A constant rate exhaust gas recirculation (EGR) system for a pressure-charged internal combustion engine is provided. The disclosed exhaust gas recirculation system includes one or more exhaust gas diversion ports, one or more EGR diversion valves each of which is operatively associated with a selected combustion chamber for diverting a flow of exhaust gas from the selected combustion chambers via an exhaust gas recirculation conduit to the intake air circuit of the pressure-charged internal combustion engine. The disclosed embodiment of the constant rate EGR system also includes a bypass conduit for diverting a flow of intake air to the exhaust manifold and an EGR cooler disposed in operative association with the recirculation conduit and the bypass conduit and adapted for cooling the volume of recirculated exhaust gas in the recirculation conduit while concurrently heating the intake air in the bypass conduit.

Patent
   5802846
Priority
Mar 31 1997
Filed
Mar 31 1997
Issued
Sep 08 1998
Expiry
Mar 31 2017
Assg.orig
Entity
Large
65
16
EXPIRED
12. A method of recirculating exhaust gas in a pressure-charged internal combustion engine, said pressure-charged internal combustion engine including an intake air circuit with an intake air pressurizing device, said pressure-charged internal combustion engine further including an intake manifold, an exhaust manifold, and a plurality of combustion chambers, the method of recirculating exhaust gas comprising the steps of:
(a) diverting a flow of exhaust gas from a selected number of combustion chambers to a recirculation conduit; and
(b) transporting said diverted flow of exhaust gas in said recirculation conduit to said intake air circuit at a location downstream of said intake air pressurizing device; and
(c) replacing said divert flow of exhaust gas with a flow of replacement air.
1. An exhaust gas recirculation system in a pressure-charged internal combustion engine, said pressure-charged internal combustion engine including an intake air circuit having an intake air pressurizing device, an intake manifold, an exhaust manifold, a plurality of combustion chambers, said exhaust gas recirculation system comprising:
an exhaust gas recirculation conduit for diverting a flow of exhaust gas from at least one selected combustion chamber to said intake air circuit at a location downstream of said intake air pressurizing device;
at least one exhaust gas recirculation diversion valve interposed between said selected combustion chamber and said exhaust gas recirculation conduit;
a controller operatively associated with said exhaust gas recirculation diversion valve and adapted for selectively diverting said flow of exhaust gas from said selected combustion chamber to said exhaust gas recirculation conduit; and
an intake air bypass conduit in fluid communication with said intake air circuit for selectively transporting a flow of intake air from said intake circuit to said exhaust manifold.
2. The exhaust gas recirculation system of claim 1 further including a particulate trap disposed in operative association with said exhaust gas recirculation conduit for cleansing said flow of recirculation exhaust gas in said exhaust gas recirculation conduit.
3. The exhaust gas recirculation system of claim 1, wherein said intake air bypass conduit being on fluid communication with said exhaust manifold proximate said selected combustion chamber.
4. The exhaust gas recirculation system of claim 3 further including an exhaust gas recirculation recuperator disposed in operative associaton with said intake air bypass conduit and adapted for heating said flow of intake air in said intake air bypass conduit wherein said heated flow of intake air replaces said recirculated exhaust gas in said exhaust manifold.
5. The exhaust gas recirculation system of claim 1 wherein said exhaust gas recirculation diversion valve is movable between a first position wherein said flow of exhaust gas from said selected combustion chamber is diverted to said exhaust gas recirculation conduit and a second position wherein said flow of exhaust gas from said selected combustion chamber is in flow communication with exhaust gas from other said plurality of combustion chambers in said exhaust manifold.
6. The exhaust gas recirculation system of claim 5 wherein said exhaust gas recirculation diversion valve is movable between said first position, said second position, and an intermediate position wherein a first portion of said flow of exhaust gas from said selected combustion chamber is diverted to said exhaust gas recirculation conduit and a remaining portion of said flow of exhaust gas from said selected combustion chamber is in flow communication with exhaust gas from other said plurality of combustion chambers in said exhaust manifold.
7. The exhaust gas recirculation system of claim 6 wherein said exhaust gas diversion valve is disposed in said exhaust manifold proximate to said combustion chamber.
8. The exhaust gas recirculation system of claim 1 further including an exhaust gas recirculation cooler disposed in operative association with said exhaust gas recirculation conduit and adapted for cooling said flow of recirculated exhaust gas in said exhaust gas recirculation conduit.
9. The exhaust gas recirculation system of claim 8 wherein said air intake pressurizing device includes a compressor and a gas driven turbine, said gas driven turbine adapted to receive exhaust gas from said exhaust manifold to drive said compressor thereby pressurizing said intake air in said intake circuit.
10. The exhaust gas recirculation system of claim 1 wherein said exhaust gas recirculation cooler is further adapted for heating said intake air in said intake air bypass conduit.
11. The exhaust gas recirculation system of claim 1 wherein said exhaust gas recirculation cooler is a heat exchanger for transferring heat from said recirculated exhaust gas to said flow of intake air in said intake air bypass conduit thereby cooling said recirculated exhaust gas and concurrently heating said flow of intake air in said intake air bypass conduit.
13. The method of recirculating exhaust gas as set forth in claim 12 wherein said step of replacing said diverted flow of exhaust gas is by diverting a flow of intake air to said exhaust manifold.
14. The method of recirculating exhaust gas as set forth in claim 13 further comprising the step of cooling said diverted flow of exhaust gas using said diverted flow of intake air.
15. The method of recirculating exhaust gas as set forth in claim 14 further comprising the step of cleansing said diverted flow of exhaust gas prior to said cooling step.
16. The method of recirculating exhaust gas as set forth in claim 14 further comprising the step of heating said diverted flow of intake air using said diverted flow of exhaust gas wherein the step of heating said diverted flow of intake air being concurrent with the step of cooling said diverted flow of exhaust gas.
17. The method of recirculating exhaust gas as set forth in claim 16 wherein said air intake pressurizing device includes an exhaust gas driven turbine, said method further includes the step of driving said turbine with any exhaust gas remaining in said exhaust manifold together with said diverted flow of intake air.

