and device for modulating light with optical compensation |
7956841, | Jul 20 1995 | E Ink Corporation | Stylus-based addressing structures for displays |
8040589, | Feb 12 2008 | SNAPTRACK, INC | Devices and methods for enhancing brightness of displays using angle conversion layers |
8040594, | Aug 28 1997 | E Ink Corporation | Multi-color electrophoretic displays |
8045252, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
8049951, | Apr 15 2008 | SNAPTRACK, INC | Light with bi-directional propagation |
8068710, | Dec 07 2007 | SNAPTRACK, INC | Decoupled holographic film and diffuser |
8089453, | Jul 20 1995 | E Ink Corporation | Stylus-based addressing structures for displays |
8107155, | Oct 06 2006 | SNAPTRACK, INC | System and method for reducing visual artifacts in displays |
8111445, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
8111446, | Sep 27 2004 | SNAPTRACK, INC | Optical films for controlling angular characteristics of displays |
8115729, | May 03 1999 | E Ink Corporation | Electrophoretic display element with filler particles |
8169688, | Sep 27 2004 | SNAPTRACK, INC | System and method of reducing color shift in a display |
8213076, | Aug 28 1997 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
8231257, | Jan 13 2009 | SNAPTRACK, INC | Large area light panel and screen |
8300304, | Feb 12 2008 | SNAPTRACK, INC | Integrated front light diffuser for reflective displays |
8346048, | May 28 2008 | SNAPTRACK, INC | Front light devices and methods of fabrication thereof |
8358266, | Sep 02 2008 | SNAPTRACK, INC | Light turning device with prismatic light turning features |
8368981, | Oct 10 2006 | SNAPTRACK, INC | Display device with diffractive optics |
8384658, | Jul 20 1995 | E Ink Corporation | Electrostatically addressable electrophoretic display |
8402647, | Aug 25 2010 | SNAPTRACK, INC | Methods of manufacturing illumination systems |
8439546, | Jan 13 2009 | SNAPTRACK, INC | Large area light panel and screen |
8441714, | Aug 28 1997 | E Ink Corporation | Multi-color electrophoretic displays |
8462423, | Feb 09 2009 | E Ink Corporation | Coloured particles for electrophoretic displays |
8466852, | Apr 10 1998 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
8582196, | May 15 2001 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
8593718, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
8593719, | Feb 09 2009 | E Ink Corporation | Particles for electrophoretic displays |
8593721, | Aug 28 1997 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
8654061, | Feb 12 2008 | SNAPTRACK, INC | Integrated front light solution |
8743451, | Feb 09 2009 | E Ink Corporation | Coloured particles for electrophoretic displays |
8798425, | Dec 07 2007 | SNAPTRACK, INC | Decoupled holographic film and diffuser |
8861071, | Sep 27 2004 | SNAPTRACK, INC | Method and device for compensating for color shift as a function of angle of view |
8872085, | Oct 06 2006 | SNAPTRACK, INC | Display device having front illuminator with turning features |
8901219, | Jun 07 2010 | E Ink Corporation | Coloured polymer particles |
8902484, | Dec 15 2010 | SNAPTRACK, INC | Holographic brightness enhancement film |
8906998, | Jun 07 2010 | E Ink Corporation | White reflective polymer particles |
8928967, | Apr 08 1998 | SNAPTRACK, INC | Method and device for modulating light |
8971675, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
8979349, | May 29 2009 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9005494, | Jan 20 2004 | E Ink Corporation | Preparation of capsules |
9019183, | Oct 06 2006 | SNAPTRACK, INC | Optical loss structure integrated in an illumination apparatus |
9019590, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
9025235, | Dec 25 2002 | SNAPTRACK, INC | Optical interference type of color display having optical diffusion layer between substrate and electrode |
9109160, | May 09 2011 | Merck Patent GmbH | Reactive mesogen based polymer particles |
9110289, | Apr 08 1998 | SNAPTRACK, INC | Device for modulating light with multiple electrodes |
9115464, | Feb 09 2009 | E Ink Corporation | Particles for electrophoretic displays |
9121979, | May 29 2005 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9151871, | Aug 24 2011 | E Ink Corporation | Coloured polymer particles |
9152006, | Nov 30 2011 | E Ink Corporation | Particles for electrophoretic displays |
9158174, | May 15 2001 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
