A system and method for maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc) and a plurality of base stations and cells. Following reselection of a new cell by the mobile station, or selection of a new analog or digital operating mode, the system notifies the msc of the mobile station's identity, current CCM, and a base station identification. The msc stores the CCM information and utilizes it for paging and for delivery of short message service (SMS) messages when the control channel is digital. The msc also transmits the CCM information to a home location register (hlr) whenever the CCM changes. Upon loss of the CCM status information by the msc, if an incoming call is received for the mobile station prior to a registration by the mobile station, the system retrieves the assigned CCM status information from the hlr.

Patent
   5797096
Priority
Aug 02 1995
Filed
Aug 02 1995
Issued
Aug 18 1998
Expiry
Aug 02 2015
Assg.orig
Entity
Large
207
9
all paid
2. A system for maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc) and a home location register (hlr), said system comprising:
means for storing said CCM status information in said msc;
means for storing said CCM status information in said hlr;
means for determining whether said CCM status information has been lost by said msc;
means for receiving an incoming call for said mobile station;
means for determining whether said incoming call is received after said CCM status information has been lost by said msc; and
means for retrieving said CCM status information from said hlr upon determining that said incoming call is received after said CCM status information is lost by said msc and before said CCM status information is restored to said msc by a registration message from said mobile station.
1. A method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc) and a home location register (hlr), said method comprising the steps of:
storing said CCM status information in said msc, whenever said MS registers and whenever said MS changes control channel modes;
storing said CCM status information in said hlr, whenever said MS changes control channel modes;
determining whether said CCM status information has been lost by said msc;
receiving an incoming call for said mobile station;
determining whether said incoming call is received after said CCM status information has been lost by said msc; and
retrieving said CCM status information from said hlr upon determining that said incoming call is received after said CCM status information is lost by said msc and before said CCM status information is restored to said msc by a registration message from said mobile station.
7. A method of delivering a short message service (SMS) message to a mobile station in a cellular telecommunications network having a mobile switching center (msc), a home location register (hlr), and a message center (mc), said method comprising the steps of:
storing in said hlr, a current control channel mode (CCM) indicating whether said mobile station is operating on a digital control channel or an analog control channel;
receiving at said mc, said SMS message for said mobile station;
transmitting a request for said mobile station's CCM from said mc to said hlr;
transmitting said CCM from said hlr to said mc;
determining in said mc, whether or not said CCM indicates that said mobile station is operating on a digital control channel;
storing said SMS message in said mc upon determining that said CCM indicates that said mobile station is not operating on a digital control channel; and
transmitting said SMS message to said msc for delivery to said mobile station upon determining that said CCM indicates that said mobile station is operating on a digital control channel.
12. A method of paging a mobile station (MS) in a cellular telecommunications network having a mobile switching center (msc) and a home location register (hlr), said method comprising the steps of:
storing control channel mode (CCM) status information in said msc, whenever said MS registers and whenever said MS changes control channel modes;
storing said CCM status information in said hlr, whenever said MS changes control channel modes;
determining whether said CCM status information has been lost by said msc;
receiving an incoming call for said mobile station;
determining whether said incoming call is received after said CCM status information has been lost by said msc;
retrieving said CCM status information from said hlr upon determining that said incoming call is received after said CCM status information is lost by said msc and before said CCM status information is restored to said msc by a registration message from said mobile station; and
paging said mobile station on a type of control channel indicated by said retrieved CCM status information.
8. A method of delivering a short message service (SMS) message to a mobile station in a cellular telecommunications network having a mobile switching center (msc), a home location register (hlr), and a message center (mc), said method comprising the steps of:
storing in said hlr, a current control channel mode (CCM) indicating whether said mobile station is operating on a digital control channel or an analog control channel;
receiving at said mc, said SMS message for said mobile station;
transmitting a query from said mc to said hlr to determine whether or not to forward the message;
determining in said hlr, whether or not said SMS message can be delivered based upon the CCM of the mobile station;
instructing the mc to store said SMS message upon determining that the CCM indicates that said mobile station is operating on said analog control channel;
storing said SMS message in said mc upon receiving instructions from said hlr to store said message;
instructing the mc to forward said SMS message to said msc upon determining that the CCM indicates that said mobile station is operating on said digital control channel; and
transmitting said SMS message to said msc for delivery to said mobile station upon receiving instructions from said hlr to forward said message.
11. A method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc), a visitor location register (VLR), and a home location register (hlr), said CCM status information identifying whether said mobile station is operating on a digital control channel or an analog control channel, said method comprising the steps of:
determining whether said mobile station is operating in said msc;
transmitting said CCM status information from said msc to said VLR and said hlr upon determining that said mobile station is operating in said msc;
transmitting, upon change of said CCM status information, new CCM status information from said msc to said VLR and said hlr;
determining that said CCM status information has been lost by said msc;
determining whether said CCM status information has been lost by said VLR;
retrieving said CCM status information from said VLR and providing said CCM status information to said msc upon determining that said CCM status information has not been lost by said VLR; and
retrieving said CCM status information from said hlr and providing said CCM status information to said VLR and said msc upon determining that said CCM status information has been lost by said VLR.
5. A method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc), a home location register (hlr), and a plurality of cells, said CCM status information identifying whether said mobile station is operating on a digital control channel or an analog control channel, said method comprising the steps of:
transmitting a registration message from said mobile station to a serving base station, said registration message including a mobile identification number (MIN) for said mobile station;
determining in said msc, the CCM status information of said mobile station;
storing said CCM status information in said msc;
determining whether said mobile station registered in said msc before said mobile station transmitted said registration message;
transmitting the MIN of said mobile station, the CCM of said mobile station, and a msc identification from said msc to said hlr upon determining that said mobile station did not register in said msc before said mobile station transmitted said registration message;
determining, upon determining that said mobile station registered in said msc before said mobile station transmitted said registration message, whether CCM status information for said mobile station previously stored in said msc is equal to the CCM status information determined in said msc; and
transmitting an update message to said hlr upon determining that previously stored CCM status information for said mobile station is not equal to the CCM status information determined in said msc.
3. A method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (msc), a home location register (hlr), and a plurality of cells, said CCM status information identifying whether said mobile station is operating on a digital control channel or an analog control channel, said method comprising the steps of:
transmitting a MS-BS registration message from said mobile station to a serving base station, said MS-BS registration message including a mobile identification number (MIN) for said mobile station;
transmitting a BS-msc registration message from said serving base station to said msc, said BS-msc registration message including said MIN, said CCM status information for said mobile station, and a base station identification for said serving base station;
storing said CCM status information in said msc;
determining whether said mobile station registered in said msc before said mobile station transmitted said MS-BS registration message;
transmitting the MIN of said mobile station, the CCM of said mobile station, and a msc identification from said msc to said hlr upon determining that said mobile station did not register in said msc before said mobile station transmitted said MS-BS registration message;
determining, upon determining that said mobile station registered in said msc before said mobile station transmitted said MS-BS registration message, whether CCM information for said mobile station previously stored in said msc is equal to the CCM information transmitted in said BS-msc registration message; and
transmitting an update message to said hlr upon determining that previously stored CCM information for said mobile station is not equal to the CCM information transmitted in said BS-msc registration message.
6. A method of selecting control channels and maintaining control channel mode (CCM) information for a mobile station in a cellular telecommunications network having a mobile switching center (msc), a home location register (hlr), and a plurality of cells that provide through associated base stations control channel state information, said CCM information identifying whether said mobile station is operating on a digital control channel or an analog control channel, said method comprising the steps of:
selecting at said mobile station, a new cell;
determining at said mobile station whether digital operation is allowed in said mobile station;
selecting at said mobile station, an analog control channel upon determining that digital operation is not allowed in said mobile station;
determining from said control channel state information, whether a digital control channel is available in said selected cell;
selecting at said mobile station, an analog control channel upon determining that a digital control channel is not available in said selected cell;
selecting at said mobile station, a digital control channel upon determining that digital operation is allowed in said mobile station and said digital control channel is available in said selected cell;
transmitting a mobile identification number (MIN) for said mobile station from said mobile station to said serving base station;
transmitting said MIN, the CCM in which the mobile station is currently operating, and a base station identification from said serving base station to said msc;
determining whether said msc already had CCM information stored for said mobile station;
transmitting, upon determining that said msc did not already have CCM information stored for said mobile station, the MIN of said mobile station, the current CCM of said mobile station, and a msc identification from said msc to said hlr;
determining, upon determining that said msc already had CCM information stored for said mobile station, whether CCM information for said mobile station already stored in said msc is equal to the current CCM; and
transmitting, upon determining that the CCM information for said mobile station already stored in said msc is not equal to the current CCM, the MIN of said mobile station, the current CCM of said mobile station, and said msc identification to said hlr.
4. The method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network of claim 3 wherein said step of transmitting an update message to said hlr includes transmitting said mobile station's MIN, the CCM information transmitted in said BS-msc registration message, and the msc identification.
9. The method of delivering a short message service (SMS) message to a mobile station of claim 8 wherein the step of storing a current control channel mode (CCM) in said hlr includes updating said stored CCM whenever said mobile station changes its control channel mode.
10. The method of delivering a short message service (SMS) message to a mobile station of claim 9 further comprising the step of instructing the mc to forward said SMS message to said msc whenever said CCM changes to digital.

1. Technical Field of the Invention

The present invention relates to a cellular telecommunications network, and more particularly, to a system for maintaining status information relating to the control channel mode of digital and analog mobile stations.

2. Description of Related Art

In modern cellular telecommunications networks, many network operators offer digital service in order to relieve analog congestion in the network and/or to provide new services such as short message service (SMS) signaling. Mobile stations operating in the digital mode utilize a digital control channel (DCC) while mobile stations operating in the analog mode utilize an analog control channel (ACC). Some mobile stations are capable of operating in either analog or digital, and subscribers may choose their operating mode as analog only, digital only, or a dual mode which is capable of operating in either analog or digital. If the dual mode is chosen, and both analog and digital channels are available, digital service is generally preferred in order to reduce congestion on the network's analog channels.

When a mobile station registers in a cellular telecommunications network, the mobile station's mobile identification number (MIN) is transmitted to a serving base station. The base station forwards the registration message to a mobile switching center (MSC) responsible for the area of the network in which the mobile station is located. The base station includes the mobile station's MIN, its control channel mode (CCM), and a base station identification (BS-ID) in the registration message. The CCM indicates whether the mobile station is operating on an analog or a digital control channel. The CCM may be an explicit parameter in the registration message or may be implicitly determined by the MSC based upon the messaging format being utilized. For clarity, the CCM is illustrated herein as an explicit parameter. The CCM information is stored in the MSC, and is utilized to ensure paging is performed on the correct type of control channel, and if the CCM is digital, to deliver SMS messages. When accurate information about the mobile station's mode is not available, the CCM is indicated as "unknown". The CCM is stored at initial registration, and at call originating accesses and page responses if the call is successfully set up, and the mobile station is not yet registered (i.e., the CCM is unknown). The CCM is updated in the MSC whenever the mobile station changes its CCM.

DCCs may be deployed non-homogeneously in a cellular telecommunications network or between networks. Thus, as a mobile station roams around its service area, it may pass from cells serviced by ACCs to cells serviced by DCCs. When a DCC becomes available, the mobile station may change its CCM to utilize the digital services available such as SMS messaging. At that time, the mobile station re-registers with the network, and the new CCM is stored in the MSC. Thus, during a roaming period, a valid registration access from the mobile station may be reported on a control channel of a different type from that of the known CCM. Therefore, the MSC must monitor the changes in the control channel type to which the roaming mobile station is tuned.

In some cases, however, the MSC may lose the mobile station's CCM status information. This loss of information may result from several different causes. For example, the memory storage capacity of the MSC may be exceeded. If so, the CCM status information of additional mobile stations, and updates of the CCM information for known mobile stations, is not stored. Also, if the MSC suffers a failure and has to be restarted, then dynamic data such as mobile station MIN and CCM information is lost and must be restored.

In the event that mobile station CCM status information is lost, the MSC has no information regarding whether the mobile station is operating on an analog or a digital control channel. At that point, if a call is made to the mobile station, the MSC must page for the mobile station on both the DCC and the ACC in order to restore the CCM status information. If the mobile station's CCM is unknown, then the MSC may, for example, page first on the DCC and then on the ACC because of the greater system capacity on the digital channel. Regardless of the mobile station's mode of operation, network resources are wasted because of the loss of the status information and the resulting process required to restore it.

There are no known prior art teachings of a solution to the aforementioned deficiency and shortcoming such as that disclosed herein. It would be a distinct advantage to have a telecommunications network capable of maintaining and rapidly restoring CCM status information when the MSC loses CCM data stored therein. The present invention provides such a network.

In one aspect, the present invention is a method of maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (MSC) and a plurality of cells. The method comprises the steps of storing the CCM status information in the MSC, storing the CCM status information in a home location register (HLR), determining whether the CCM status information has been lost by the MSC, receiving an incoming call for the mobile station, determining whether the incoming call was received after the CCM status information was lost by the MSC, and retrieving the CCM status information from the HLR upon determining that the CCM status information was lost by the MSC, and that the incoming call was received after the CCM status information was lost and before the CCM status information has been restored to the MSC by a registration message from the mobile station.

In another aspect, the present invention is a system for maintaining control channel mode (CCM) status information for a mobile station in a cellular telecommunications network having a mobile switching center (MSC) and a plurality of cells. The system comprises means for storing the CCM status information in the MSC, means for storing the CCM status information in a home location register (HLR), means for determining whether the CCM status information has been lost by the MSC, and means for retrieving the CCM status information from the HLR, upon determining that the CCM status information has been lost by the MSC. Finally, the system includes means for retrieving from the HLR, the CCM status information, upon loss of the CCM status information by the MSC.

In still another aspect, the present invention is a method of delivering a short message service (SMS) message to a mobile station in a cellular telecommunications network having a mobile switching center (MSC), a home location register (BLR), and a message center (MC). The method begins by storing in the HLR, a current control channel mode (CCM) indicating whether the mobile station is operating on a digital control channel or an analog control channel. The SMS message for the mobile station is then received at the MC, and a request for the mobile station's CCM is transmitted from the MC to the HLR. The CCM is then transmitted from the HLR to the MC. When the CCM indicates that the mobile station is not operating on a digital control channel, the method stores the SMS message in the MC, and when the CCM indicates that the mobile station is operating on a digital control channel, the method transmits the SMS message to said MSC for delivery to the mobile station.

The invention will be better understood and its numerous objects and advantages will become more apparent to those skilled in the art by reference to the following drawing, in conjunction with the accompanying specification, in which:

FIG. 1 is a block diagram illustrating components of a cellular radio telecommunications network associated with the present invention;

FIG. 2 is a block diagram illustrating the cellular radio telecommunications network of FIG. 1, including indications of the analog or digital capability of each cell and illustrating the track of a roaming mobile station;

FIG. 3 is a message flow diagram illustrating the messages sent and received between the mobile switching center (MSC) and a home location register (HLR) in the preferred embodiment of the present invention;

FIGS. 4A and 4B are a flow chart illustrating the functions performed by a control program in the preferred embodiment of the present invention;

FIG. 5 is a high level block diagram of a portion of a cellular telecommunications network illustrating the delivery of a short message service (SMS) message to a mobile station in accordance with the teachings of the present invention;

FIG. 6 is a message flow diagram illustrating the message flow between a mobile switching center, a home location register, and a SMS message center when an SMS message cannot initially be delivered to a mobile station, but delivery is later allowed; and

FIG. 7 is a message flow diagram illustrating the messages sent and received between a mobile switching center, a visitor location register, and a home location register when a mobile station roams into a visited system in the preferred embodiment of the present invention.

Referring first to FIG. 1, there is illustrated a conventional cellular radio telecommunications network 10 of the type to which the present invention may generally pertain. In FIG. 1, an arbitrary geographic area may be divided into a plurality of continuous radio coverage areas, or cells C1-C10. Although the network of FIG. 1 is illustratively shown to only include 10 cells, it should be clearly understood that in practice, the number of cells could be much larger.

Associated with and located within each of the cells C1-C10, is a base station designated as a corresponding one of a plurality of base stations B1-B10. Each of the base stations B1-B10 includes a transmitter, receiver, and a base station controller as are well known in the art. In FIG. 1, the base stations B1-B10 are selected to be located at the center of each of the cells C1-C10, respectively, and are equipped with omni-directional antennas. However, in other configurations of a cellular radio network, the base stations B1-B10 may be located near the periphery, or otherwise away from the centers of the cells C1-C10 and may illuminate the cells C1-C10 with radio signals either omni-directionally or directionally. Therefore, the representation of the cellular radio network of FIG. 1 is for purposes of illustration only and is not intended as a limitation on the possible implementations of a system for maintaining CCM information in a mobile radio telecommunications network.

With continuing reference to FIG. 1, a plurality of mobile stations M1-M10 will be found within the cells C1-C10. Again, only ten mobile stations are shown in FIG. 1, but it should be understood that the actual number of mobile stations will be much larger and, in practice, will invariably greatly exceed the number of base stations. Moreover, mobile stations M1-M10 are illustrated in some of the cells C1-C10. The presence or absence of mobile stations in any particular one of the cells C1-C10 should be understood to depend, in practice on the individual desires of subscribers utilizing the mobile stations M1-M10. Subscribers may roam from one location in a cell to another, or from one cell to an adjacent cell or neighboring cell, and even from one cellular radio network served by a mobile switching center (MSC) 11 to another such network all the while receiving and placing calls both within the cellular network 10 as well as the public switch telecommunication network (PSTN) 12 which is connected to the MSC 11. Although not shown in FIG. 1, the MSC 11 may also have associated with it a home location register (HLR) which may be physically separate or connected to the MSC. The HLR serves as a database of subscriber information for roaming subscribers. The HLR contains all the mobile subscriber data, such as subscriber identity, supplementary services, bearer services, and location information necessary to route incoming calls. The HLR may be shared by a group of MSC's. Networks employing ditgital services may also include a message center (MC) (not shown) for storage and routing of short message service (SMS) messages.

Each of the mobile stations M1-M10 is capable of initiating or receiving a telephone call through one or more of the base stations B1-B10 and the MSC 11. Such calls may be either for voice or data communications. The MSC 11 is connected by communication links 13 (e.g., cables) to each of the illustrative base stations B1-B10 and the PSTN 12 or a similar fixed network which may be include an integrated services digital network (ISDN) facility (not shown). The relevant connections between the MSC 11 and the base stations B1-B10, or between the MSC 11 and the PSTN 12, are not completely shown in FIG. 1 but are well known to those of ordinary skill in the art. Similarly, it is also known to include more than one mobile switching center (MSC) in the cellular radio network and to connect each additional MSC to a different group of base stations and to other MSCs via cables or radio links.

Each of the cells C1-C10 is allocated a plurality of voice or speech channels and at least one access or control channel, such as a forward control channel (FOCC). The control channel is used to control or supervise the operation of the mobile station by means of information transmitted and received from those units, referred to as messages. Control and administration messages within a cellular radio network are sent in accordance with industry established air interface standards, such as EIA/TIA 553, the standard for analog cellular operations, and/or EIA/TIA 627 (formerly IS-54B) and IS-136, the standards for digital cellular operations, all of which are hereby incorporated by reference herein. Integrated services between different cellular telecommunication systems are provided by using the intersystem specification IS-41, which is hereby incorporated by reference herein. While these standards govern North American operations, similar standards govern other geographic areas throughout the world, and are well known to those skilled in the art.

The information exchanged between base stations and mobile stations via messages, may include incoming call signals, outgoing call signals, paging signals, paging response signals, location registration signals, voice channel assignments, maintenance instructions, SMS messages, and handoff instructions as the mobile stations travel out of the radio coverage of one cell and into the radio coverage of other cells, as well as other additional items of information such as calling party numbers, time information, and the like. The control or voice channels may operate in either analog or digital mode based upon industry standards.

As noted above, when a mobile station registers in a cellular telecommunications network, the MSC is informed by the serving base station of the mobile station's corresponding mode of operation (i.e., whether the mobile station is operating in an analog or a digital mode), and this information is stored in the MSC as the mobile station's control channel mode (CCM). The CCM is utilized to ensure paging is performed on the correct type of control channel, and if the CCM is digital, to deliver SMS messages. If the memory storage capacity of the MSC is exceeded, or a failure and restart of the MSC causes loss of the mobile station's CCM status information, the MSC has no information regarding whether the mobile station is operating on an analog or a digital control channel. At that point, if there is a call for the mobile station, the MSC must page for the mobile station on both the ACC and the DCC in order to complete the call. Network resources are wasted because of the loss of the CCM status information and the resulting process requiring the MSC to page on both the ACC and the DCC when there is a call to be delivered.

The present invention implements a process whereby mobile station CCM status information is updated and stored in a device that is functionally independent of the MSC whenever the CCM changes. In the preferred embodiment, this device is a home location register (HLR) associated with, but functionally independent of, the MSC. A series of messages are implemented to report and update this status information, and provide for rapid restoration of CCM status information in the event such information is lost by the MSC. In the preferred embodiment, these messages are presented in IS-41 format although other communications protocols could also be utilized.

FIG. 2 is a block diagram illustrating the cellular radio telecommunications network of FIG. 1, including indications of the availability of analog or digital control channels in each cell and illustrating a track 21 of a roaming mobile station M11. The roaming mobile station M11 is a dual-mode mobile station capable of both analog and digital operation. The cellular network 10 is shown with a non-homogeneous distribution of digitally capable cells. By way of example, the roaming mobile station M11 is shown to enter the service area of the MSC 11 through cell C2 (analog only) and thereafter travel through cells C7 (analog and digital), C6 (analog and digital), and C5 (analog only) before departing the service area. The message flow during this process is illustrated in FIG. 3.

FIG. 3 is a message flow diagram illustrating the messages sent and received between the mobile station M11, the serving base station B1-B10, a co-located MSC and visitor location register (VLR) (i.e., V-MSC) 23, and the home location register (HLR) 22 in the preferred embodiment of the present invention. As the mobile station M11 enters cell C2, in which only analog control channels are available, it switches to analog mode and sends a MS-BS registration message 31 to base station B2. The MS-BS registration message includes the mobile station's MIN. The registration message 31 may also occur as an origination or a page response. The base station B2 transmits a BS-MSC registration message 32 to the V-MSC 23 and includes the mobile station's MIN, the CCM on which the mobile station is being controlled, and a base station identification (BS-ID). Since cell C2 has only analog control channels available, the mobile station M11 operates in analog mode and the CCM indicates "analog". The VMSC 23 stores the CCM of the mobile station in an internal memory. The V-MSC 23 then sends a Registration Notification (RegNot) message 33 to the HLR 22. The RegNot message 33 includes the mobile station's MIN, its CCM, and a MSC identification (MSC-ID) which tells the HLR which MSC is sending the message since the HLR may be associated with a group of MSCs. The CCM indicates that the mobile station M11 is currently operating in the analog mode. Any time that the mobile station selects a different CCM mode, the mobile station repeats the registration with the network, and the new CCM is stored in both the V-MSC 23 and the HLR 22.

As the mobile station M11 roams into cell C7, the mobile station autonomously reselects cell C7. Since the mobile station M11 preferentially operates in the digital mode when a DCC is available, the mobile station M11 changes its CCM to digital and sends its MIN in a MS-BS registration message 34 to base station B7. Base station B7 sends BS-MSC registration message 35 to the V-MSC 23 and includes the mobile station's MIN, its new CCM, and the base station identification (BS-ID). The V-MSC 23 then sends a Registration Notification (RegNot) message 36 to the HLR 22. The RegNot message 36 includes the mobile station's MIN, its new CCM, and a MSC identification (MSC-ID). The CCM indicates that the mobile station M11 is currently operating in the digital mode.

As the mobile station M11 roams into cell C6, the mobile station autonomously reselects cell C6. Cell C6 has both analog and digital control channels available. Therefore, the mobile station M11 remains in digital mode. Since there is no change to its CCM, no registration message is sent, and the V-MSC 23 and HLR 22 retain the CCM information already stored there.

Cell C5 in this example has only analog control channels available, and as the mobile station M11 reselects cell C5, it changes its CCM to analog and sends a MS-BS registration message 37 with its MIN to base station B5. Base station B5 sends BS-MSC registration message 38 to the V-MSC 23 and includes the mobile station's MIN, its new CCM, and the base station identification (BS-ID). The V-MSC 23 then sends a RegNot message 39 to the HLR 22. The RegNot message 39 includes the mobile station's MIN, its new CCM, and a MSC identification (USC-ID). The CCM indicates that the mobile station M11 is currently operating in the analog mode.

In this manner, the HLR 22 is continuously updated with the latest CCM status information for the mobile station M11. If, at any time during this roaming sequence, the V-MSC 23 loses the CCM status information, and a call needs to be delivered to the mobile station, the V-MSC rapidly retrieves the latest CCM information from the HLR 22 and pages for the mobile station on the proper control channel type. This eliminates the necessity to page the mobile station on both the ACC and the DCC in order to complete the call.

The process of retrieving CCM data from the HLR 22 and restoring it to the V-MSC 23 is illustrated by the remaining messages in FIG. 3. At 41, the V-MSC 23 loses CCM data on the mobile station M11 operating in its service area. If there are no incoming calls for mobile station M11, the V-MSC takes no action, but waits for the next registration by the mobile station. The registration message includes the CCM of the mobile station and restores this information to the V-MSC.

If there is an incoming call for the mobile station M11 before the next registration, then the V-MSC 23 must retrieve the CCM information from the HLR 22. In the preferred embodiment illustrated in FIG. 3, a Location Request (Invoke) message 42 representing an incoming call for the mobile station M11 is received at the HLR 22. The HLR transmits a Route Request (Invoke) message 43 to the V-MSC requesting that the V-MSC page and locate the mobile station M11. However, the V-MSC is lacking the CCM information for the mobile station. Therefore, the V-MSC 23 sends a Qualification Request (Invoke) message 44 to the HLR which requests CCM information for the mobile station. The HLR then returns a Qualification Request (Return Result) message 45 to the VMSC and includes the CCM of the mobile station.

Alternatively, the HLR may include the CCM of the mobile station M11 in the Route Request (Invoke) message 43. This eliminates the need for the Qualification Request messages 44 and 45, however, this method is not preferred since the CCM information uses valuable space in the Route Request message and is not needed if the V-MSC already has the CCM information.

FIGS. 4A and 4B are a flow chart illustrating the functions performed by a control program in the preferred embodiment of the present invention. The program begins at FIG. 4A, step 51 where the mobile station M11 reselects a new cell or the mobile subscriber selects a new mode of operation (i.e., analog, digital, or dual mode) on the mobile station M11. At step 52, it is determined whether or not digital operation is allowed in the mobile station M11. The mobile station may be analog only, digital only, or dual capable, and the subscriber may manually switch between the modes. If digital operation is not allowed in the mobile station (e.g., the subscriber has switched to analog mode), the program moves to step 53 where the mobile station selects an analog control channel (ACC). If, at step 52 it is determined that digital operation is allowed in the mobile station M11, the program moves to step 54 where it is determined whether or not a DCC is available in the selected cell. If a DCC is not available in the selected cell, the program moves to step 53 where the mobile station selects an ACC. If, at step 54 it is determined that a DCC is available, the program moves to step 55 where the mobile station selects a DCC. The program then moves to FIG. 4B, step 56.

At step 56, the MSC 11 receives a registration, call origination, or page response message from the base station serving the mobile station M11. The message includes the mobile station's MIN, the CCM of the mobile station, and a base station identification (BS-ID). At step 57, the program determines whether or not the mobile station has previously registered in the MSC 11 (i.e., is the registration message the first registration message from the mobile station in the MSC 11). If the mobile station has not previously registered, the program moves to step 58 where the MSC 11 sends a Registration Notification (RegNot) message to an associated HLR 22 with the mobile station's MIN and the mobile station's CCM. The RegNot message also includes an MSC identification (MSC-ID) since the HLR may service a group of MSCs. The program then returns to step 51 (FIG. 4A). If, however, it is determined at step 57 that the mobile station previously registered in the MSC, the program moves to step 59 where the MSC 11 determines whether or not the latest CCM data obtained from the latest registration, call origination, or page response is equal to previously stored CCM data for the mobile station. If the latest CCM data is equal to the previously stored CCM data, no action is taken, and the program returns to step 51 (FIG. 4A). If, however, it is determined at step 59 that the latest CCM data is not equal to the previously stored CCM data, then the program moves to step 60 where the MSC 11 sends a RegNot message to the HLR 22 with the mobile station's MIN, updated CCM, and MSC-ID. The program then returns to step 51 (FIG. 4A).

FIG. 5 is a high level block diagram of a portion of a cellular telecommunications network illustrating the delivery of a short message service (SMS) message 61 to a mobile station M12 in accordance with the teachings of the present invention. In the scenario illustrated in FIG. 5, the mobile station M12 is operating on a DCC 62, and therefore, is capable of receiving SMS messages.

The SMS message 61 arrives at a message center (MC) 63 which stores the message until it can be forwarded to the MSC 11. The MC 63 queries the HLR 22 with a SMS Request Message to determine the CCM of the mobile station M12. The CCM is returned to the MC 63 which then determines whether or not to deliver the SMS message 61. If the CCM indicates that the mobile station M12 is operating in the analog mode, the SMS message cannot be delivered, and it is held in the MC 63. If the CCM indicates that the mobile station M12 is operating in the digital mode, then the MC 63 forwards the SMS message to the MSC 11, to the serving base station B1-B10, and over the DCC to the mobile station M12.

Alternatively, when the SMS message 61 arrives at the MC 63, the MC 63 queries the HLR 22 to determine whether or not to forward the message. In this embodiment, the HLR 22 determines whether or not the SMS message 61 can be delivered based upon the CCM of the mobile station M12. The HLR 22 then instructs the MC 63 to hold the message if the CCM indicates that the mobile station M12 is operating in the analog mode. The HLR 22 instructs the MC 63 to forward the SMS message to the MSC 11 if the CCM indicates that the mobile station M12 is operating in the digital mode. The message is then routed to the mobile station M12 via the serving base station B1-B10.

In either embodiment, if the CCM is initially analog, or the mobile station is inactive, and the CCM later changes to digital, an SMS Notification message is sent from the HLR 22 to the MC 63 indicating the control channel change. The MC then retrieves the stored SMS message and sends it to the MSC 11, to the serving base station B1-B10, and over the DCC to the mobile station M12.

FIG. 6 illustrates the message flow between the MSC 11, HLR 22, and MC 63 when an SMS message cannot initially be delivered to the mobile station M12, but delivery is later allowed. Following the receipt of an SMS message at the MC 63, the MC sends a SMS Request message 64 to the HLR 22 querying whether the SMS message can be delivered to the mobile station M12. In the example illustrated in FIG. 6, the message cannot initially be delivered because the CCM of the mobile station is either analog, or the mobile station is inactive. Therefore, the HLR returns a SMS Request Return Result message 65 to the MC indicating that the SMS message cannot be delivered and must be stored in the MC. The HLR keeps track of the fact that there is a SMS message that is awaiting delivery to the mobile station M12.

At a later time, the mobile station either switches from an analog to a digital control channel, or becomes active and is assigned a digital control channel. At that time, a RegNot message 66 is sent from the MSC 11 to the HLR 22 indicating that the CCM is digital. The HLR recognizes that the SMS message stored in the MC 63 can now be delivered. The HLR, therefore, sends a SMS Notification message 67 to the MC indicating that delivery is allowed. The MC returns a SMS Notification Return Result message 68 to the HLR and then sets up a SMS Delivery Point-to-Point (SMSDPP) 69 in the standard manner.

FIG. 7 is a message flow diagram illustrating the messages sent and received between a MSC 71, a VLR 72, and a HLR 73 when the mobile station M11 roams into a visited system comprising the MSC 71 and the VLR 72. In this embodiment, the MSC and the VLR are separate entities and are not combined in a V-MSC. At 74, the MSC 71 sends a Registration Notification (RegNot) message to the VLR 72 and includes the CCM of the mobile station M11. At 75, the VLR 72 forwards the RegNot message and CCM to the HLR 73. These messages are acknowledged in RegNot Return Result messages at 76 and 77. Thereafter, whenever the CCM changes, the MSC 71 sends a RegNot message to update the CCM in the VLR 72. The VLR 72 may store the CCM without updating the HLR 73, or preferably, may also update the HLR. Storing the CCM in the VLR 72 without updating the HLR 73 reduces signal traffic and memory requirements in the HLR, but has drawbacks as well. For example, although storing the CCM in the VLR makes the CCM available to the MSC for paging purposes, this solution does not enable a message center interfacing with the HLR to obtain the CCM information and ascertain whether a SMS message can be sent to the mobile station.

Additionally, in some network implementations such as, for example, a combined MSC/VLR (V-MSC), a failure of the MSC 71 may result in a corresponding failure of the VLR 72 and loss of the CCM information. Therefore, in the preferred embodiment of the present invention, the CCM information is stored in both the VLR 72 and the HLR 73.

Still referring to FIG. 7, it is shown at 78 that CCM information may be lost at the MSC 71. If there are no incoming calls for mobile station M11, the MSC takes no action, but waits for the next registration by the mobile station. The registration message includes the CCM of the mobile station and restores this information to the MSC. If there is an incoming call for the mobile station M11 before the next registration, then the MSC 71 must retrieve the CCM information from the VLR 72. In the embodiment illustrated in FIG. 7, a Location Request (Invoke) message 79 representing an incoming call for the mobile station M11 is received at the HLR 73. The HLR transmits a Route Request (Invoke) message 81 to the VLR which forwards the message at 82 to the MSC 71 requesting that the MSC page and locate the mobile station M11. However, the MSC is lacking the CCM information for the mobile station. Therefore, the MSC 71 sends a Qualification Request (Invoke) message 83 to the VLR 72 requesting CCM information for the mobile station. Since the MSC and the VLR are separate entities in FIG. 7, the VLR will probably still have the CCM and will return it to the MSC in a Qualification Request (Return Result) message at 84. Although not illustrated in FIG. 7, the MSC 71 then pages and locates the mobile station and returns a Route Request (Return Result) message to the VLR 72 which is forwarded to the HLR 73. The HLR then returns a Location Request (Return Result) message to the calling exchange.

Alternatively, if a call is received for the mobile station and both the MSC 71 and the VLR 72 have lost the CCM data as illustrated at 85, then the MSC sends a Qualification Request (Invoke) message to the VLR at step 86 which is forwarded to the HLR at step 87. The HLR then returns the CCM information in a Qualification Request (Return Result) message to the VLR at 88 which is forwarded to the MSC at 89.

It is thus believed that the operation and construction of the present invention will be apparent from the foregoing description. While the method, apparatus and system shown and described has been characterized as being preferred, it will be readily apparent that various changes and modifications could be made therein without departing from the spirit and scope of the invention as defined in the following claims.

Sawyer, Francois, Lupien, Francis

Patent Priority Assignee Title
10149092, Apr 04 2005 X One, Inc. Location sharing service between GPS-enabled wireless devices, with shared target location exchange
10165059, Apr 04 2005 X One, Inc. Methods, systems and apparatuses for the formation and tracking of location sharing groups
10200811, Apr 04 2005 X One, Inc. Map presentation on cellular device showing positions of multiple other wireless device users
10299071, Apr 04 2005 X One, Inc. Server-implemented methods and systems for sharing location amongst web-enabled cell phones
10313826, Apr 04 2005 X One, Inc. Location sharing and map support in connection with services request
10341808, Apr 04 2005 X One, Inc. Location sharing for commercial and proprietary content applications
10341809, Apr 04 2005 X One, Inc. Location sharing with facilitated meeting point definition
10750309, Apr 04 2005 X One, Inc. Ad hoc location sharing group establishment for wireless devices with designated meeting point
10750310, Apr 04 2005 X One, Inc. Temporary location sharing group with event based termination
10750311, Apr 04 2005 X One, Inc. Application-based tracking and mapping function in connection with vehicle-based services provision
10791414, Apr 04 2005 X One, Inc. Location sharing for commercial and proprietary content applications
10856099, Apr 04 2005 X One, Inc. Application-based two-way tracking and mapping function with selected individuals
11356799, Apr 04 2005 X One, Inc. Fleet location sharing application in association with services provision
11778415, Apr 04 2005 Xone, Inc. Location sharing application in association with services provision
6026300, Jul 31 1997 BlackBerry Limited Method for service acquisition after a call release in a dual mode mobile telephone
6026302, Jan 19 1995 Amphenol Socapex System and method for load reduction in a mobile communication system and a mobile communication system
6055662, Mar 05 1998 DBSD SERVICES LIMITED Communications transactional message handling
6075982, Sep 23 1997 Verizon Patent and Licensing Inc Wireless prepaid platform integration with standard signaling
6091961, Dec 12 1996 Alcatel System for broadcasting messages from a mobile radio terminal
6141777, Jun 28 1996 Verizon Patent and Licensing Inc System and method for reporting telecommunication service conditions
6173180, Jan 04 1999 Ericsson Inc. System and method of providing preferential access to subscribers of localized service areas in a radio telecommunications network
6208870, Oct 27 1998 Lucent Technologies Inc. Short message service notification forwarded between multiple short message service centers
6259923, Jul 08 1997 SK PLANET CO , LTD ; SK TELECOM CO , LTD Method for providing cell location service
6278874, Dec 31 1998 RPX CLEARINGHOUSE LLC Wireless communication system in which a termination access type is identified to a serving mobile switching center
6453158, Sep 23 1997 Verizon Patent and Licensing Inc Wireless prepaid platform integration with standard signaling
6459904, Oct 27 1998 TeleCommunication Systems, Inc. Short message service notification between multiple short message service centers
6597910, May 13 1999 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD Method for making network direct system selection in a cellular communication system
6614774, Dec 04 1998 WSOU Investments, LLC Method and system for providing wireless mobile server and peer-to-peer services with dynamic DNS update
6687502, Mar 21 2000 Transpacific Bluetooth, LLC Method for managing channel state in extended traffic region base station
6871215, Apr 11 2000 Malikie Innovations Limited Universal mail wireless e-mail reader
6891811, Jun 06 2000 INTELLECTUAL PROPERTIES I KFT Short messaging service center mobile-originated to HTTP internet communications
6917807, Mar 10 1999 RPX Corporation Cell selection method
6937860, May 29 1998 UNIFY GMBH & CO KG Handover method (roaming) for mobile terminal devices
6952575, Feb 25 2000 TeleCommunication Systems, Inc. Prepaid call management in intelligent network
7058406, Oct 16 1998 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Cell re-selection utilizing system information length
7110773, Apr 11 2000 TeleCommunication Systems, Inc. Mobile activity status tracker
7127264, Feb 27 2001 TELECOMMUNICATION SYSTEMS, INC Mobile originated interactive menus via short messaging services
7355990, Apr 25 2005 INTELLECTUAL PROPERTIES I KFT Mobile-originated to HTTP internet communications
7403776, Mar 26 2001 Fujitsu Mobile Communications Limited Mobile communication terminal for transmission of electronic mail in a digital mode
7424293, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
7426380, Mar 28 2002 TeleCommunication Systems, Inc. Location derived presence information
7428510, Feb 25 2000 TELECOMMUNICATION SYSTEMS, INC Prepaid short messaging
7430425, May 17 2005 TeleCommunication Systems, Inc. Inter-carrier digital message with user data payload service providing phone number only experience
7512407, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
7519654, Nov 22 2000 TELECOMMUNICATION SYSTEMS, INC Web gateway multi-carrier support
7522911, Apr 11 2000 TELECOMMUNICATION SYSTEMS, INC Wireless chat automatic status tracking
7587204, Oct 16 1998 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Cell re-selection utilizing system information length
7626951, Oct 06 2005 TeleCommunication Systems, Inc. Voice Over Internet Protocol (VoIP) location based conferencing
7640031, Jun 22 2006 TeleCommunication Systems, Inc. Mobile originated interactive menus via short messaging services
7764961, Dec 13 2002 TeleCommunication Systems, Inc. Mobile based area event handling when currently visited network does not cover area
7809359, Apr 11 2000 TeleCommunication Systems, Inc. Wireless chat automatic status tracking
7809382, Apr 11 2001 TELECOMMUNICATION SYSTEMS, INC Short message distribution center
7840208, Oct 04 1999 ARTAX, LLC Intelligent queue for information teleservice messages with superceding updates
7844285, Oct 04 1999 ARTAX, LLC Intelligent queue for information teleservice messages with superseding updates
7853272, Dec 21 2001 TeleCommunication Systems, Inc. Wireless network tour guide
7853511, Feb 25 2000 TeleCommunication Systems, Inc. Prepaid short messaging
7860068, Apr 11 2000 TeleCommunication Systems, Inc. Intelligent delivery agent for short message distribution center
7890102, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
7890127, Sep 05 2001 TeleCommunication Systems, Inc. Inter-carrier messaging service providing phone number only experience
7894797, Apr 11 2000 TeleCommunication Systems, Inc. Wireless chat automatic status signaling
7894825, Apr 11 2000 TeleCommunication Systems, Inc. Mobile activity status tracker
7903791, Jun 13 2005 TeleCommunication Systems, Inc. Enhanced E911 location information using voice over internet protocol (VoIP)
7907551, Oct 06 2005 TeleCommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
7912446, Dec 19 2003 TeleCommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
7929530, Nov 30 2007 TELECOMMUNICATION SYSTEMS, INC Ancillary data support in session initiation protocol (SIP) messaging
7933615, Feb 27 2001 TeleCommunication Systems, Inc. Mobile originated interactive menus via short messaging services method
7945026, May 27 2005 TeleCommunications Systems, Inc.; TELECOMMUNICATION SYSTEMS, INC Voice over internet protocol (VoIP) E911 metro street address guide (MSAG) validation
7949773, Apr 12 2000 ARTAX, LLC Wireless internet gateway
7966013, Nov 05 2007 TELECOMMUNICATION SYSTEMS, INC Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
7991411, May 06 2004 TeleCommunication Systems, Inc. Method to qualify multimedia message content to enable use of a single internet address domain to send messages to both short message service centers and multimedia message service centers
8019368, Oct 04 1999 ARTAX, LLC Intelligent queue for information teleservice messages with superceding updates
8032112, Mar 28 2002 TeleCommunication Systems, Inc. Location derived presence information
8059789, Feb 24 2006 TeleCommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
8060429, Feb 25 2000 TeleCommunication Systems, Inc. Prepaid short messaging
8073477, Apr 11 2000 TeleCommunication Systems, Inc. Short message distribution center
8099105, Sep 19 2006 ARTAX, LLC Device based trigger for location push event
8126458, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
8150363, Feb 16 2006 TeleCommunication Systems, Inc. Enhanced E911 network access for call centers
8175953, Feb 25 2000 TeleCommunication Systems, Inc. Prepaid short messaging
8185087, Sep 17 2007 TELECOMMUNICATION SYSTEMS, INC Emergency 911 data messaging
8190151, Nov 03 2006 TeleCommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
8190181, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
8190182, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
8195205, May 06 2004 TeleCommunication Systems, Inc. Gateway application to support use of a single internet address domain for routing messages to multiple multimedia message service centers
8208605, May 04 2006 TELECOMMUNICATION SYSTEMS, INC Extended efficient usage of emergency services keys
8244218, Oct 27 2010 ARTAX, LLC Intelligent queue for information teleservice messages with superceding updates
8244220, Apr 11 2000 TeleCommunication Systems, Inc. Wireless chat automatic status tracking
8249589, Jun 12 2003 TeleCommunication Systems, Inc. Mobile based area event handling when currently visited network does not cover area
8260329, Apr 18 2000 INTELLECTUAL PROPERTIES I KFT Mobile-originated to HTTP communications
8265673, Apr 11 2000 TeleCommunication Systems, Inc. Short message distribution center
8335509, Oct 16 1998 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Cell re-selection utilizing system information length
8369825, Dec 19 2003 TeleCommunication Systems, Inc. Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
8385881, Dec 19 2003 TeleCommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
8385964, Apr 04 2005 Xone, Inc.; XONE, INC Methods and apparatuses for geospatial-based sharing of information by multiple devices
8406728, Feb 16 2006 TeleCommunication Systems, Inc. Enhanced E911 network access for call centers
8412785, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
8463284, Jul 17 2006 TeleCommunication Systems, Inc. Short messaging system (SMS) proxy communications to enable location based services in wireless devices
8467320, Nov 07 2005 TeleCommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
8483729, Sep 05 2001 TeleCommunication Systems, Inc. Inter-carrier messaging service providing phone number only experience
8532277, Mar 28 2002 TeleCommunication Systems, Inc. Location derived presence information
8538458, Apr 04 2005 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
8560939, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
8566404, Mar 26 2001 Tencent Holdings Limited Instant messaging system and method
8577339, Apr 11 2000 TeleCommunication Systems, Inc. Wireless chat automatic status signaling
8626160, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
8660573, Jul 19 2005 TeleCommunications Systems, Inc. Location service requests throttling
8666397, Dec 13 2002 TeleCommunication Systems, Inc. Area event handling when current network does not cover target area
8682321, Feb 25 2011 TELECOMMUNICATION SYSTEMS, INC ; TeleCommunication Systems, Inc. Mobile internet protocol (IP) location
8682362, Sep 05 2001 TeleCommunication Systems, Inc. Inter-carrier messaging service providing phone number only experience
8688087, Dec 17 2010 TELECOMMUNICATION SYSTEMS, INC N-dimensional affinity confluencer
8688174, Mar 13 2012 TELECOMMUNICATION SYSTEMS, INC Integrated, detachable ear bud device for a wireless phone
8712441, Apr 04 2005 Xone, Inc.; X ONE, INC Methods and systems for temporarily sharing position data between mobile-device users
8712453, Dec 23 2008 ARTAX, LLC Login security with short messaging
8738496, Feb 25 2000 TeleCommunication Systems, Inc. Prepaid short messaging
8744491, Dec 21 2001 TeleCommunication Systems, Inc. Wireless network tour guide
8750183, Apr 18 2000 INTELLECTUAL PROPERTIES I KFT Mobile-originated to HTTP communications
8750898, Apr 04 2005 X ONE, INC Methods and systems for annotating target locations
8798572, Dec 19 2003 TeleCommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
8798593, Apr 04 2005 X ONE, INC Location sharing and tracking using mobile phones or other wireless devices
8798645, Apr 04 2005 X ONE, INC Methods and systems for sharing position data and tracing paths between mobile-device users
8798647, Apr 04 2005 X One, Inc. Tracking proximity of services provider to services consumer
8831556, Sep 30 2011 TeleCommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
8831635, Apr 04 2005 X ONE, INC Methods and apparatuses for transmission of an alert to multiple devices
8867485, May 05 2009 TeleCommunication Systems, Inc.; TELECOMMUNICATION SYSTEMS, INC Multiple location retrieval function (LRF) network having location continuity
8873718, Dec 19 2003 TeleCommunication Systems, Inc. Enhanced E911 location information using voice over internet protocol (VoIP)
8874068, Sep 17 2007 TeleCommunication Systems, Inc. Emergency 911 data messaging
8885796, May 04 2006 TeleCommunications Systems, Inc. Extended efficient usage of emergency services keys
8892121, Sep 19 2006 ARTAX, LLC Device based trigger for location push event
8913983, May 27 2005 TeleCommunication Systems, Inc. Voice over internet protocol (VoIP) E911 metro street address guide (MSAG) validation
8929854, Oct 27 2011 ARTAX, LLC Emergency text messaging
8942743, Dec 17 2010 TELECOMMUNICATION SYSTEMS, INC iALERT enhanced alert manager
8954028, Sep 25 2008 TELECOMMUNICATION SYSTEMS, INC Geo-redundant and high reliability commercial mobile alert system (CMAS)
8965360, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
8983047, Mar 20 2013 TELECOMMUNICATION SYSTEMS, INC Index of suspicion determination for communications request
8983048, Mar 28 2002 TeleCommunication Systems, Inc. Location derived presence information
8984591, Dec 16 2011 TeleCommunications Systems, Inc.; TELECOMMUNICATION SYSTEMS, INC Authentication via motion of wireless device movement
9002951, Nov 22 2000 TeleCommunication Systems, Inc. Web gateway multi-carrier support
9031581, Apr 04 2005 X One, Inc. Apparatus and method for obtaining content on a cellular wireless device based on proximity to other wireless devices
9077817, May 27 2005 TeleCommunication Systems, Inc. Voice over internet protocol (VoIP) E911 metro street address guide (MSAG) validation
9088614, Dec 19 2003 TeleCommunications Systems, Inc. User plane location services over session initiation protocol (SIP)
9125039, Dec 19 2003 TeleCommunication Systems, Inc. Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
9130963, Apr 06 2011 TeleCommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
9131357, Sep 17 2007 TeleCommunication Systems, Inc. Emergency 911 data messaging
9154906, Mar 28 2002 TeleCommunication Systems, Inc. Area watcher for wireless network
9160572, Oct 17 2006 TeleCommunication Systems, Inc.; TELECOMMUNICATION SYSTEMS, INC Automated location determination to support VoIP E911 using self-surveying techniques for ad hoc wireless network
9161189, Oct 18 2005 TeleCommunication Systems, Inc.; TELECOMMUNICATION SYSTEMS, INC Automatic call forwarding to in-vehicle telematics system
9167558, Apr 04 2005 X One, Inc.; X ONE, INC Methods and systems for sharing position data between subscribers involving multiple wireless providers
9172821, Apr 25 2000 TeleCommunication Systems, Inc. Wireless internet gateway limiting message distribution
9173059, Feb 25 2011 TeleCommunication Systems, Inc. Mobile internet protocol (IP) location
9178996, Sep 30 2011 TeleCommunication Systems, Inc. Unique global identifier header for minimizing prank 911 calls
9185522, Apr 04 2005 X One, Inc. Apparatus and method to transmit content to a cellular wireless device based on proximity to other wireless devices
9191520, Dec 13 2010 TELECOMMUNICATION SYSTEMS, INC Location services gateway server
9197992, Dec 19 2003 TeleCommunication Systems, Inc. User plane location services over session initiation protocol (SIP)
9204277, Oct 27 2011 ARTAX, LLC Emergency text messaging
9208346, Sep 05 2012 TELECOMMUNICATION SYSTEMS, INC Persona-notitia intellection codifier
9210548, Dec 17 2010 TeleCommunication Systems, Inc. iALERT enhanced alert manager
9218229, May 12 2000 TeleCommunication Systems, Inc. Event notification system and method
9220958, Mar 28 2002 TeleCommunications Systems, Inc. Consequential location derived information
9232062, Feb 12 2007 TeleCommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
9237228, Dec 19 2003 TeleCommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
9241040, Apr 11 2000 TeleCommunication Systems, Inc. Mobile activity status tracker
9253616, Apr 04 2005 X One, Inc. Apparatus and method for obtaining content on a cellular wireless device based on proximity
9271138, Dec 02 2003 ARTAX, LLC User plane location based service using message tunneling to support roaming
9282451, Sep 26 2005 TeleCommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
9288615, Jul 19 2005 TeleCommunication Systems, Inc. Location service requests throttling
9294911, May 10 2010 TeleCommunication Systems, Inc. Cell-ID translation in a location based system (LBS)
9301191, Sep 20 2013 TELECOMMUNICATION SYSTEMS, INC Quality of service to over the top applications used with VPN
9307372, Mar 26 2012 TELECOMMUNICATION SYSTEMS, INC No responders online
9313637, Dec 05 2011 TELECOMMUNICATION SYSTEMS, INC Wireless emergency caller profile data delivery over a legacy interface
9313638, Aug 15 2012 TELECOMMUNICATION SYSTEMS, INC Device independent caller data access for emergency calls
9326143, Dec 16 2011 TeleCommunication Systems, Inc. Authentication via motion of wireless device movement
9338153, Apr 11 2012 TELECOMMUNICATION SYSTEMS, INC Secure distribution of non-privileged authentication credentials
9369294, Dec 14 2007 TeleCommunication Systems, Inc. Reverse 911 using multicast session internet protocol (SIP) conferencing of voice over internet protocol (VoIP) users
9384339, Jan 13 2012 TELECOMMUNICATION SYSTEMS, INC Authenticating cloud computing enabling secure services
9398419, Mar 28 2002 TeleCommunication Systems, Inc. Location derived presence information
9401986, Sep 30 2011 TeleCommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
9408034, Sep 09 2013 ARTAX, LLC Extended area event for network based proximity discovery
9408046, Oct 03 2006 TELECOMMUNICATION SYSTEMS, INC 911 data messaging
9408047, Oct 10 2013 TELECOMMUNICATION SYSTEMS, INC Read acknowledgement interoperability for text messaging and IP messaging
9420444, Feb 16 2006 TeleCommunication Systems, Inc. Enhanced E911 network access for call centers
9456301, Dec 11 2012 TELECOMMUNICATION SYSTEMS, INC Efficient prisoner tracking
9467826, Sep 17 2007 TeleCommunications Systems, Inc. Emergency 911 data messaging
9467832, Apr 04 2005 X One, Inc. Methods and systems for temporarily sharing position data between mobile-device users
9467836, Dec 19 2003 TeleCommunication Systems, Inc. Enhanced E911 location information using voice over internet protocol (VoIP)
9467844, Apr 11 2000 TeleCommunication Systems, Inc. Mobile activity status tracker
9479344, Sep 16 2011 TeleCommunication Systems, Inc. Anonymous voice conversation
9479897, Oct 03 2013 TELECOMMUNICATION SYSTEMS, INC SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
9503450, Dec 23 2008 ARTAX, LLC Login security with short messaging
9510143, Sep 19 2006 ARTAX, LLC Device based trigger for location push event
9516104, Sep 11 2013 TELECOMMUNICATION SYSTEMS, INC Intelligent load balancer enhanced routing
9519888, May 08 2006 TELECOMMUNICATION SYSTEMS, INC End use transparent email attachment handling to overcome size and attachment policy barriers
9544260, Mar 26 2012 TELECOMMUNICATION SYSTEMS, INC Rapid assignment dynamic ownership queue
9584661, May 04 2006 TeleCommunication Systems, Inc. Extended efficient usage of emergency services keys
9584960, Apr 04 2005 X One, Inc. Rendez vous management using mobile phones or other mobile devices
9599717, Mar 28 2002 TeleCommunication Systems, Inc. Wireless telecommunications location based services scheme selection
9602968, Mar 28 2002 TeleCommunication Systems, Inc. Area watcher for wireless network
9615204, Apr 04 2005 X One, Inc. Techniques for communication within closed groups of mobile devices
9654921, Apr 04 2005 X One, Inc. Techniques for sharing position data between first and second devices
9736618, Apr 04 2005 X One, Inc. Techniques for sharing relative position between mobile devices
9749790, Apr 04 2005 X One, Inc. Rendez vous management using mobile phones or other mobile devices
9854394, Apr 04 2005 X One, Inc. Ad hoc location sharing group between first and second cellular wireless devices
9854402, Apr 04 2005 X One, Inc. Formation of wireless device location sharing group
9883360, Apr 04 2005 X One, Inc. Rendez vous management using mobile phones or other mobile devices
9942705, Apr 04 2005 X One, Inc. Location sharing group for services provision
9955298, Apr 04 2005 X One, Inc. Methods, systems and apparatuses for the formation and tracking of location sharing groups
9967704, Apr 04 2005 X One, Inc. Location sharing group map management
RE41006, Sep 05 2001 TeleCommunication Systems, Inc. Inter-carrier short messaging service providing phone number only experience
Patent Priority Assignee Title
4955083, Oct 10 1986 Motorola, Inc. Dual mode radio transceiver for an SSB communication system
5212684, Sep 01 1989 IPG Electronics 503 Limited Protocol and transceiver for cordless/cellular telephone service
5335355, Jul 09 1990 Kabushiki Kaisha Toshiba Mobile radio communication system utilizing analog and digital modulation
5420911, Aug 29 1991 Telefonaktiebolaget L M Ericsson Cellular telephone for monitoring analog and digital control channels
5493693, Jul 09 1990 Kabushiki Kaisha Toshiba Mobile radio communication system utilizing mode designation
5561840, May 25 1992 Nokia Telecommunications Oy Method and system for location-updating of subscriber mobile stations in a mobile radio network by a combination of mobile initiated location updating of some mobile stations and network-initiated location updating of others
5561854, Mar 31 1993 Telefonaktiebolaget LM Ericsson Restoration of a home location register in a mobile telephone system
5577103, Mar 10 1995 Telefonaktiebolaget LM Ericsson Method of providing service information to subscribers in a cellular telecommunications network using the short message service (SMS)
5621784, Sep 20 1991 Qualcomm Incorporated Comprehensive mobile communications device registration method
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 29 1995SAWYER, FRANCOISTelefonaktiebolaget LM EricssonASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0076020700 pdf
Jul 31 1995LUPIEN, FRANCISTelefonaktiebolaget LM EricssonASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0076020700 pdf
Aug 02 1995Telefonaktiebolaget LM Ericsson (publ)(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 19 2001ASPN: Payor Number Assigned.
Feb 15 2002M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 05 2002REM: Maintenance Fee Reminder Mailed.
Feb 21 2006M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 18 2010M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 18 20014 years fee payment window open
Feb 18 20026 months grace period start (w surcharge)
Aug 18 2002patent expiry (for year 4)
Aug 18 20042 years to revive unintentionally abandoned end. (for year 4)
Aug 18 20058 years fee payment window open
Feb 18 20066 months grace period start (w surcharge)
Aug 18 2006patent expiry (for year 8)
Aug 18 20082 years to revive unintentionally abandoned end. (for year 8)
Aug 18 200912 years fee payment window open
Feb 18 20106 months grace period start (w surcharge)
Aug 18 2010patent expiry (for year 12)
Aug 18 20122 years to revive unintentionally abandoned end. (for year 12)