The present invention relates to an exhaust gas recirculation (EGR) system for a pressure-charged internal combustion engine, and more particularly to a constant rate exhaust gas recirculation system that operates independently of engine speed, load, or inlet and exhaust temperatures and pressures.

Exhaust gas recirculation is a technique commonly used for controlling the generation of undesirable pollutant gases and particulate matter in the operation of internal combustion engines. This technique has proven particularly useful in internal combustion engines used in motor vehicles such as passenger cars, light duty trucks, and other on-road motor equipment. The exhaust gas recirculation technique primarily involves the recirculation of exhaust gas by-products into the intake air supply of the internal combustion engine. This exhaust gas thus reintroduced to the engine cylinder reduces the concentration of oxygen therein, which in turn lowers the maximum combustion temperature within the cylinder and slows the chemical reaction of the combustion process, decreasing the formation of nitrous oxide. Furthermore, the exhaust gases typically contain a portion of unburned hydrocarbon which is burned on its reintroduction into the engine cylinder, which further reduces the emission of exhaust gas by-products which would be emitted as undesirable pollutants from the internal combustion engine.

When utilizing EGR in a turbocharged diesel engine, the exhaust gas to be recirculated is preferably removed upstream of the exhaust gas driven turbine associated with the turbocharger. In many EGR applications, the exhaust gas is diverted directly from the exhaust manifold. Likewise, the recirculated exhaust gas is preferably re-introduced to the intake air stream downstream of the compressor and air-to-air aftercooler. Reintroducing the exhaust gas downstream of the compressor and air-to-air aftercooler is preferred due to the reliability and maintainability concerns that arise should the exhaust gas is passed through the compressor and aftercooler. However at some engine operating conditions, there is a pressure differential between the intake manifold and the exhaust manifold which essentially prevents many conventional EGR systems from being utilized. For example, at high speed, high load conditions in a turbocharged engine, the exhaust gas does not readily flow from the exhaust manifold to the intake manifold. What is needed, therefore, is a simple and inexpensive technique for recirculating a constant rate or flow of exhaust gas to the intake manifold at all engine operating conditions. In addition, the constant rate exhaust gas recirculation should be capable of operating independently of engine speed, load, or inlet and exhaust temperatures and pressures.

There are various related art EGR systems that are adapted to provide a constant rate EGR flow. See, for example, U.S. Pat. Nos. 3,776,207 (Simko) and 4,041,698 (Moritz). The constant rate EGR system disclosed in the Moritz patent achieves the constant EGR rate by means of a combustion air blower. On the other hand, the EGR system disclosed in the Simko patent teaches a constant rate EGR system wherein all exhaust gases from a predetermined number of the cylinders are directed to the intake system of an engine. Disadvantageously, the EGR system disclosed in the Simko patent teaches that such a system is operable only for a limited range of operating conditions (i.e. low load operation) and is not suitable for use in high load operations.

There are also various related art systems, such as U.S. Pat. Nos. 4,284,056 (Sugasawa) and 4,198,940 (Ishida) where the exhaust gases are recirculated through inactive cylinders. Disadvantageously, the EGR systems disclosed in the Sugasawa and Ishida patents are likewise not suitable for operating in all engine load conditions. Other related art systems include the EGR system disclosed in U.S. Pat. No. 5,226,401 (Clarke) wherein a selected subset of the combustion chambers operate in a reverse flow mode thus recirculating exhaust gas from the exhaust manifold to the intake manifold.

Another problem associated with many conventional EGR systems is that the turbocharger efficiency is often sacrificed when exhaust gas is diverted from the exhaust manifold. Removing the exhaust gas to be recirculated from the exhaust manifold or elsewhere upstream of the exhaust gas driven turbine depletes the mass flow and heat energy passing through the turbine which, in turn, lowers the boost levels created by the compressor. Most diesel engine turbochargers are fixed geometry turbochargers, in that they are specifically designed to operate efficiently when matched to the engine exhaust flow output. The reduction in mass flow and pressure due to the EGR creates a mismatch between the exhaust flow to the turbocharger and the turbine specifications during EGR operation. The mismatch results in a turbocharger output that is reduced in percentage more than the percentage reduction in exhaust flow to the turbocharger thereby creating significant losses in airflow and boost pressure. The reduction in airflow and boost pressure decreases the air to fuel ratio down to a point where particulates as well as the brake specific fuel consumption (BSFC) increase. Disadvantageously, the reduction in airflow and boost pressure also results in a noticeable difference in engine performance to the operator depending on whether EGR is on or off.

Yet another problem encountered in many EGR systems is that particulates in the EGR system build up in the valves and EGR coolers creating an EGR flow restriction and corresponding pressure loss. If the particulate build up is too severe, the emissions of the engine suffers over the course of engine life. What is needed, therefore, is an EGR system wherein the particulate build up in valves and EGR coolers and corresponding pressure loss is minimized.

The present invention addresses the above and other needs by providing a method and system for exhaust gas recirculation (EGR) in a pressure charged internal combustion engine, preferably a turbocharged diesel engine. The present EGR system provides for the complete diversion of exhaust gas from a selected number of combustion chambers to the intake air circuit of engine. In this manner, the EGR system takes advantage of the positive displacement pumping action of the engine cylinders to flow the exhaust from the selected combustion chambers against the restrictions in the EGR path as well as overcoming the higher intake manifold pressures.

In one aspect, the invention may be characterized as a constant rate exhaust gas recirculation (EGR) system for a pressure-charged internal combustion engine including one or more exhaust gas diversion valves each of which is in flow communication with a selected combustion chamber for diverting a flow of exhaust gas from the selected combustion chambers via an exhaust gas recirculation conduit. The exhaust gas recirculation conduit transports or diverts the flow of exhaust gas from the selected combustion chambers to the intake air circuit of the pressure-charged internal combustion engine and preferably to a location downstream of the intake air pressurizing device. The exhaust gas diversion valves are operatively associated with a controller which selectively diverts said flow of exhaust gas from each of the selected combustion chambers to said exhaust gas recirculation conduit or allows the exhaust gas from each of the selected combustion chambers to flow to the exhaust manifold. The present embodiment of the EGR system uses a simplified control strategy in that the percentage of exhaust gas recirculated is independent of different engine speeds, engine loads, air massflow, turbocharger backpressure temperature or pressure. Rather, the percent of the exhaust gas recirculated in the presently disclosed embodiment is controlled simply by the number of cylinders diverted relative to the number of total engine cylinders.

The invention may also be characterized as a method for recirculating exhaust gas in a pressure-charged internal combustion engine. The disclosed method comprises the steps of: diverting a flow of exhaust gas from a selected number of combustion chambers to a recirculation conduit; transporting said diverted flow in said recirculation conduit to said intake air circuit at a location downstream of said intake air pressurizing device and upstream of said intake manifold; and replacing said diverted flow of exhaust gas in said exhaust manifold with a flow of replacement air. The flow of replacement air is preferably a diverted flow of intake air.

The disclosed method of recirculating exhaust gas further includes the optional yet advantageous steps of cooling said recirculated exhaust gas in said recirculation conduit using said flow of diverted intake air and concurrently heating said diverted intake air using said recirculated exhaust gas. In the preferred embodiment, the heated intake air along with any remaining exhaust gas in the exhaust manifold is then directed to the exhaust gas driven turbine of the turbocharger. In this manner, the losses in the turbocharger speed due to the exhaust gas recirculation are minimized.

Accordingly, an important aspect of the disclosed invention is the complete diversion of exhaust gas from a selected number of combustion chambers to the intake air circuit of engine. In this manner, the EGR system takes advantage of the positive displacement pumping action of the engine cylinders to flow the exhaust from the selected combustion chambers against the restrictions in the EGR path as well as overcoming the higher intake manifold pressures. In addition, the complete diversion of exhaust gas from one or more combustion chamber provides a simplified EGR control strategy that is independent of different engine speeds, engine loads, or inlet and exhaust temperatures and pressures.

Another advantageous feature of the disclosed embodiment of the EGR system and associated process is the use of a bypass conduit for selectively transporting a flow of intake air from said intake circuit to said exhaust manifold to replace said recirculated exhaust gas. In addition, an EGR cooler is preferably disposed in operative association with the recirculation conduit and the bypass conduit. The EGR cooler is adapted for cooling the volume of recirculated exhaust gas in the recirculation conduit while concurrently heating the intake air in the bypass conduit. The use of intake air to cool the recirculating exhaust gases eliminates the need to use the engine coolant to absorb the heat rejection from the recirculating exhaust gases. In addition, the use of intake air to cool the recirculating exhaust gases thus avoids or minimizes pumping losses incurred in many related art systems where jacket water flows through the EGR cooler.

Yet another advantageous feature of the disclosed invention is the use of the recirculated exhaust gases to heat the diverted intake air. This heated intake air is routed to the turbocharger or other intake air pressurizing device along with the non-recirculated exhaust gases present in the exhaust manifold. Directing both the heated intake air and non-recirculated exhaust gases to the turbocharger allows the standard, fixed geometry turbochargers to operate at a more efficient temperature, pressure and air mass flow. The more efficient operation of the turbocharger during EGR operations allows for the improvement of the air to fuel ratio at high engine loads and permits the use of EGR at engine operating conditions that many related art EGR systems have avoided. Moreover, the presently disclosed embodiment of the EGR system facilitates the use of EGR at high engine loads and allows for rapid transient response of a turbocharger. In other words, the turbocharger speed will remain high during EGR operation thus allowing quick response time when switching from EGR operation to non-EGR operation.

The above and other aspects, features, and advantages of the present invention will be more apparent from the following, more descriptive description thereof, presented in conjunction with the following drawings, wherein:

FIG. 1 is a schematic representation of the exhaust gas recirculation (EGR) system for a turbocharged engine in accordance with the present invention; and

FIG. 2 is a functional block diagram of the exhaust gas recirculation (EGR) system of FIG. 1, generally depicting a detailed method for recirculating exhaust gas in a turbocharged diesel engine in accordance with the present invention.

Corresponding reference numbers indicate corresponding components throughout the several embodiments depicted in the drawings.

The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principals of the invention. The scope and breadth of the invention should be determined with reference to the claims.

Turning now to the drawings and particularly to FIG. 1 there is shown a schematic representation of an exhaust gas recirculation (EGR) system 10 for a turbocharged compression ignition engine 12 (i.e. diesel engine). As seen therein, the turbocharged compression ignition engine 12 includes an intake manifold 14, exhaust manifold 16, a turbocharger 18, and an air-to-air aftercooler 20. The turbocharger 18 is preferably a fixed geometry turbocharger having an exhaust gas driven turbine 22 coupled to an intake air compressor 24. The turbocharger 18 also includes an exhaust gas inlet 26 and an exhaust gas outlet 28 both in fluid communication with the exhaust gas driven turbine 22. The turbocharger 18 further includes a fresh intake air conduit 30 and a compressed air exit conduit 32 both of which are in fluid communication with the air compressor 24.

In the preferred embodiment, the EGR system 10 includes an EGR conduit 34, an intake air bypass conduit 36, an EGR cooler 38 or heat exchanger, and an optional particulate trap 39. As seen in FIG. 1, the EGR conduit 34 is disposed in fluid communication with a select number of combustion chambers and is adapted for diverting a flow of exhaust gas from the selected combustion chambers to a position downstream of the turbocharger 18 and air-to-air aftercooler 20 and proximate the intake manifold 14. The diverted flow of exhaust gas from the selected combustion chambers via the EGR conduit 34 is controlled using one or more EGR diversion valves 40 operatively associated with an engine controller 42 or similar such engine control module.

The illustrated EGR system 10 also includes the intake air bypass conduit 36 for diverting a flow of cooled, compressed intake air from a position downstream of the turbocharger 18 and air-to-air aftercooler 20 to the exhaust manifold 16. The diverted flow of cooled, compressed intake air within the bypass conduit 42 is likewise controlled using a bleed air valve 44 operating under the control of the engine controller 42.

In the illustrated embodiment, the EGR cooler 38 is a counterflow air to EGR heat exchanger. The illustrated EGR cooler 38 is adapted to receive a hot EGR input flow from the selected combustion chambers via the EGR conduit 34 and yield a cooled EGR output flow. The counterflow of the EGR cooler 38 is adapted to receive the diverted intake air or bleed air via bypass conduit 36. The cooled and compressed intake air is then heated by the hot EGR to produce heated intake air while simultaneously cooling the EGR flow through the EGR cooler 38. The heated intake air exiting from the EGR cooler 38 is combined with the exhaust gas remaining in the exhaust manifold 16 and used to drive the exhaust gas driven turbine 22 and associated compressor 24 thereby pressurizing the intake air approximate to the designed boost levels. As indicated above, the use of intake air to cool the EGR eliminates the need to use the engine coolant to absorb the heat from the recirculating exhaust gases and avoids pumping losses associated therewith.

Additional features of the illustrated embodiment of the EGR system include an exhaust particulate trap 39. The particulate trap 39, if used, is preferably disposed along the EGR conduit 34 upstream of the EGR cooler 38. Similarly, a regenerator device, generally known to those skilled in the art, could be used in lieu of the counterflow air to EGR heat exchanger to accomplish the transfer of heat from the recirculating exhaust gases to the cool, compressed intake air thereby cooling the EGR flow while concurrently heating the bypass air flow to recuperate some of the diverted exhaust flow used to drive the turbocharger.

In the embodiment illustrated in FIG. 1, the diverted exhaust gas is driven to the intake manifold 14 by the positive displacement pumping action of one or more designated cylinders. The complete diversion of exhaust gas from one or more combustion chambers to the EGR conduit 34 allows the EGR rate to be kept more or less constant without having to throttle the EGR diversion valves 40. In addition, since the exhaust gas diverted from the selected combustion chambers is typically pressurized above that of the exhaust manifold 16 and intake manifold 14, the EGR system 10 is adapted to operate within a broader range of engine operating conditions (i.e. at high load conditions). As indicated above, there exist some engine operating conditions, such as high load conditions, where the pressure differential between the intake manifold and the exhaust manifold essentially prevents many conventional EGR systems from being utilized without expensive and inefficient throttling arrangements in either the exhaust or intake manifolds.

One skilled in the art can appreciate and understand the preferred method of recirculating exhaust gas associated with the illustrated embodiment. Broadly speaking, the disclosed method of recirculating exhaust gas comprises the steps of: diverting a flow of exhaust gas from a selected number of combustion chambers; transporting the diverted exhaust gas to the intake manifold 14 or other location in the intake circuit downstream of the turbocharger via the EGR conduit 34; and replacing the diverted flow of exhaust gas in the exhaust manifold with a flow of replacement air, preferably by diverting a flow of cool intake air via a bypass conduit 36. The preferred method also includes cooling the recirculated exhaust gas in the EGR conduit 34 using the flow of diverted intake air and an EGR to intake air heat exchanger 46 thereby concurrently heating the intake air in the bypass conduit 36 using the recirculated exhaust gas. The heated intake air is fed to the exhaust manifold 16 where it is used to replace the recirculated exhaust gas. The heated intake air is combined with the remaining exhaust gas and used to drive the turbine 22 of the turbocharger 18.

Turning now to FIG. 2, there is shown a functional block diagram generally depicting a more detailed method for recirculating exhaust gas in a turbocharged diesel engine. It is important to note that while the description hereof is present in a sequential nature, many of the actual functions involved in the preferred process are performed concurrently, and not all steps are essential to the present method.

With the foregoing in mind, the depicted method involves the steps of: (a) receiving fresh intake air 60 at the turbocharger 18; (b) compressing the fresh intake air 60 with turbocharger 18; (c) sending the compressed intake air 62 to the air-to-air aftercooler 20; (d) cooling the compressed intake air 62 using the air-to-air aftercooler 20 to yield cooled compressed intake air 64; (e) diverting a selected volume 66 of the cooled compressed intake air 64; and (f) forwarding the remaining cooled compressed intake air 68 to the engine 12.

The preferred method also includes the steps of (g) diverting hot exhaust gas 70 from a selected number of combustion chambers of the engine 12; (h) cleansing the diverted hot exhaust gas 70 using a particulate trap 39; (i) cooling the diverted hot exhaust gas 70 to yield cooled exhaust gas 72 while concurrently heating the diverted volume of intake air 66 to yield heated intake air 74 using the heat exchanger 46; (j) combining the cooled exhaust gas 72 with the cooled compressed engine intake air 68 proximate the intake manifold 14; and (k) forwarding the combined intake EGR gas to the intake manifold 14 of the engine 12. Concurrently therewith the preferred method also includes: (1) replacing the hot exhaust gas 70 diverted from the exhaust manifold 16 with the heated intake air 74 and combining the heated intake air 74 with any remaining exhaust gas 76 to form a selected volume of discharge air 78; (m) driving an exhaust gas driven turbine 22 of the turbocharger 18 with the discharge air 78; and (n) forwarding the discharge air 78 to the exhaust system associated with the engine.

From the foregoing, it should be appreciated that the present invention thus provides a method and system for the recirculation of exhaust gas in a turbocharged diesel engine. While the invention herein disclosed has been described by means of specific embodiments and processes associated therewith, numerous modifications and variations can be made thereto by those skilled in the art without departing from the scope of the invention as set forth in the claims or sacrificing all its material advantages.

Bailey, Brett M.

Patent Priority Assignee Title
10012153, Aug 15 2012 GE GLOBAL SOURCING LLC System and method for engine control
10221798, Dec 01 2015 GE GLOBAL SOURCING LLC Method and systems for airflow control
10450973, Jun 28 2012 Cummins Inc. Techniques for controlling a dedicated EGR engine
10626812, Feb 02 2017 GM Global Technology Operations LLC Internal combustion engine employing a dedicated-cylinder EGR system
11255298, May 06 2019 Ford Global Technologies, LLC Methods and systems for an engine
5997259, Apr 30 1998 International Engine Intellectual Property Company, LLC Electronic engine - air compressor system
6003315, Mar 31 1997 Caterpillar Inc. Exhaust gas recirculation system for an internal combustion engine
6009704, Jul 02 1998 Caterpillar Inc.; Caterpillar Inc Exhaust gas recirculation system
6009709, Mar 31 1997 Caterpillar Inc. System and method of controlling exhaust gas recirculation
6038860, Mar 31 1997 Caterpillar Inc. Exhaust gas recirculation method for an internal combustion engine
6155042, Oct 31 1997 Valeo Thermique Moteur Exhaust gas recirculation line for an automobile engine
6185939, Mar 22 1999 Caterpillar Inc. Exhaust gas recirculation system
6205775, Mar 22 1999 Caterpillar Inc. Exhaust gas recirculation control system
6216458, Mar 31 1997 Caterpillar Inc. Exhaust gas recirculation system
6220233, Oct 13 1999 Caterpillar Inc. Exhaust gas recirculation system having variable valve timing and method of using same in an internal combustion engine
6230695, Mar 22 1999 Caterpillar Inc. Exhaust gas recirculation system
6237336, Nov 09 1999 Caterpillar Inc. Exhaust gas recirculation system in an internal combustion engine and method of using same
6244256, Oct 07 1999 Behr GmbH & Co; Cummins Engine Company, Inc; BEHR AMERICA, INC High-temperature coolant loop for cooled exhaust gas recirculation for internal combustion engines
6286489, Dec 11 1998 Caterpillar Inc. System and method of controlling exhaust gas recirculation
6321697, Jun 07 1999 GM Global Technology Operations LLC Cooling apparatus for vehicular engine
6347619, Mar 29 2000 Deere & Company Exhaust gas recirculation system for a turbocharged engine
6397597, Dec 17 1998 Daimler AG Internal combustion engine having a turbocharger having variable turbine geometry
6412276, Apr 06 1999 Peugeot Citroen Automobiles SA Regeneration system for a diesel engine exhaust gas particulate filter
6422217, Dec 19 2000 Caterpillar Inc Back pressure valve drive EGR system
6422219, Nov 28 2000 Detroit Diesel Corporation Electronic controlled engine exhaust treatment system to reduce NOx emissions
6422220, Dec 18 2000 Caterpillar Inc Internal combustion engine with an exhaust gas recirculation system
6439212, Dec 19 2001 Caterpillar Inc. Bypass venturi assembly and elbow with turning vane for an exhaust gas recirculation system
6446498, Jun 30 1999 Caterpillar Inc.; Caterpillar Inc Method for determining a condition of an exhaust gas recirculation (EGR) system for an internal combustion engine
6470864, Mar 27 2000 Mack Trucks, Inc.; Mack Trucks, Inc Turbocharged engine with exhaust gas recirculation
6474060, Nov 17 1999 Southwest Research Institute Exhaust gas recirculation filtration system
6474319, Oct 17 2000 Cummins Engine Company, Inc Filter system for the removal of hydrocarbon deposits from a cooled exhaust gas recirculating engine
6484703, May 08 2001 Caterpillar Inc. EGR/bleed air diverter valve
6553763, Aug 30 2001 Caterpillar Inc Turbocharger including a disk to reduce scalloping inefficiencies
6564784, Sep 30 1999 Komatsu Ltd. Exhaust gas recirculation control apparatus for internal combustion engine
6598396, Nov 16 2001 Caterpillar Inc Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement
6601387, Dec 05 2001 Detroit Diesel Corporation System and method for determination of EGR flow rate
6609374, Dec 19 2001 Caterpillar Inc Bypass venturi assembly for an exhaust gas recirculation system
6640542, Dec 20 2001 Caterpillar Inc Bypass venturi assembly with single shaft actuator for an exhaust gas recirculation system
6647970, Jul 09 2001 Clarence L., Hankins; Fred, Burk; George, Jansen; Larry, Gibson; Les, Thompson Exhaust gas recirculation and processing device for turbocharged diesel engine
6659092, Dec 20 2001 Caterpillar Inc Bypass assembly with annular bypass venturi for an exhaust gas recirculation system
6681171, Dec 18 2001 Detroit Diesel Corporation Condensation control for internal combustion engines using EGR
6705301, Jan 29 2002 Cummins, Inc System for producing charge flow and EGR fraction commands based on engine operating conditions
6729315, Sep 30 1999 Komatsu Ltd. Exhaust gas recirculation control apparatus for internal combustion engine
6742335, Jul 11 2002 CLEAN AIR POWER, INC EGR control system and method for an internal combustion engine
6851415, Jul 16 2001 MAHAKUL, BUDHADEB System for exhaust/crankcase gas recirculation
6931839, Nov 25 2002 Delphi Technologies, Inc. Apparatus and method for reduced cold start emissions
6948475, Nov 12 2002 CLEAN AIR POWER, INC Optimized combustion control of an internal combustion engine equipped with exhaust gas recirculation
6968678, Oct 31 2002 ATTAINMENT TECHNOLOGIES, LLC High efficiency, reduced emissions internal combustion engine system, especially suitable for gaseous fuels
7104048, Apr 30 2004 GM Global Technology Operations LLC Low emission diesel particulate filter (DPF) regeneration
7152394, Jul 21 2001 NuCellSys GmbH System and method for reducing nitrogen oxides in the exhaust of an internal combustion engine
7210468, Oct 24 2005 JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT Heat exchanger method and apparatus
7311090, Jan 31 2006 JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT Engine exhaust gas passage flow orifice and method
7313918, Mar 26 2003 Alternative (reciprocating) engine with recirculation of exhaust gases intended for the propulsion of automobiles and method turbocharging these motors
7454896, Feb 23 2005 EMP Advanced Development, LLC Thermal management system for a vehicle
7913675, Oct 06 2005 Caterpillar Inc. Gaseous fuel engine charge density control system
7921647, Jul 02 2004 Volvo Truck Corporation Internal combustion engine exhaust gas system
7921648, Feb 21 2005 BEHR GMBH & CO KG Exhaust gas turbocharger internal combustion engine
8061335, Oct 24 2006 Volvo Truck Corporation Internal combustion engine comprising an exhaust gas recirculation system
8615983, May 07 2010 GM Global Technology Operations LLC Heat exchanger method and apparatus for engine exhaust gas recirculation system
8821105, Aug 18 2006 Joho Corporation Turbine with variable number of nozzles
8904787, Sep 21 2011 Ford Global Technologies, LLC Fixed rate EGR system
9145837, Nov 29 2011 GE GLOBAL SOURCING LLC Engine utilizing a plurality of fuels, and a related method thereof
9422877, Oct 11 2013 AI ALPINE US BIDCO LLC; AI ALPINE US BIDCO INC System and method for control of exhaust gas recirculation (EGR) utilizing process temperatures
9631582, Jun 28 2012 Cummins Inc Techniques for controlling a dedicated EGR engine
9845754, Dec 23 2013 Cummins Inc. Control of internal combustion engines in response to exhaust gas recirculation system conditions
Patent Priority Assignee Title
3776207,
4041698, Jun 03 1975 UNITED STIRLING AB , A CORP OF SWEDEN External combustion engine with exhaust gas recirculation of constant mass flow rate
4109625, Jan 31 1976 Isuzu Motors Limited Exhaust gas purifying device for internal combustion engine with auxiliary combustion chambers
4156414, Jan 20 1977 Isuzu Motors Limited Exhaust gas purifying device for internal combustion engine with auxiliary combustion chamber
4170112, Jul 23 1977 Toyota Jidosha Kogyo Kabushiki Kaisha Internal combustion engine of cleaned exhaust gas
4198940, Jul 06 1978 Toyota Jidosha Kogyo Kabushiki Kaisha Split operation type multi-cylinder internal combustion engine
4233811, May 30 1975 Nissan Motor Company, Limited Exhaust gas reaction control system
4284056, Feb 28 1979 Nissan Motor Company, Limited Split-type internal combustion engine
4426848, Nov 20 1981 Dresser Industries, Inc. Turbocharged engine exhaust gas recirculation system
4969445, Oct 28 1988 Daimler-Benz AG Device for exhaust gas recirculation on a multi-cylinder diesel internal combustion engine
5226401, Jun 01 1992 Caterpillar Inc.; CATERPILLAR INC , A CORPORATION OF DELAWARE Method and apparatus for exhaust gas recirculation via reverse flow motoring
5271221, Dec 07 1992 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION Integrated feedback controlled secondary air injection and egr
5456240, Dec 29 1994 Kanesaka Technical Institute Ltd. Engine system
5517976, Jul 20 1993 MTU Motoren- und Turbinen-Union Friedrichshafen GmbH Diesel engine equipped for reducing harmful substances in its operation
5617726, Mar 31 1995 CUMMINS ENGINE IP, INC Cooled exhaust gas recirculation system with load and ambient bypasses
5669365, Jun 24 1996 DaimlerChrysler AG Internal combustion engine with exhaust gas recirculation
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 26 1997BAILEY, BRETT M Caterpillar IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0085070391 pdf
Mar 31 1997Caterpillar Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 12 2001M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 29 2006REM: Maintenance Fee Reminder Mailed.
Sep 08 2006EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 08 20014 years fee payment window open
Mar 08 20026 months grace period start (w surcharge)
Sep 08 2002patent expiry (for year 4)
Sep 08 20042 years to revive unintentionally abandoned end. (for year 4)
Sep 08 20058 years fee payment window open
Mar 08 20066 months grace period start (w surcharge)
Sep 08 2006patent expiry (for year 8)
Sep 08 20082 years to revive unintentionally abandoned end. (for year 8)
Sep 08 200912 years fee payment window open
Mar 08 20106 months grace period start (w surcharge)
Sep 08 2010patent expiry (for year 12)
Sep 08 20122 years to revive unintentionally abandoned end. (for year 12)