9182615, | Nov 30 2010 | E Ink Corporation | Particles for electrophoretic displays |
9268191, | Aug 28 1997 | E Ink Corporation | Multi-color electrophoretic displays |
9383621, | Nov 30 2011 | E Ink Corporation | Electrophoretic fluids |
9487611, | Aug 07 2010 | E Ink Corporation | Particles for electrophoretic displays |
9494808, | May 14 2012 | E Ink Corporation | Particles for electrophoretic displays |
9588357, | May 14 2012 | E Ink Corporation | Particles for electrophoretic displays |
9594260, | May 14 2012 | E Ink Corporation | Particles for electrophoretic displays |
9598587, | May 09 2011 | Merck Patent GmbH | Reactive mesogen based polymer particles |
9645416, | May 14 2012 | E Ink Corporation | Particles for electrophoretic displays |
9651846, | May 14 2012 | E Ink Corporation | Particles for electrophoretic displays |
9688859, | Feb 06 2014 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
9697778, | May 14 2013 | E Ink Corporation | Reverse driving pulses in electrophoretic displays |
9740076, | Dec 05 2003 | E Ink Corporation | Multi-color electrophoretic displays |
9822232, | Dec 02 2013 | E Ink Corporation | Black polymer particles |
9829764, | Dec 05 2003 | E Ink Corporation | Multi-color electrophoretic displays |
9868803, | May 14 2012 | E Ink Corporation | Colored polymer particles for electrophoretic displays |
9908963, | Apr 12 2013 | E Ink Corporation | Particles for electrophoretic displays |
9977309, | Dec 19 2013 | E Ink Corporation | Electrophoretic fluid |
D485294, | Jul 22 1998 | E Ink Corporation | Electrode structure for an electronic display |
Patent | Priority | Assignee | Title |
3970627, | Sep 24 1973 | E. I. du Pont de Nemours and Company | Fluorocarbon polymer coating compositions containing mica particles |
4169083, | Sep 27 1974 | E. I. du Pont de Nemours and Company | Heat-stable polymer coating composition with oxidation catalyst |
4285801, | Sep 20 1979 | Xerox Corporation | Electrophoretic display composition |
4478965, | May 20 1982 | E. I. du Pont de Nemours and Company | Melt processable perfluorocarbon resin with degradation retarder |
4914146, | Jul 21 1986 | Daikin Industries, Ltd. | Polytetrafluoroethylene containing coating composition |
5360689, | May 21 1993 | AU Optronics Corporation | Colored polymeric dielectric particles and method of manufacture |
5380362, | Jul 16 1993 | AU Optronics Corporation | Suspension for use in electrophoretic image display systems |
5397669, | Sep 18 1992 | Minnesota Mining and Manufacturing Company | Liquid toners for use with perfluorinated solvents |
5403518, | Dec 02 1993 | AU Optronics Corporation | Formulations for improved electrophoretic display suspensions and related methods |
5411656, | Aug 12 1993 | AU Optronics Corporation | Gas absorption additives for electrophoretic suspensions |
5498674, | May 21 1993 | AU Optronics Corporation | Colored polymeric dielectric particles and method of manufacture |
5573711, | May 26 1994 | AU Optronics Corporation | Planar fluorinated dielectric suspensions for electrophoretic image displays and related methods |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 20 1997 | CHEN, JING HONG | COPYTELE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008418 | /0777 | |
Feb 20 1997 | SCHUBERT, FREDERIC E | COPYTELE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008418 | /0777 | |
Feb 20 1997 | HOU, WEI-HSIN | COPYTELE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008418 | /0777 | |
Feb 21 1997 | Copytele, Inc. | (assignment on the face of the patent) | / | |||
Jan 02 2015 | ITUS CORPORATION | AU Optronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035010 | /0798 |
Date | Maintenance Fee Events |
Feb 13 2002 | REM: Maintenance Fee Reminder Mailed. |
Jul 22 2002 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 21 2001 | 4 years fee payment window open |
Jan 21 2002 | 6 months grace period start (w surcharge) |
Jul 21 2002 | patent expiry (for year 4) |
Jul 21 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 21 2005 | 8 years fee payment window open |
Jan 21 2006 | 6 months grace period start (w surcharge) |
Jul 21 2006 | patent expiry (for year 8) |
Jul 21 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 21 2009 | 12 years fee payment window open |
Jan 21 2010 | 6 months grace period start (w surcharge) |
Jul 21 2010 | patent expiry (for year 12) |
Jul 21 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |