A surgical device includes a pair of end effector members. Rotation of one or both of the members about the longitudinal axis thereof enables a section of tissues to be inserted between the members and then grasped and compressed thereby. In use in laparoscopy, the members are rotated (or biassed) to the closed position to enable insertion of the members through a cannula, and, once inside the patient, the members are rotated from the closed position so that tissue can be inserted therebetween for gripping purposes. electrosurgical current is applied to the members to provide coagulation of tissue held between the members. By simply rotating the rotating member between two opposed positions, coagulation can be carried out at two spaced zones. A third cutting member may then be used to cut the tissue along a midline between the coagulation zones. In another embodiment, a cutting edge on the rotating member is rotated into position to cut tissue after a further, blunt edge of the rotating member has been positioned relative to the fixed member to provide coagulation.
|
1. A bipolar electrosurgical device comprising an end effector including at least first and second elongate electrode members supported in spaced relation one beside the other, said electrode members each having a longitudinal axis; means for applying electrosurgical power to said electrode members; and handle means for causing rotation of at least said first electrode member about the longitudinal axis thereof so as to vary the spacing between at least distal end portions of said first and second electrode members, the distal end portion of said first electrode member comprising an offset portion the spacing of which from said second electrode member is variable responsive to said rotation of said first electrode member about the longitudinal axis thereof.
42. An elongate rotary surgical device for, in use, providing engagement of patient tissue, said device having a central longitudinal axis and comprising: first and second elongate members supported in spaced relation, said first member including a distal end portion and an elongate portion connected to said distal end portion and defining a further longitudinal axis offset from said central longitudinal axis, and said second member including a distal end portion; and handle means for rotating said first member about said further longitudinal axis so as to provide relative movement between the distal end portion of said first member and the distal end portion of said second member to a closed position so as to provide engagement of patient tissue positioned between said members.
28. An elongate rotary surgical scissors device for, in use, providing cutting of patient tissue, said scissors device having a central longitudinal axis and comprising: first and second elongate members supported in spaced relation, said first member including a distal end portion including a cutting edge and an elongate portion connected to said distal end portion and defining a further longitudinal axis offset from said central longitudinal axis, and said second member including a distal end portion; and means for rotating said first member about said further longitudinal axis so as to provide relative movement between the distal end portion of said first member and the distal end portion of said second member to a closed position so as to provide cutting of patient tissue positioned between said members with said cutting edge.
20. An electrosurgical scissors device for providing cutting, and coagulation, said scissors device comprising: first and second electrode members supported in spaced relation, said first electrode member including a distal end portion and an elongate portion defining a longitudinal axis, and said distal end portion of said first electrode member being offset from said elongate portion and including a cutting edge; means for enabling electrosurgical current to be supplied to said electrode members; and handle means for causing rotation of said first electrode member about said longitudinal axis so as to vary the spacing between the distal end portion of said first electrode member and a distal end portion of said second electrode member so as to provide cutting of tissue positioned between said electrode members with said cutting edge.
25. A method of coagulation and cutting of tissue using an electrosurgical device comprising first and second spaced, elongate electrode members wherein the first electrode member is rotatable about the longitudinal axis thereof so as to vary the spacing between a distal end portion thereof and a distal end portion of the second electrode member, and wherein said distal end of said first electrode member includes a cutting edge, said method comprising: positioning tissue to be coagulated and cut into a space between said electrode members; rotating said first electrode member so that a surface of said distal end portion thereof is brought into juxtaposition with an opposed surface of the distal end portion of said second electrode member; applying electrosurgical current to said electrode members to cause coagulation of a portion of the tissue between said electrode members; and further rotating said first electrode member so as to bring said cutting edge into contact with the tissue to provide cutting thereof.
17. A method for coagulating an elongate section of tissue of a patient using a electrosurgical device having an end effector comprising first and second spaced electrodes wherein at least said first electrode is rotatable, said method comprising: placing the elongate section of tissue into a space between said first and second electrodes created by rotating said first, rotatable electrode away from said second electrode; rotating said first, rotatable electrode towards said second electrode so as to engage and hold the tissue between said electrodes at a first location on the tissue; applying electrosurgical current to said electrodes so as to produce a first weld line in the tissue held between said electrodes at said first location; rotating the first rotatable electrode away from said first location so as to engage and hold the tissue between said electrodes at a second location on the tissue; applying electrosurgical current to said electrodes to create a second weld line in the tissue held between the electrodes at said second location; and cutting the tissue between said weld lines.
41. A surgical scissors device for, in use, providing cutting of patient tissue, said scissors device comprising: at least first and second elongate cutting members supported in spaced relation, said first and second members each including a distal end portion and an elongate portion defining a longitudinal axis, and said distal end potion of each of said first and second members including a cutting edge; means for enabling axial movement of at least one of said first and second members between a first, scissors configuration wherein the distal end portions of said members are in registration within another and a second, single element cutting configuration wherein the distal end portions of said members are out of registration so that one of said cutting edges is exposed for cutting; and means for rotating said first member about the longitudinal axis thereof in the scissors configuration of said device so as to vary the spacing between the distal end portion of said first member and the distal end portion of said second member so as to provide cutting of tissue positioned between said first and second members with the cutting edges of said members.
34. A rotary surgical scissors device for, in use, providing cutting of patient tissue, said scissors device having a central longitudinal axis and comprising: first and second members supported in spaced relation, said first member including a distal end portion and a further, offset portion connected to said distal end portion and defining a further longitudinal axis, said second member including a base portion and a distal end portion affixed to said base portion and spaced radially from said central longitudinal axis an amount defining an outer limit of an outer peripheral boundary of the device, and said distal end portions of said first and second members each including a cutting edge; and means for rotating said first member about said further longitudinal axis so as to vary the relative positions of the distal end portions of said first and second members between a closed position wherein said cutting edges provide cutting and an open position, said central longitudinal axis and said further longitudinal axis being offset such that said distal end portion of said first member is disposed within said outer peripheral boundary in said closed position and is disposed outside of said outer peripheral boundary in said open position.
26. An electrosurgical scissors device for, in use, providing cutting of tissue, said scissors device comprising: at least first and second elongate electrode members supported in spaced relation, said first and second electrode members each including a distal end portion and an elongate portion defining a longitudinal axis, the distal end portion of one said electrode members being offset axially with respect to the longitudinal axis of the elongate portion thereof; and said distal end portion of each of said first and second members including a cutting edge; means for enabling axial movement of at least one of said first and second electrode members between a first, scissors configuration wherein the distal end portions of said electrode members are in registration within another and a second, single element cutting configuration wherein the distal end portions of said electrode members are out of registration so that one of said cutting edges is exposed for use as a monopolar cutting element; means for enabling electrosurgical current to be supplied to said electrode members; and handle means for causing rotation of said first member about the longitudinal axis thereof in the scissors configuration of said device so as to vary the spacing between the distal end portion of said first electrode member and the distal end portion of said second electrode member so as to provide cutting of tissue positioned between said first and second members with the cutting edges of said electrode members.
2. A device as claimed in
3. A device as claimed in
4. A device as claimed in
6. A device as claimed in
7. A device as claimed in
8. A device as claimed in
9. A device as claimed in
10. A device as claimed in
11. A device as claimed in
12. A device as claimed in
13. A device as claimed in
14. A device as claimed in
15. A device as claimed in
16. A device as claimed in
18. A method as claimed in
19. A method as claimed in
21. A device as claimed in
22. A device as claimed in
23. A device as claimed in
24. A device as claimed in
27. A device as claimed in
29. A device as claimed in
30. A device as claimed in
31. A device as claimed in
32. A device as claimed in
33. A device as claimed in
35. A device as claimed in
36. A device as claimed in
37. A device as claimed in
38. A device as claimed in
39. A device as claimed in
40. A device as claimed in
43. A device as claimed in
44. A device as claimed in
45. A device is claimed in
|
1. Field of the Invention
The present invention relates to bipolar electrosurgical devices such as electrosurgical scissors, gaspers and the like which include end effectors for effecting cutting, coagulation and other functions.
2. The Prior Art
Although there are many different types and forms of prior art electrosurgical grasping and scissors devices, it is characteristic of these devices that they typically employ a pivoting arrangement including a common pivot pin about which both of the end effectors pivot, so as to produce rotatory movement about an axis perpendicular to the cutting plane. The fact that both members pivot about a common axis creates a problem when the two members must be electrically insulated as is required, e.g., in electrosurgical applications.
There are, of course, many patents relating to electrosurgical scissors, graspers and like devices. Some of these devices provide both coagulation and cutting. Patents of interest in the field include the following: U.S. Pat No. 5,269,780 (Roos), U.S. Pat No. 5,267,998 (Hagen), U.S. Pat No. 5,269,782 (Sutter), U.S. Pat No. 5,445,638 (Rydell et al.), and U.S. Pat No. 4,655,216 (Tischer). Briefly considering these patents, the Roos patent discloses a bipolar electrosurgical device which includes three mutually insulated contact rods for cutting and coagulation. The Hagen patent discloses a bipolar electrosurgical device with two stationary coagulation electrodes and a movable cutting electrode. The Sutter patent discloses a bipolar electrosurgical device including two elongated electrodes. The Rydell et al. patent discloses a bipolar electrosurgical device including electrode forceps jaws and a movable cutter between these jaws. The Tischer et al. patent discloses a bipolar electrosurgical device for coagulating an area and cutting tissue in the coagulated area.
Generally speaking, the present invention relates to a surgical device including end effector members, one or more of which is rotated into position along the longitudinal axis of the device so as to contact and retain tissue between the members. This results in significant advantages with respect to simplicity of design and ease of manufacturing as will appear from the discussion below. In this regard, it will be appreciated that difficulties associated with the pivot pin constructions of the prior art are reduced significantly by pivoting the electrode members independently of each other. The rotational axis of each electrode member of the invention lies in the cutting plane, as opposed to the transverse plane as in the prior art. Because separate pivoting is provided, the construction can be simplified and there is no need for bushings for electrical insulation nor rivets. The small rivets associated with prior art constructions present problems in manufacture and assembly, because accurate positioning using specially designed fixtures is necessary to control the loads and deformations created during flaring of the ends of the rivets, thereby adding to manufacturing costs. As will appear, there is no need for bushings with the present invention because the support structure is made from an insulating material.
In accordance with one aspect of the invention, a bipolar electrosurgical device is provided which comprises an end effector including first and second elongate electrode members supported in spaced relation one beside the other; means for applying electrosurgical power to the electrode members; and means for rotating at least the first electrode member about the longitudinal axis thereof so as to vary the spacing between at least distal end portions of said first and second electrode members.
preferably, the distal end portion of the first electrode member comprises an offset portion the spacing of which from the second electrode member is variable responsive to rotation of said electrode member about the longitudinal axis thereof. Advantageously, this offset portion includes a portion which extends parallel to an opposed portion of the distal end of the second electrode.
In a preferred embodiment, the electrode members include portions supported in spaced parallel relation and the first electrode member includes a further, offset portion at the distal end thereof. Advantageously, as above, the offset portion includes an end portion which extends parallel to an opposed portion of said second electrode.
preferably, the device further comprises an electrically insulating spacer and support element having spaced openings therethrough through which the electrode members extend. In an advantageous implementation, these openings have parallel longitudinal axes.
In one preferred embodiment,the end portion of the first electrode member is rounded in cross section. In one advantageously implementation of this embodiment, the distal end portion of the first electrode member is substantially circular in cross section. In one preferred embodiment, the second electrode member has a substantially planar profile in cross section.
In an embodiment of the invention wherein the surgical device can be used for cutting, the distal end portion of the first electrode member includes a cutting edge. In this embodiment, the distal end portion preferably further includes a blunt edge substantially opposite the cutting edge.
In accordance with another aspect of the invention, at least one of the electrode members is movable axially along the longitudinal axis thereof out of registration with the other of the electrode members so as to expose one of the electrode members for use as a monopolar cutting element.
In another preferred embodiment, the distal end portions of both of the electrode members each include a cutting edges so as to provide a scissors.
Advantageously, the second electrode member is stationary and the end portion thereof comprises a blade formed from part of a cylinder inclined towards the distal end thereof and including the cutting edge for the second member, the distal end portion of said the first electrode member comprising a blade formed from part of a cylinder, and including the cutting edge for the first member, and the rotation means including means for rotating the first electrode member about an offset axis such that the cutting edges of the blades contact each other along a narrow line of contact.
Advantageously, either or both of the electrode members includes a hook at the distal end thereof for preventing tissue held on the electrode members from sliding off therefrom.
In a further preferred embodiment which also provides cutting, the device further comprises a further, cutting member for cutting tissue held by the electrode members.
In an embodiment providing both coagulation and cutting, the first electrode member is rotatable to provide coagulation of tissue held between the electrode members at two spaced coagulation zones when electrosurgical power is applied to the electrode members, and the device further comprises a further cutting member disposed relative to the electrode members so as to effect cutting of tissue held by said electrode members at a zone between the coagulation zones.
In accordance with a further aspect of the invention, a method is provided for coagulating an elongate section of tissue of a patient using a electrosurgical device having an end effector comprising first and second spaced electrodes wherein at least said first electrode is rotatable, the method comprising: placing the elongate section of tissue into a space between said first and second electrodes created by rotating the first, rotatable electrode away from the second electrode; rotating the first, rotatable electrode towards the second electrode so as to engage and hold the tissue between the electrodes at a first location on the tissue; applying electrosurgical current to the electrodes so as to produce a first weld line in the tissue held between the electrodes at the first location; rotating the first rotatable electrode away from the first location so as to engage and hold the tissue between the electrodes at a second location on the tissue; applying electrosurgical current to the electrodes to create a second weld line in the tissue held between the electrodes at the second location; and cutting the tissue between the weld lines.
Preferably, the first, rotatable electrode is rotated to the second location while the second electrode is held fixed. Advantageously, the cutting is carried out by a cutting element forming part of said electrosurgical device.
In accordance with yet another aspect of the invention, an electrosurgical scissors device is provided for carrying out both cutting and coagulation operations, the scissors device comprising: first and second electrode members supported in spaced relation, the first electrode member including a distal end portion and an elongate portion defining a longitudinal axis and the distal end portion of the first electrode member including a cutting edge; means for enabling electrosurgical current to be supplied to the electrode members; and means for rotating the first electrode member about the longitudinal axis thereof so as to vary the spacing between the distal end portion of the first electrode member and a distal end portion of the second electrode so as to provide cutting of tissue positioned between the electrode members with the cutting edge.
Preferably, the distal end portion of the first electrode member includes a surface for, when juxtaposed with an opposing surface of the distal end of said second electrode member, enabling coagulation of tissue positioned between the electrode members in response to electrosurgical current being supplied to the electrode members.
Advantageously, the distal end portion of the first electrode member includes a further, rounded edge opposed to the cutting edge and movable into juxtaposition with the distal end portion of the second electrode to effect coagulation of tissue positioned between the electrode members.
In accordance with an additional aspect of the invention, a method of coagulation and cutting of tissue is provided which uses an electrosurgical device comprising first and second spaced, elongate electrode members wherein the first electrode member is rotatable about the longitudinal axis thereof so as to vary the spacing between a distal end portion thereof and a distal end portion of the second electrode member, and wherein the distal end of the first electrode member includes a cutting edge, said method comprising: positioning tissue to be coagulated and cut into a space between the electrode members; rotating the first electrode member so that a surface of the distal end portion thereof is brought into juxtaposition with an opposed surface of the distal end portion of the second electrode member; applying electrosurgical current to said electrode members to cause coagulation of a portion of the tissue between the electrode members; and further rotating the first electrode member so as to bring the cutting edge thereof into contact with the tissue to provide cutting thereof.
Other features and advantages of the invention will be set forth in, or apparent from, the following detailed description of the preferred embodiment of the invention.
FIG. 1 is a schematic side elevational view of the end effector portion of a surgical device constructed in accordance with a preferred embodiment of the invention;
FIG. 2 is a side elevational view of the device of FIG. 1 showing the rotatable electrode member in a second position thereof;
FIG. 3 is an end elevational view of the device as shown in FIG. 1;
FIG. 4 is an end elevational view of the device as shown in FIG. 2;
FIGS. 5 to 8 are schematic end views showing steps in a coagulation and cutting method of the invention using a surgical device constructed in accordance with an embodiment similar to that of FIGS. 1 to 4;
FIGS. 9 and 10 are schematic end elevational views showing steps in a further method of the invention using a surgical device constructed in accordance with a further embodiment of the invention;
FIG. 11 is a schematic end elevational view similar to that of FIG. 9 illustrating a further implementation of this aspect of the invention;
FIG. 12 is a perspective view of a further embodiment of the surgical device of the invention including a preferred implementation of the actuating mechanism;
FIG. 13 is a perspective view of a further embodiment of the surgical device shown in FIG. 12;
FIG. 14 is a perspective view of a further embodiment of the rotating electrode member of the invention;
FIG. 15 is a perspective view of a further embodiment of the fixed electrode member of the invention;
FIG. 16 is a perspective view of yet another embodiment of the fixed electrode member of the invention;
FIGS. 17, 18 and 19 are a side elevational view, a bottom plan view and a front elevational view, respectively, of a further embodiment of the fixed electrode member of the invention;
FIGS. 20 and 21 are a side elevational view and a front elevational view respectively, of yet another embodiment of the fixed electrode member; and
FIGS. 22, 23 and 24 are a top plan view, a side elevational view, and a front elevational view, respectively, of a further embodiment of the rotating electrode member.
Referring to FIGS. 1 to 4, there are shown the key elements of a bipolar surgical device or instrument, generally denoted 10, constructed in accordance with a preferred embodiment of the invention. In this embodiment, device 10 includes a first, movable electrode 12 and second, fixed electrode 14. Electrodes 12 and 14 are mounted in guide holes 16a and 16b provided in an electrically non-conductive guide 16 and supported in generally parallel relation. As illustrated, fixed electrode includes a blade or end portion 14a and a main, shaft portion 14b, while movable electrode 12 includes an end or blade portion 12a in the form of a crank arm or offset arm which is rotatable, by a rotation means or mechanism indicated schematically by double-headed arrow 18, about the longitudinal axis defined by the main, remaining, shaft portion 12b of the electrode 12. As a result, end portion 12a can be rotated between a first position shown in FIGS. 1 and 3 wherein end portion 12a is substantially spaced from fixed electrode 14 and a second position shown in FIGS. 2 and 4 wherein end portion 12a is disposed close to fixed electrode 14. Of course, other, different rotational positions of end portion 12 are also possible, depending on the application.
As illustrated in FIGS. 3 and 4, fixed electrode 14 is substantially flat in cross section, while electrode 12 is substantially round. However, it will be understood that the two electrodes can each have the same round or flat shapes, or can have different shapes, or can have other shapes, depending on the application. Similarly, although guide or support member 16 is, as illustrated, generally cylindrical in shape and includes two spaced, parallel openings 16a and 16b therein through which electrodes 12 and 14 extend, guide members of other shapes as well as other, different guide and support arrangements can also be employed. It is noted that although guide holes 16a and 16b are substantially parallel in the illustrated embodiment, the guide holes can be angled to bias the distal ends of the electrodes 12 and 14 toward or against each other and to thus decrease the cross section of the leading or distal end of the device.
In an alternative embodiment to that illustrated in FIGS. 1 to 4, both of the electrode members 12 and 14 can be rotated. Also, both electrode members can include a plurality of electrodes (not shown) thereon, i.e., at the end region thereof, and these electrodes can be formed by electrically isolated segments. In another implementation, one or more of the electrode members 12 and 14 can be spring loaded by a spring or springs so that the end effector formed thereby is normally in the closed position (FIGS. 2 and 4).
It will be appreciated that in the closed position (or, in the case of a spring biassed implementation, the normally closed position), the surgical device 10 is readily insertable through a cannula (not shown) into the body. Once inside, electrode 12 is rotated by the surgeon by applying a rotational force by means of mechanism 18 to open the space between the end portion 12a of the electrode 12 and the corresponding end position of the fixed electrode 14 so as to engage and/or grasp and compress tissue therebetween.
The end effector of the invention possesses an important advantage over the prior art in that the opposing members, i.e., electrodes 12 and 14, approach each other over the tissue in a parallel manner or fashion. In this regard, one or both of the electrodes 12 and 14 may optionally include a roller (not shown) so that the electrodes glide over the surface of the tissue with minimum resistance so as to reduce the risk of damage to the tissue. Of course, it will be understood that a comparable effect is provided by the rounded or circular cross section electrode 12 which acts in a manner similar to a roller. The operation of device 10 in this regard will perhaps be better understood from the discussion below, in connection with FIGS. 5 to 8, of one use of the device.
Referring to FIG. 5, the device 10 of FIGS. 1 to 4 is shown in an open state with the electrodes 12 and 14 disposed with suitable spacing therebetween (as provided by rotation of electrode 12) so as to permit receipt between the electrodes 12 and 14 of a length or section of tissue T shown here in the form of a tube.
The next step, which is illustrated in FIG. 6, is to rotate electrode 12 so as to compress the tissue T between electrodes 12 and 14. Electrosurgical power is then applied to the electrodes 12 and 14 (which, in this exemplary embodiment, are at negative and positive polarities, respectively, as shown) so as to create a first weld or seam line, at WL1, as illustrated.
As shown in FIG. 7, the movable electrode 12 is then rotated in the opposite direction to compress the tissue T on the opposite side of fixed or stationary electrode member 14. Electrosurgical power is then applied so as to create a second weld or seam line WL2.
After creating spaced seam lines WL1 and WL2, as a further step, which is illustrated in FIG. 8, an optional linear cutter 20 is used to cut the tissue T in between the two weld lines WL1 and WL2 and thus sever the tissue T at that point. Thus, a cut is made between two coagulated regions or portions of the tissue T and bleeding from the severed portions of the tissue is minimized.
Referring to FIGS. 9 and 10, a further embodiment of the invention is shown wherein the electrodes of the end effector form bipolar scissors. These scissors can be used to provide coagulation and to also cut tissue with a scissors-like action after tissue coagulation. This embodiment is similar to that of FIGS. 1 to 4 and similar or corresponding elements have been given the same reference numerals with primes attached. As illustrated, in this embodiment, the movable electrode or blade 12' includes, at one end of the profile or cross section thereof, a sharp edge 22 for cutting and further includes, at the other end thereof, a blunt edge 24. The cutting edge 22 is preferably angled as shown so that the cutting progresses form proximal to distal. Stationary electrode 14' includes a flat inner surface 26 although, again, other shapes can be employed.
In FIG. 9, the movable electrode or blade 12' is shown in the position thereof for achieving tissue coagulation using the bipolar scissors, i.e., with rotating electrode 12' in generally parallel registration with fixed electrode 14'. The coagulated zone created by applying electrosurgical power to the electrodes 12' and 14' is indicated at CZ in FIG. 10.
FIG. 10 also shows the cutting action of the cutting edge 22. In this regard, after the blunt end 24 of rotating electrode or blade 12' is used for coagulation, the electrode or blade 12' is rotated, as shown, such that the sharp cutting edge 22 engages and cuts the tissue T to the left of coagulated zone CZ as viewed in FIG. 10. It will be appreciated that by slightly moving the electrode 12' and 14' in the transverse plane, the cut plane can be moved to the middle of the coagulated zone CZ.
Referring to FIG. 11, an embodiment is shown which is similar to that of FIGS. 9 and 10 except that the blunt end 24 of the rotating electrode member 14' is rotated to a position wherein this end is disposed adjacent to but does not move under the fixed electrode member 12' as in FIG. 9. Preferably, as illustrated in FIG. 11, the fixed electrode member 12' of this embodiment is of a shape similar to that of the rotating electrode member 14' and thus similarly includes a blunt end 24 and a sharp, cutting end 22. In this embodiment, the rotating electrode member is rotated in a clockwise direction to enable the sharp ends 22 of members 12' and 14' to provide a cutting action and in a counterclockwise direction to bring the blunt ends 24 into operation to enable a coagulation procedure to be carried out.
Referring to FIG. 12, there is shown a scissors instrument which is similar to that illustrated schematically in FIGS. 9 and 10 (and in FIG. 11) and which includes a specific implementation of the actuating mechanism indicated schematically in FIG. 1. The instrument of FIG. 12 includes a rotatable electrode 12' and a fixed electrode 14' of the character described above and including shaft portions 12b' and 14b', respectively, mounted in parallel relation in a guide member 16'. An actuating mechanism, generally denoted 18', includes a pair of scissor arms 26 and 28 which lie in planes generally orthogonal to the axes of electrodes 12' and 14'. Arm 26 includes a flat-sided, generally cylindrical hub or body portion 30 including a pair of spaced openings or apertures (not shown) extending between the flat faces thereof, and a finger grip 32 at the other end of arm 26. The shaft portion 12b' of rotatable electrode 12' extends through one of these openings and terminates in a driven gear 32 of generally cylindrical shape. Similarly, the shaft portion 14b' of fixed electrode 14' extends through the other of these openings and terminates in a stub shaft or mount 34 about which rotates a driving, sector gear 36 formed at the proximal end of arm 28 and disposed so as to mesh with gear 32. A finger grip 38 is formed at the opposite, distal end of arm 28.
It will be appreciated that with the actuation mechanism 18' illustrated in FIG. 12, relative movement of arms 26 and 28, effected by a user gripping finger grips 32 and 38, will cause sector gear 36 to drive driven gear 32 and thus produce controlled rotation of the blade or end portion 12a' of electrode member 12'.
Referring to FIG. 13, an alternative embodiment of the scissors instrument of FIG. 12 is shown. Apart from an important difference described in more detail below wherein provision is made for axial movement of the electrode members, the embodiment is very similar to that of FIG. 11 and thus the corresponding elements have been given the same reference numerals. In accordance with this aspect of the invention, either of the opposing electrode members 12' and 14', i.e., whether rotating or non-rotary, is slidable along the longitudinal axis of the device so that one of the blades (12a' or 14a') can be used as a scalpel or, in the electrosurgical application shown in FIG. 12, as a monopolar cutting element or cutter, while the other member is held in a retracted position. In the illustrated embodiment, both of the electrode members are shown as being axially movable to emphasize that either can be made to so move although in a practical device, only one would normally be movable. In an example of such a practical implementation, guide and support element 16' would be located inwardly of the position shown in FIG. 12 so as to permit electrode retraction and rotating electrode 12' will be retracted so as to "expose" fixed electrode members 14' for cutting purposes.
Movement of the electrode members 12' and/or 14' can be effected in the illustrated embodiment by simply pulling or drawing on the electrode member in question so that the member slides axially in the corresponding guide opening in the body member or hub 30 of arm 26, using a gripping instrument, such as a pair of pliers, if necessary. If necessary or desired, a separate gripping part or portion (not shown) can be provided at the proximal end of the movable electrode member and a keying or locking mechanism (not shown) can be provided to key or lock the member in place in the normal operating position thereof wherein gears 32 and 34 are in engagement. More generally, it will be appreciated that other different mechanisms for effecting this axial movement of one or more of the electrode members can be employed.
It is noted that the guide or supporting member 16' located near the distal end of the device can be secured to the non-rotating electrode member 14' but this is not necessary. In this regard, the guide member 16' can be constrained to move with the rotating member 12' in the axial direction as indicated in FIG. 13. This allows retracting of the non-rotary member 14', if necessary, as indicated. In any event, the important thing with this aspect of the invention is that at least one of the electrode members is axially moveable to a position wherein the electrode blades 12a' and 14a' are no longer in registration, so that the "exposed" member can be used as a scalpel or a monopolar cutting element.
As a result of the features just described, the device of FIG. 12 can be used as a bipolar electrosurgical cutting device or, with one electrode member exposed, as a monopolar electrosurgical cutting device. In the illustrated embodiment, a cable or other electrical connection 40 which connects an electrosurgical generator or unit (ESU) 42 to the device includes three wires 43, 44 and 45 connected between the handle (actuator) mechanism 18' and the ESU 42 through a switching circuit or network 46. Wires 43 and 44 are connected to the bipolar inputs 48 of ESU 42 while wire 45 is connected to the monopolar input 50. With this arrangement, monopolar or bipolar electrosurgery or a combination of both can be carried out.
As noted above, the distal ends of the end effectors can have other different and useful shapes depending on the application to which the device is put. A further preferred embodiment of the rotating electrode member 12 is shown in FIG. 14 wherein electrode member 12 includes a flat, shaped distal end portion 12a, a round proximal end portion 12b and a round transition portion 12c. A further preferred embodiment of the fixed electrode member 14 is shown in FIG. 15 wherein electrode member 14 includes a flat, shaped distal end portion 14a and a round proximal end portion 14b including a tapered transitional portion 14c. FIG. 16 also shows a further embodiment of the fixed electrode member 14 including a flat distal portion 14a having a hook 14d at the free end thereof for assisting in retaining in place tissue that has been grasped by the electrode members and thus preventing such tissue from slipping off the end of distal end portion 14a. In this embodiment, the proximal end portion 14b is rounded and includes a transitional portion 14c similar to that of FIG. 15. It will be appreciated that a similar hook can also be provided on the rotatable electrode member for the same purpose.
Referring to FIGS. 17 to 19, a further embodiment of the fixed or stationary scissors blade or electrode member is shown. The overall electrode member is similar to that shown in FIGS. 1 to 4 and like elements have been given the same reference numeral with a double prime attached. As illustrated, the blade, which is denoted 14a", is formed as part of an inclined hollow cylinder, with an inclination from the horizontal of about 7° in an exemplary, non-limiting embodiment. In addition to blade portion 14a", the remaining, handle portion 14b" of electrode member 14" includes a connector element 52 and a cylindrical support portion 54. As best seen in FIG. 18, which is a bottom plan view, blade 14a", which is tapered as illustrated, includes an inclined cutting edge 56 and an opposed, generally straight edge 56 which is flat or blunt.
Referring to FIGS. 20 and 21, yet another embodiment of the fixed or stationary scissor blade is shown. This embodiment is very similar to that of FIGS. 17 to 19 and corresponding elements have been given the same reference numerals. The only difference is that, in this embodiment, the fixed blade 14a" is formed integrally with the guide and support element, which is denoted 60 in FIGS. 20 and 21. Support element 60 is generally cylindrical and includes a longitudinal bore therein the center of which is, as shown in FIG. 21, offset from a horizontal line, as viewed in FIG. 21, through the center of a flat face of element 60 by an amount D1 and offset to the left of a corresponding vertical line, as viewed in FIG. 21, by an amount D2. In an exemplary, non-limiting embodiment, the distance, denoted D3, between the bottom of the proximal end of blade 14a" and the center of bore 60 is 0.123 inches, the distance D1 is 0.050 inches and the distance D2 is 0.010 inches. The significance of the offset axes is discussed below.
Referring to FIGS. 22 to 24, a further embodiment of the rotatory scissors blade or electrode member of the invention is shown. The overall electrode member is again similar to that of FIGS. 1 to 4 and like elements have been given the same reference numerals with double primes attached. The blade of this embodiment includes an elongate slanted cutting edge 62 and an opposed flat or blunt side or edge 64 and is specifically constructed to be used with the fixed or stationary blades of FIGS. 17 to 19 or FIGS. 20 and 21. As noted above, the stationary blades 14" are formed as part of an inclined cylinder, whereas the rotary blade 12" is also formed as a part of a cylinder but one which is not inclined and which thus has an axis parallel to the longitudinal axis of the device.
For both embodiments of the fixed blade 14a", the location of the axis of rotation of the rotary blade 12a" is that shown in FIG. 21, i.e., one which is offset from the center of the guide support 60 (or a corresponding separate guide support for the embodiment of FIGS. 17 to 19). Thus, rotation of blade 12a" about the axis shown pushes the blade 12a" against the stationary blade 14a" to create pre-loading effect between the blades. Further, with this arrangement, the blades 12a" and 14a" contact each other along a very thin edge or line of contact and the contact is in the nature of a moving point contact wherein the point contact between the blades moves along the lengths of the blades as the rotary blades 12a" continues its rotation. Although in the embodiment of FIGS. 22 to 24 the rotary blade is not inclined, in a further preferred embodiment, this blade is also inclined in the manner of the fixed blade of FIGS. 17 to 19 and FIGS. 20 and 21. This also produces a very clean cutting action. More generally, in many of the scissors embodiments discussed above, a strongly focussed or concentrated mechanical cutting action is produced that enables tissue to be cleanly cut. In this regard, while the invention has been described hereinbefore in terms of electrosurgical applications, i.e., applications wherein electrosurgical energy is supplied to the blades, the invention is not limited to such applications, and can be applied to purely mechanical scissors. In other words, the scissors embodiments of the invention, such as those of FIGS. 17 to 24, can also be used as a purely mechanical scissors and do not require electrosurgical power to effect cutting of tissue.
In an implementation of the invention wherein laparoscopic bipolar graspers are provided, the electrode members 12 and 14 are formed by stainless steel tubing having a diameter of, e.g., 0.064 inches and the device is adapted to fit into small, e.g., 5 mm, cannulas. Supports corresponding to support 16 are located at both the proximal and distal ends of the instruments and are, e.g., machined from ULTEM®PEI polymer (manufactured by GE Plastics). As noted above, rollers (not shown) can be fitted to the members 12 and 14 and these members can remain as round or tubular. This enables the members to glide smoothly during the relative rotational movement.
In a laparoscopic bipolar scissors implementation, the electrode blades are preferably machined from stainless steel, and can be straight or curved. A pre-loading force between the blades is provided which is preferably on the order of 5 lb.
While the invention has been described relative to embodiments using two elongate members, more than two, e.g., three, members can be employed, all of which would rotate about their respective longitudinal axes. In an advantageous embodiment, the rotational axes of two members out of the three are coincident and the end portions thereof are offset and spaced with respect to each other through the provision of independent rotation about the rotational axes.
Although the present invention has been described with respect to specific exemplary embodiments thereof, it will be understood by those skilled in the art that other variations and modifications can be effected in these exemplary embodiments without departing from the scope and spirit of the invention.
Patent | Priority | Assignee | Title |
10004558, | Jan 12 2009 | Cilag GmbH International | Electrical ablation devices |
10085793, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Offset forceps |
10085794, | May 07 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
10092359, | Oct 11 2010 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL | Mechanical manipulator for surgical instruments |
10098691, | Dec 18 2009 | Cilag GmbH International | Surgical instrument comprising an electrode |
10105141, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
10166064, | Jun 07 2010 | Bolder Surgical, LLC | Low-power tissue sealing device and method |
10182861, | Aug 20 2014 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Reconfigurable electrosurgical device |
10188454, | Sep 28 2009 | Covidien LP | System for manufacturing electrosurgical seal plates |
10206709, | May 14 2012 | Cilag GmbH International | Apparatus for introducing an object into a patient |
10213250, | Nov 05 2015 | Covidien LP | Deployment and safety mechanisms for surgical instruments |
10231776, | Jan 29 2014 | Covidien LP | Tissue sealing instrument with tissue-dissecting electrode |
10231777, | Aug 26 2014 | Covidien LP | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
10251696, | Apr 06 2001 | Covidien AG | Vessel sealer and divider with stop members |
10258404, | Apr 24 2014 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Partially covered jaw electrodes |
10258406, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10265121, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10265129, | Feb 03 2014 | Distalmotion SA | Mechanical teleoperated device comprising an interchangeable distal instrument |
10271895, | Mar 15 2013 | GYRUS ACMI INC | Combination electrosurgical device |
10278761, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10278772, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10292757, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Electrosurgical instrument |
10314603, | Nov 25 2008 | Cilag GmbH International | Rotational coupling device for surgical instrument with flexible actuators |
10314649, | Aug 02 2012 | Ethicon Endo-Surgery, Inc | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
10325072, | Jul 27 2011 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) | Mechanical teleoperated device for remote manipulation |
10327794, | Nov 09 2012 | Gyrus ACMI, Inc. | Forceps with a rotation assembly |
10342598, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system for delivering a biphasic waveform |
10342599, | Oct 22 2010 | Bolder Surgical, LLC | RF generator system for surgical vessel sealing |
10357320, | Aug 27 2014 | Distalmotion SA | Surgical system for microsurgical techniques |
10363055, | Apr 09 2015 | Distalmotion SA | Articulated hand-held instrument |
10363056, | Jun 17 2015 | SAPHENA MEDICAL, INC | Unitary endoscopic vessel harvesting devices |
10383649, | Feb 22 2012 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
10413374, | Feb 07 2018 | Distalmotion SA | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
10441350, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
10456191, | Aug 20 2014 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Surgical forceps and latching system |
10478248, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
10492880, | Jul 30 2012 | Ethicon Endo-Surgery, Inc | Needle probe guide |
10510447, | Jul 27 2011 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) | Surgical teleoperated device for remote manipulation |
10524815, | Mar 24 2014 | Cilag GmbH International | Ultrasonic forceps |
10537353, | Mar 14 2013 | Saphena Medical, Inc. | Unitary endoscopic vessel harvesting devices |
10537384, | Oct 04 2002 | Covidien LP | Vessel sealing instrument with electrical cutting mechanism |
10548680, | Dec 19 2014 | Distalmotion SA | Articulated handle for mechanical telemanipulator |
10568709, | Apr 09 2015 | Distalmotion SA | Mechanical teleoperated device for remote manipulation |
10603101, | Mar 26 2016 | Apparatus, systems and methods for minimally invasive dissection of tissues | |
10646267, | Aug 07 2013 | Covidien LP | Surgical forceps |
10646294, | Dec 19 2014 | Distalmotion SA | Reusable surgical instrument for minimally invasive procedures |
10667834, | Nov 02 2017 | GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Bias device for biasing a gripping device with a shuttle on a central body |
10687887, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10702331, | Apr 02 2014 | Gyrus ACMI, Inc. | Surgical device having changeable elements |
10779880, | Oct 22 2014 | Covidien LP | Surgical forceps for grasping, treating, and/or cutting tissue |
10779882, | Oct 28 2009 | Cilag GmbH International | Electrical ablation devices |
10786272, | Aug 28 2015 | Distalmotion SA | Surgical instrument with increased actuation force |
10828087, | Mar 15 2013 | Gyrus ACMI, Inc. | Hand switched combined electrosurgical monopolar and bipolar device |
10842553, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10864005, | Nov 09 2012 | Gyrus ACMI, Inc. | Forceps with a rotation assembly |
10864049, | Dec 19 2014 | Distalmotion SA | Docking system for mechanical telemanipulator |
10864052, | Dec 19 2014 | Distalmotion SA | Surgical instrument with articulated end-effector |
10874415, | Jun 17 2015 | Saphena Medical, Inc. | Unitary endoscopic vessel harvesting devices |
10893899, | Mar 26 2016 | Apparatus and systems for minimally invasive dissection of tissues | |
10893900, | Mar 15 2013 | Gyrus ACMI, Inc. | Combination electrosurgical device |
10898260, | Aug 20 2014 | Gyrus ACMI, Inc. | Reconfigurable electrosurgical device |
10918435, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10939953, | Mar 23 2015 | Gyrus ACMI, Inc. | Medical forceps with vessel transection capability |
10987159, | Aug 26 2015 | Covidien LP | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
10987160, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with cutting mechanism |
11026741, | Sep 28 2009 | Covidien LP | Electrosurgical seal plates |
11039820, | Dec 19 2014 | Distalmotion SA | Sterile interface for articulated surgical instruments |
11058503, | May 11 2017 | Distalmotion SA | Translational instrument interface for surgical robot and surgical robot systems comprising the same |
11076922, | Oct 11 2010 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) | Mechanical manipulator for surgical instruments |
11166759, | May 16 2017 | Covidien LP | Surgical forceps |
11200980, | Jul 27 2011 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) | Surgical teleoperated device for remote manipulation |
11224477, | Mar 15 2013 | Gyrus ACMI, Inc. | Combination electrosurgical device |
11284918, | May 14 2012 | Cilag GmbH International | Apparatus for introducing a steerable camera assembly into a patient |
11298801, | Nov 02 2017 | GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Bias device for biasing a gripping device including a central body and shuttles on the working arms |
11337716, | Aug 25 2015 | Distalmotion SA | Surgical instrument with increased actuation force |
11344361, | Aug 20 2014 | Gyms Acmi, Inc. | Surgical forceps and latching system |
11350983, | Jan 29 2014 | Covidien LP | Tissue sealing instrument with tissue-dissecting electrode |
11364045, | Mar 24 2014 | Cilag GmbH International | Ultrasonic forceps |
11383373, | Nov 02 2017 | GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Bias device for biasing a gripping device by biasing working arms apart |
11399834, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
11399884, | Jun 07 2010 | Bolder Surgical, LLC | Low power tissue sealing device and method |
11406411, | Nov 09 2012 | Gyrus ACMI, Inc. | Forceps with a rotation assembly |
11478315, | Dec 19 2014 | Distalmotion SA | Reusable surgical instrument for minimally invasive procedures |
11484191, | Feb 27 2013 | Cilag GmbH International | System for performing a minimally invasive surgical procedure |
11490955, | Sep 28 2009 | Covidien LP | Electrosurgical seal plates |
11510730, | Mar 26 2016 | Apparatus and methods for minimally invasive dissection and modification of tissues | |
11510745, | Feb 07 2018 | Distalmotion SA | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
11571195, | Dec 19 2014 | Distalmotion SA | Sterile interface for articulated surgical instruments |
11660108, | Jan 14 2011 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
11744634, | Mar 15 2013 | Gyrus ACMI, Inc. | Offset forceps |
11751896, | Mar 14 2013 | Saphena Medical, Inc. | Unitary endoscopic vessel harvesting devices |
11771489, | Mar 20 2017 | Apparatus and systems for minimally invasive dissection of tissues | |
11779384, | Mar 15 2013 | Gyrus ACMI, Inc. | Combination electrosurgical device |
11844585, | Feb 10 2023 | Distalmotion SA | Surgical robotics systems and devices having a sterile restart, and methods thereof |
11890048, | Mar 26 2016 | Apparatus and systems for minimally invasive dissection of tissues | |
5921993, | May 01 1997 | Methods of endoscopic tubal ligation | |
5954731, | Jul 29 1997 | Surgical instrument with multiple rotatably mounted spreadable end effectors | |
5954733, | Nov 27 1996 | Suturing instrument with rotatably mounted needle driver and catcher | |
5993466, | Jun 17 1997 | Suturing instrument with multiple rotatably mounted spreadable needle holders | |
5993467, | Nov 27 1996 | Suturing instrument with rotatably mounted spreadable needle holder | |
6004332, | May 01 1997 | YOON,INBAE | Suturing instrument with multiple rotatably mounted offset needle holders and method of using the same |
6086601, | Apr 29 1998 | Instrument and method for suturing anatomical tissue and tying suture material | |
6143005, | May 01 1997 | Suturing instrument with rotatably mounted offset needle holder and method of using the same | |
6358273, | Apr 09 1999 | Oratec Interventions, Inc | Soft tissue heating apparatus with independent, cooperative heating sources |
6517536, | Apr 27 2000 | ATRICURE INC | Transmural ablation device and method |
6546935, | Apr 27 2000 | ATRICURE INC | Method for transmural ablation |
6755827, | Jul 29 1997 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
6776780, | Jul 18 1997 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
6889694, | Apr 27 2000 | ATRICURE INC | Transmural ablation device |
6896673, | Apr 27 2000 | AtriCure, Inc. | Method for transmural ablation |
6899710, | Apr 27 2000 | ATRICURE INC | Combination ablation and visualization apparatus for ablating cardiac tissue |
6905498, | Apr 27 2000 | ATRICURE INC | Transmural ablation device with EKG sensor and pacing electrode |
6923806, | Apr 27 2000 | ATRICURE INC | Transmural ablation device with spring loaded jaws |
6932811, | Apr 27 2000 | Atricure, Inc | Transmural ablation device with integral EKG sensor |
6974454, | Apr 27 2000 | ATRICURE INC | Transmural ablation device with thermocouple for measuring tissue temperature |
6984233, | Apr 27 2000 | AtriCure, Inc. | Transmural ablation device with parallel electrodes |
6997931, | Feb 02 2001 | LSI Solutions, Inc | System for endoscopic suturing |
7001415, | Apr 27 2000 | ATRICURE INC | Transmural ablation device |
7113831, | Apr 27 2000 | Atricure, Inc | Transmural ablation device |
7232440, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7241292, | Apr 27 2000 | AtriCure, Inc. | Cardiac ablation device with movable hinge |
7288092, | Apr 23 2003 | Atricure, Inc | Method and apparatus for ablating cardiac tissue with guide facility |
7291161, | Oct 02 2002 | Atricure, Inc | Articulated clamping member |
7393353, | Apr 27 2000 | AtriCure, Inc. | Transmural ablation device with temperature sensor |
7468061, | Apr 27 2000 | AtriCure, Inc. | Transmural ablation device with integral EKG sensor |
7470272, | Jul 18 1997 | Medtronic, Inc. | Device and method for ablating tissue |
7487780, | Apr 27 2000 | AtriCure, Inc. | Sub-xyphoid method for ablating cardiac tissue |
7507235, | Jan 13 2001 | Medtronic, Inc. | Method and system for organ positioning and stabilization |
7530980, | Apr 14 2004 | Atricure, Inc | Bipolar transmural ablation method and apparatus |
7537594, | May 01 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Suction coagulator with dissecting probe |
7537595, | Dec 12 2001 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices, systems and methods |
7543589, | Apr 27 2000 | AtriCure, Inc. | Method for ablating cardiac tissue |
7566334, | Jun 02 2004 | Medtronic, Inc | Ablation device with jaws |
7591817, | Oct 11 2005 | Evanston Northwestern Healthcare | Surgical instrument for tissue resection and dissection |
7604634, | Apr 27 2000 | ATRICURE INC | Transmural ablation device |
7604635, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices, systems and methods |
7604642, | Feb 24 1998 | AURIS HEALTH, INC | Interchangeable instrument |
7628780, | Jan 13 2001 | Medtronic, Inc | Devices and methods for interstitial injection of biologic agents into tissue |
7645277, | Sep 22 2000 | Medtronic Advanced Energy LLC | Fluid-assisted medical device |
7651494, | Sep 22 2000 | Medtronic Advanced Energy LLC | Fluid-assisted medical device |
7678111, | Jul 18 1997 | Medtronic, Inc. | Device and method for ablating tissue |
7708735, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Incorporating rapid cooling in tissue fusion heating processes |
7722607, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | In-line vessel sealer and divider |
7727232, | Feb 04 2005 | SALIENT SURGICAL TECHNOLOGIES, INC | Fluid-assisted medical devices and methods |
7740623, | Jan 13 2001 | Medtronic, Inc | Devices and methods for interstitial injection of biologic agents into tissue |
7744562, | Jan 14 2003 | Medtronics, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
7758569, | Feb 24 1998 | AURIS HEALTH, INC | Interchangeable surgical instrument |
7771425, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider having a variable jaw clamping mechanism |
7776036, | Mar 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar concentric electrode assembly for soft tissue fusion |
7776037, | Jul 07 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | System and method for controlling electrode gap during tissue sealing |
7789878, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | In-line vessel sealer and divider |
7799026, | Nov 14 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
7799028, | Sep 21 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Articulating bipolar electrosurgical instrument |
7811282, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
7811283, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
7815634, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid delivery system and controller for electrosurgical devices |
7828798, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
7846161, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Insulating boot for electrosurgical forceps |
7857812, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
7875028, | Jun 02 2004 | Medtronic, Inc. | Ablation device with jaws |
7877852, | Sep 20 2007 | Covidien LP | Method of manufacturing an end effector assembly for sealing tissue |
7877853, | Sep 20 2007 | Covidien LP | Method of manufacturing end effector assembly for sealing tissue |
7879035, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Insulating boot for electrosurgical forceps |
7887536, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7896878, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7901399, | Feb 24 1998 | AURIS HEALTH, INC | Interchangeable surgical instrument |
7909823, | Jan 14 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument |
7922718, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with cutting mechanism |
7922953, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Method for manufacturing an end effector assembly |
7931649, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
7935052, | Feb 14 2007 | TYCO HEALTHCARE GROUP AG; Covidien AG | Forceps with spring loaded end effector assembly |
7947041, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7951148, | Mar 08 2001 | Medtronic Advanced Energy LLC | Electrosurgical device having a tissue reduction sensor |
7951150, | Jan 14 2005 | Covidien AG | Vessel sealer and divider with rotating sealer and cutter |
7955332, | Oct 08 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Mechanism for dividing tissue in a hemostat-style instrument |
7963965, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar electrosurgical instrument for sealing vessels |
7967816, | Jan 25 2002 | Medtronic, Inc | Fluid-assisted electrosurgical instrument with shapeable electrode |
7972333, | May 20 2005 | Kaneka Corporation | High frequency incision tool for endoscope |
7998140, | Feb 12 2002 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices, systems and methods |
8016827, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8038670, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices, systems and methods |
8048070, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices, systems and methods |
8070746, | Oct 03 2006 | Covidien LP | Radiofrequency fusion of cardiac tissue |
8075557, | Feb 04 2004 | Medtronic Advanced Energy LLC | Fluid-assisted medical devices and methods |
8123743, | Oct 08 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Mechanism for dividing tissue in a hemostat-style instrument |
8142473, | Oct 03 2008 | Covidien LP | Method of transferring rotational motion in an articulating surgical instrument |
8147489, | Jan 14 2005 | Covidien AG | Open vessel sealing instrument |
8162940, | Oct 04 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8162941, | Jun 02 2004 | Medtronic, Inc. | Ablation device with jaws |
8162973, | Aug 15 2008 | Covidien LP | Method of transferring pressure in an articulating surgical instrument |
8192433, | Oct 04 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8197479, | Dec 10 2008 | Covidien LP | Vessel sealer and divider |
8197633, | Sep 30 2005 | Covidien AG | Method for manufacturing an end effector assembly |
8211105, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
8221416, | Sep 28 2007 | Covidien LP | Insulating boot for electrosurgical forceps with thermoplastic clevis |
8235992, | Sep 28 2007 | Covidien LP | Insulating boot with mechanical reinforcement for electrosurgical forceps |
8235993, | Sep 28 2007 | Covidien LP | Insulating boot for electrosurgical forceps with exohinged structure |
8236025, | Sep 28 2007 | Covidien LP | Silicone insulated electrosurgical forceps |
8241282, | Jan 24 2006 | Covidien LP | Vessel sealing cutting assemblies |
8241283, | Sep 17 2008 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
8241284, | Apr 06 2001 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
8251996, | Sep 28 2007 | Covidien LP | Insulating sheath for electrosurgical forceps |
8257352, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
8257387, | Aug 15 2008 | Covidien LP | Method of transferring pressure in an articulating surgical instrument |
8267935, | Apr 04 2007 | Covidien LP | Electrosurgical instrument reducing current densities at an insulator conductor junction |
8267936, | Sep 28 2007 | Covidien LP | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
8273072, | Jan 14 2003 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
8298228, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
8298232, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
8303576, | Feb 24 1998 | AURIS HEALTH, INC | Interchangeable surgical instrument |
8303582, | Sep 15 2008 | Covidien LP | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
8303586, | Nov 19 2003 | Covidien AG | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
8313496, | Feb 02 2001 | LSI Solutions, Inc | System for endoscopic suturing |
8317787, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8323310, | Sep 29 2009 | Covidien LP | Vessel sealing jaw with offset sealing surface |
8333765, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8348948, | Mar 02 2004 | Covidien AG | Vessel sealing system using capacitive RF dielectric heating |
8361068, | Mar 06 2000 | Medtronic Advanced Energy LLC | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
8361071, | Oct 22 1999 | Covidien AG | Vessel sealing forceps with disposable electrodes |
8361072, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
8366709, | Sep 21 2004 | Covidien AG | Articulating bipolar electrosurgical instrument |
8382754, | Mar 31 2005 | Covidien AG | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
8394095, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
8394096, | Nov 19 2003 | Covidien AG | Open vessel sealing instrument with cutting mechanism |
8425504, | Oct 03 2006 | Covidien LP | Radiofrequency fusion of cardiac tissue |
8454602, | May 07 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8469956, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
8469957, | Oct 07 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8475455, | Oct 29 2002 | Medtronic Advanced Energy LLC | Fluid-assisted electrosurgical scissors and methods |
8486107, | Oct 20 2008 | Covidien LP | Method of sealing tissue using radiofrequency energy |
8496656, | May 15 2003 | Covidien AG | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
8523898, | Jul 08 2009 | Covidien LP | Endoscopic electrosurgical jaws with offset knife |
8535312, | Sep 25 2008 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
8551091, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8568444, | Oct 03 2008 | Covidien LP | Method of transferring rotational motion in an articulating surgical instrument |
8591506, | Oct 23 1998 | Covidien AG | Vessel sealing system |
8597296, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
8597297, | Aug 29 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with multiple electrode configurations |
8623017, | Nov 19 2003 | Covidien AG | Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety |
8623276, | Feb 15 2008 | Covidien LP | Method and system for sterilizing an electrosurgical instrument |
8636761, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
8641713, | Sep 30 2005 | Covidien AG | Flexible endoscopic catheter with ligasure |
8647341, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
8652135, | Aug 23 2010 | Covidien LP | Surgical forceps |
8663222, | Sep 07 2010 | Covidien LP | Dynamic and static bipolar electrical sealing and cutting device |
8668689, | Sep 30 2005 | Covidien AG | In-line vessel sealer and divider |
8679114, | May 01 2003 | Covidien AG | Incorporating rapid cooling in tissue fusion heating processes |
8696667, | Sep 28 2007 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
8734443, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
8740901, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8764748, | Feb 06 2008 | Covidien LP | End effector assembly for electrosurgical device and method for making the same |
8784417, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8795274, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8852228, | Jan 13 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8858554, | May 07 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8882766, | Jan 24 2006 | Covidien AG | Method and system for controlling delivery of energy to divide tissue |
8898888, | Sep 28 2009 | Covidien LP | System for manufacturing electrosurgical seal plates |
8945125, | Nov 13 2003 | Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
8968307, | Aug 18 2011 | Covidien LP | Surgical forceps |
8968314, | Sep 25 2008 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
9023043, | Sep 28 2007 | Covidien LP | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
9023044, | May 13 2011 | KARL STORZ SE & CO KG | Electrosurgical instrument |
9028493, | Sep 18 2009 | Covidien LP | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
9039694, | Oct 22 2010 | Bolder Surgical, LLC | RF generator system for surgical vessel sealing |
9095347, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrically conductive/insulative over shoe for tissue fusion |
9107672, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing forceps with disposable electrodes |
9113898, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
9113903, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
9113905, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
9113940, | Jan 14 2011 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
9144455, | Jun 07 2010 | JUST RIGHT SURGICAL, LLC | Low power tissue sealing device and method |
9149323, | May 01 2003 | Covidien AG | Method of fusing biomaterials with radiofrequency energy |
9216030, | Oct 10 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA; GYRUS ACMI, INC D B A OLYPUS SURGICAL TECHNOLOGIES AMERICA | Laparoscopic forceps assembly |
9247988, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
9259263, | Sep 07 2010 | Covidien LP | Dynamic and static bipolar electrical sealing and cutting device |
9265552, | Sep 28 2009 | Covidien LP | Method of manufacturing electrosurgical seal plates |
9277957, | Aug 15 2012 | Cilag GmbH International | Electrosurgical devices and methods |
9345535, | May 07 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
9375254, | Sep 25 2008 | Covidien LP | Seal and separate algorithm |
9375268, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
9375270, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9375271, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9445863, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Combination electrosurgical device |
9452009, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Combination electrosurgical device |
9452011, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Combination electrosurgical device |
9463067, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9492225, | Jun 13 2003 | Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
9539053, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
9549775, | Sep 30 2005 | Covidien AG | In-line vessel sealer and divider |
9554841, | Sep 28 2007 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
9579145, | Sep 30 2005 | Covidien AG | Flexible endoscopic catheter with ligasure |
9585716, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
9603652, | Aug 21 2008 | Covidien LP | Electrosurgical instrument including a sensor |
9649149, | Oct 22 2010 | Bolder Surgical, LLC | RF generator system for surgical vessel sealing |
9655674, | Jan 13 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
9668805, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Combination electrosurgical device |
9681883, | Nov 09 2012 | GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Forceps with a rotation assembly |
9707028, | Aug 20 2014 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Multi-mode combination electrosurgical device |
9750561, | Sep 28 2009 | Covidien LP | System for manufacturing electrosurgical seal plates |
9763730, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Electrosurgical instrument |
9782216, | Mar 23 2015 | Gyrus ACMI, Inc. | Medical forceps with vessel transection capability |
9788848, | Oct 10 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Laparoscopic forceps assembly |
9788885, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system energy source |
9788888, | Jul 03 2012 | Cilag GmbH International | Endoscopic cap electrode and method for using the same |
9848938, | Nov 13 2003 | Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
9855091, | Apr 02 2014 | Gyrus ACMI, Inc.; GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Surgical device having changeable elements |
9883910, | Mar 17 2011 | Cilag GmbH International | Hand held surgical device for manipulating an internal magnet assembly within a patient |
9901388, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Hand switched combined electrosurgical monopolar and bipolar device |
9901389, | Mar 15 2013 | GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Offset forceps |
9918782, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
9931131, | Sep 18 2009 | Covidien LP | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
9943328, | Apr 28 2015 | SAPHENA MEDICAL, INC | Unitary endoscopic vessel harvesting devices with an elastic force |
9980770, | Nov 20 2003 | Covidien AG | Electrically conductive/insulative over-shoe for tissue fusion |
D649249, | Feb 15 2007 | Covidien LP | End effectors of an elongated dissecting and dividing instrument |
D680220, | Jan 12 2012 | Covidien LP | Slider handle for laparoscopic device |
D904611, | Oct 10 2018 | Bolder Surgical, LLC | Jaw design for a surgical instrument |
D934423, | Sep 11 2020 | Bolder Surgical, LLC | End effector for a surgical device |
D956973, | Jun 13 2003 | Covidien AG | Movable handle for endoscopic vessel sealer and divider |
RE44834, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
RE47375, | May 15 2003 | Coviden AG | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
Patent | Priority | Assignee | Title |
1916722, | |||
4433687, | May 02 1980 | Smith & Nephew, Inc | Microsurgical scissors |
4499899, | Jan 21 1983 | NELSON TOOL & MACHINE COMPANY, INC | Fiber-optic illuminated microsurgical scissors |
4590936, | Feb 02 1983 | Ewald, Hensler | Microsurgical instrument |
4655216, | Jul 23 1985 | OLYMPUS WINTER & IBE GMBH | Combination instrument for laparoscopical tube sterilization |
4770174, | Jan 21 1983 | NELSON TOOL & MACHINE COMPANY, INC | Rotary cutting scissors for surgery |
5030206, | Oct 17 1986 | United States Surgical Corporation | Trocar |
5123904, | Apr 28 1988 | Olympus Optical Co., Ltd. | Surgical resecting instrument |
5174300, | Apr 04 1991 | Symbiosis Corporation | Endoscopic surgical instruments having rotatable end effectors |
5267998, | Nov 19 1991 | Delma elektro-und medizinische Apparatebau Gesellschaft mbH | Medical high frequency coagulation cutting instrument |
5269780, | Oct 12 1990 | Delma elektro- und medizinische Apparatebau Gesellschaft mbH | Electro-surgical devices |
5269782, | Apr 22 1991 | Select Medizin-Technik Hermann Sutter GmbH | Bipolar medical coagulation and cauterizing instrument |
5281220, | Jan 13 1992 | American Cyanamid Company | Endoscopic instrument |
5366468, | Nov 09 1993 | Linvatec Corporation | Double bladed surgical router having aspiration ports within flutes |
5383888, | Feb 12 1992 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
5445638, | Mar 08 1993 | GYRUS ACMI, INC | Bipolar coagulation and cutting forceps |
5472442, | Mar 23 1994 | Sherwood Services AG | Moveable switchable electrosurgical handpiece |
5480409, | May 10 1994 | Laparoscopic surgical instrument | |
5499992, | Jun 24 1992 | Conmed Corporation | Reuseable endoscopic surgical instrument |
5522830, | Oct 05 1990 | United States Surgical Corporation | Endoscopic surgical instrument |
856927, |
Date | Maintenance Fee Events |
Oct 23 1998 | RMPN: Payer Number De-assigned. |
Nov 15 2000 | ASPN: Payor Number Assigned. |
Feb 26 2002 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 28 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 19 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 22 2001 | 4 years fee payment window open |
Mar 22 2002 | 6 months grace period start (w surcharge) |
Sep 22 2002 | patent expiry (for year 4) |
Sep 22 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 22 2005 | 8 years fee payment window open |
Mar 22 2006 | 6 months grace period start (w surcharge) |
Sep 22 2006 | patent expiry (for year 8) |
Sep 22 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 22 2009 | 12 years fee payment window open |
Mar 22 2010 | 6 months grace period start (w surcharge) |
Sep 22 2010 | patent expiry (for year 12) |
Sep 22 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |