A splice head for use with a modular wire connector, to work with and hold the wires while installing them in the connector, particularly for wires of differing diameters. The splice head includes a coil spring loosely arranged on a bar and movable axially thereon. By selecting an appropriate location for the starting point on the spring and selection of the spring position on the bar, different sized wires can be fixed by the coils of the spring. The bar may be circular in cross-section to allow the spring to slide easily forward and backward. This construction allows simpler placement of the wires since the coil spring does not need to to replaced for wires of different sizes, and there is no requirement that the splicing operation begin at one particular end of the coil since neither end is fixed.
|
9. A splice head for interconnecting a plurality of insulated wires (40, 40', 40") to a connector, said splice head comprising accommodation means (14) for supporting a connector to be interconnected to said insulated wires, a row of spaced separating fingers (20) on one side of said accommodation means (14), a length of coil spring (22) on the opposite side of said accommodation means, with the coils (30) of said coil spring (22) affording insertion and fixation of wires therebetween, and retaining means (26) for said coil spring (22), said retaining means being connected to said accommodation means, said retaining means comprising a bar (28) extending through said coil spring (22) which bar (28) is fastened at both ends to said retaining means, said coil spring (22) is loosely and axially movably arranged on said bar, wherein said bar (28) has a circular cross section.
10. A splice head for interconnecting a plurality of insulated wire (40, 40', 40") to a connector, said splice head comprising accommodation means (14) for supporting a connector to be interconnected to said insulated wires, a row of spaced separating fingers (20) on one side of said accommodation means (14), a length of coil spring (22) on the opposite side of said accommodation means, with the coils (30) of said coil spring (22) affording insertion and fixation of wires therebetween, and retaining means (26) for said coil spring (22), said retaining means being connected to said accommodation means, said retaining means comprising a bar (28) extending through said coil spring (22) which bar (28) is fastened at both ends to said retaining means, said coil spring (22) is smaller than said bar and is loosely and axially movably arranged on said bar, wherein the diameter of a coil spring (22) is larger than 12 mm.
1. A splice head for interconnecting a plurality of insulated wires (40, 40', 40") to a connector, said splice head comprising accommodation means (14) for supporting a connector to be interconnected to said insulated wires, a row of spaced separating fingers (20) on one side of said accommodation means (14), a length of coil spring (22) on the opposite side of said accommodation means, with the coils (30) of said coil spring (22) affording insertion and fixation of wires therebetween, and retaining means (26) for said coil spring (22), said retaining means being connected to said accommodation means, said retaining means comprising a bar (28) extending through said coil spring (22) which bar (28) is fastened at both ends to said retaining means, said coil spring (22) is loosely and axially movably arranged on said bar so that said coil spring may be positioned alone the bar from one of said ends to the other of said ends, as well as any position between said ends.
11. A splice head for interconnecting a plurality of insulated wires (40, 40', 40") to a connector, said splice head comprising accommodation means (14) for supporting a connector adapted to be interconnected said to insulated wires, a row of spaced separating fingers (20) on one side of said accommodation means (14), at length of coil spring (22) on the opposite side of said accommodation means, with the coils (30) of said coil spring (22) affording insertion and fixation of wires therebetween, and retaining means (26) for said coil spring (22), said retaining means being connected to said accommodation means, said retaining means comprising a bar (28) extending through said coil spring (22) which bar (28) is fastened at both ends to said retaining means, said coil spring (22) is loosely and axially movably arranged on said bar, wherein the thickness of the spring wire forming the coil spring (22) is larger than 1.2 mm.
2. The splice head of
3. The splice head of
4. The splice head of
5. The splice head of
6. The splice head of
7. The splice head of
8. The splice head of
|
This is a continuation of application Ser. No. 08/356,164, filed Dec. 19, 1994, now abandoned.
1. Field of the Invention
The invention refers to a splice head for insulated wires of the type used by the telecommunication industry.
2. Prior Art
Connectors for the telecommunication industry are know wherein a plurality of insulated wires are connected with electrical contacts. From the German patent DE 39 20 362 it has become known to provide a retaining body with a plurality of insulation displacing contact elements and to have the wires engaged with the contact elements by means of a pressing body so that the contact elements coact with the associated wires while piercing through the insulation thereof. The pressing body includes recesses or pockets into which the free ends of the cutting contact elements are plunged. Further, cutting elements are located in the retaining body which cut the projecting ends of the connected insulated wires.
In order to align the insulated wires with respect to the retaining body it has also become known to employ a splice head. The splice head comprises accommodation means for a connector, i.e. at least one retaining body and at least one pressing body. It further includes a row of spaced separating fingers on one side of the accommodation means. Such a splice head is associated with the end of a cable or wire bundle, with the individual cores or wires exposed. The wires are arranged in the slots between the fingers and aligned with the individual insulation displacement contacts of the retaining body. The ends of the insulated wires extending beyond the accommodation means are fixed in a suitable manner until the all of wires has been laid onto the connector. Thereafter, the pressing body is pressed against the retaining body, preferably by a suitable tool, in order to concurrently bring the insulated wires in engagement with the insulation displacing contacts.
It has become known to use a coil spring for fixing the loose ends of the wires in the splice head. The insulated wires are inserted between the coils or convolutions of the spring and retained therein by spring forces. It has become known to use a single coil spring which is supported on a step of the splice head. A retaining bar is extended through the interior of the spring and fastened at both ends to the splice head. The known springs have a diameter of approximately 10 mm, with the convolutions thereof leaving a predetermined space therebetween. The spring has, at least at one end, a piece bent to project radially in order to fasten the spring at one end against axial movement. If upon a splicing operation a plurality of wires is introduced between the convolutions of the spring, the free end thereof moves axially away from the stationary first end.
When establishing such connections, the diameter of the insulated wires may be within a larger range. On known splice heads, particularly, the coil springs are not suited to effectively fix wires of different diameters. Therefore, it is required to replace the springs in case of wires having different diameters. The spring is fixed at one end, therefore, the splicing operation has to be always started at this end of the spring.
In connection with splice heads it has also become known to use two parallel coil springs having different spaces between their convolutions in order to effectively fix wires of different diameters. If, however, during a splicing operation wires are to be inserted into the spring which have another diameter, it is necessary to untighten the retaining means for both coil springs and to turn the coil springs about 180° and then to retighten the retaining means. This measure is relatively time consuming. By the way, both springs are fastened at both ends. In case of tolerances in the distance between the fastening locations of the springs, the space between the individual convolutions may be changed. Further, the known springs are not suited to accommodate more than one wire between adjacent convolutions. This is disadvantageous if in a connector arrangement a plurality of layers of wires are to be contacted by the connector arrangement.
The invention provides a splice head for insulated wires, particularly for telecommunications, which is designed to work with and hold wires with different diameters.
In the splice head according to the invention, the coil spring is loosely arranged on the bar and may be moved axially. By the free selection of the starting point at the spring for the splicing operation and the free selection of the spring position on the bar, different sized wires can be fixed by the coils of the spring. Further, the splicing can be started contemporarenously at both ends of the spring.
According to an embodiment of the invention, the bar may have a circular cross section so that the spring may slide easily forward and backward.
According to a further embodiment of the invention, an engaging surface is provided somewhat below the bar and is spaced a small distance therefrom which engaging surface is adapted to support the circumference of the spring while it is retained by the bar interiorly. The space between the engaging surface and the bar is somewhat larger that the diameter or thickness of the wire forming the coil spring. By this measure, maximum space is left for the accommodation of the insulated wires so that two or more wires can be inserted between adjacent coils. This would be further improved if according to a further embodiment of the invention the diameter of the coil spring is larger than 12 mm, preferably 15 mm.
For an effective support of the coil spring and a most effective cross-sectional area for the fixing of the wires the engaging surface is formed and provides a space with respect to the bar such that in the operational position of the spring the bar engages the spring approximately at the level of the longitudinal axis of the spring. Preferably, the engaging surface extends partially circularly about the bar.
The bar can be retained by a U-shaped retaining member which according to an embodiment of the invention integrally includes the engaging surface.
With the splice head according to the invention, the coil spring need not be replaced in order to fix wires of different diameter sizes. Since the coil spring is loosely arranged on the bar, radial bends at the ends of the spring could be omitted. This facilitates the manufacturing of the coil spring.
The invention will be subsequently described by means of an embodiment described in connection with the accompanying drawing.
FIG. 1 is a diagrammatic view of a splice head according to the invention.
FIGS. 2 to 4 illustrate the coil spring of the splice head of FIG. 1 in different operational positions.
FIG. 5 is a cross sectional view through a coil spring of FIG. 2 along line 5--5.
In FIG. 1, a splice head 10 is shown retained by retaining means 12 adapted to be manually held or fixed by known fastening means. The splice head 10 includes an accommodation means 14 for supporting a connector, not shown, adapted to receive a plurality of insulated wires. Such a connector is for example disclosed by the DE 39 20 367. The accommodation means 14 comprises a support plate 16 and two lateral guide elements 18 to keep a connector therebetween which includes at least a retaining body and a pressing body. Two rows of fingers 20 are located on one side of the accommodation means 14. Insulated wires may be extended therebetween and separated from each other. A coil spring 22 is located on the opposite side of the plate 16 of the accommodation means. The coil spring 22 is retained by retaining means 24. Details of the retaining means and of the coil spring are illustrated in FIGS. 2 to 5.
The retaining means 24 consists of a U-shaped retaining member 26, with the legs thereof retaining a bar 28 of circular cross section. The bar 28 is fitted through holes in the legs accommodating said bar or a slot in the retaining means 24 and legs. As can be seen, coil spring 22 has a length smaller than the length between the legs or the length of bar 28. Therefore, the coil spring 22 can be freely moved along bar 28. The diameter of spring 22 is for example 15 mm, and the thickness or diameter of the wire forming the coil spring 22 is larger than 1.2 mm, for example 1.5 mm. The individual coils 30 or convolutions of spring 22 have a predetermined space therebetween. As can be seen from FIGS. 2 to 4, the ends of the wire forming the coil spring are simply cut and not deformed in a particular manner.
From FIG. 5 it can be seen that an arcuate engaging surface 34, circular in cross section, is formed in the web 32 of the U-shaped retaining member 26. The most narrow space between bar 28 and engaging surface 34 is slightly larger than the thickness of the spring wire. The circular engaging surface 34 extends into or joins with an upper planar surface 36 which would extend parallel to a plane through the axis of coil spring 22. The normal distance between surface 36 and bar 28 is larger then the space between engaging surface 34 and bar 28. As can be seen further, engaging surface 34 is formed and located relatively to bar 28 such that bar 28 engages spring 22 approximately at the level of the longitudinal axis of spring 22 when the spring 22 is in its operational position.
In FIGS. 2 to 5 it is illustrated how wires 40, 40', 40", respectively, are inserted into and fixed by spring 22. FIGS. 2 to 4 make clear that the start of the splicing operation can be selected arbitrarily in that the spring 22 may occupy an arbitrary position between the legs of the U-shaped retaining member 26 at the beginning of the splicing operation.
It will be clear from FIG. 5 that apart from the diameter of bar 28, the largest part of the cross section of spring 22 is available for the fixing of wire 40, 40' or 40", respectively, so that also two or more wires may be inserted between adjacent helical convolutions or coils 30.
Patent | Priority | Assignee | Title |
6182083, | Nov 17 1997 | Oracle America, Inc | Method and system for multi-entry and multi-template matching in a database |
6226746, | Mar 20 1998 | Oracle America, Inc | Stack-based system and method to combine security requirements of methods |
6237009, | Sep 11 1998 | Sun Microsystems, Inc | Lease renewal service |
6237024, | Mar 20 1998 | Oracle America, Inc | Method and apparatus for the suspension and continuation of remote processes |
6247026, | Oct 11 1996 | Sun Microsystems, Inc | Method, apparatus, and product for leasing of delegation certificates in a distributed system |
6253256, | Oct 15 1997 | Oracle America, Inc | Deferred reconstruction of objects and remote loading in a distributed system |
6272559, | Oct 15 1997 | Oracle America, Inc | Deferred reconstruction of objects and remote loading for event notification in a distributed system |
6389540, | Feb 26 1998 | Sun Microsystems, Inc. | Stack based access control using code and executor identifiers |
6393497, | Mar 20 1998 | Oracle America, Inc | Downloadable smart proxies for performing processing associated with a remote procedure call in a distributed system |
6438614, | Mar 20 1998 | Oracle America, Inc | Polymorphic token based control |
6446070, | Feb 26 1998 | Oracle America, Inc | Method and apparatus for dynamic distributed computing over a network |
6449648, | Oct 11 1996 | Sun Microsystems, Inc. | Lease renewal service |
6463446, | Feb 26 1998 | Oracle America, Inc | Method and apparatus for transporting behavior in an event-based distributed system |
6466947, | Mar 20 1998 | Oracle America, Inc | Apparatus and method for dynamically verifying information in a distributed system |
6480863, | Nov 17 1997 | Sun Microsystems, Inc. | Method and system for multi-entry and multi-template matching in a database |
6487607, | Feb 26 1998 | Oracle America, Inc | Methods and apparatus for remote method invocation |
6519615, | Oct 11 1996 | Sun Microsystems, Inc. | Method and system for leasing storage |
6560656, | Feb 26 1998 | Oracle America, Inc | Apparatus and method for providing downloadable code for use in communicating with a device in a distributed system |
6564240, | Oct 11 1996 | Sun Microsystems, Inc. | Method, apparatus, and product for leasing of group membership in a distributed system |
6567820, | Nov 17 1997 | Sun Microsystems, Inc. | Method and system for in-place modifications in a database |
6578044, | Nov 17 1997 | Oracle America, Inc | Method and system for typesafe attribute matching |
6598094, | Mar 20 1998 | Oracle America, Inc | Method and apparatus for determining status of remote objects in a distributed system |
6629154, | Feb 26 1998 | Sun Microsystems, Inc. | Method and system for deterministic hashes to identify remote methods |
6643650, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for using messages to look up documents stored in spaces in a distributed computing environment |
6654793, | Apr 23 1996 | Sun Microsystems, Inc. | System and method for facilitating dynamic loading of stub information to enable a program operating in one address space to invoke processing of a remote method or procedure in another address space |
6704756, | Oct 11 1996 | Sun Microsystems, Inc. | Methods, apparatus, and product for distributed garbage collection |
6708171, | Apr 23 1996 | Oracle America, Inc | Network proxy |
6728737, | Oct 11 1996 | Sun Microsystems, Inc. | Method and system for leasing storage |
6760736, | Oct 11 1996 | Sun Microsystems, Inc. | Methods and systems for distributed failure detection and recovery using leasing techniques |
6760815, | Jun 02 2000 | Oracle America, Inc | Caching mechanism for a virtual heap |
6763440, | Jun 02 2000 | Oracle America, Inc | Garbage collection using nursery regions for new objects in a virtual heap |
6789077, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for web-based searching of URI-addressable repositories in a distributed computing environment |
6789126, | May 09 2000 | Oracle America, Inc | Addressing message gates in a distributed computing environment |
6792466, | May 09 2000 | Oracle America, Inc | Trusted construction of message endpoints in a distributed computing environment |
6816875, | Oct 11 1996 | Methods, apparatus, and product for distributed garbage collection | |
6832223, | Apr 23 1996 | Oracle America, Inc | Method and system for facilitating access to a lookup service |
6850979, | May 09 2000 | Oracle America, Inc | Message gates in a distributed computing environment |
6854115, | Jun 02 2000 | Oracle America, Inc | Process persistence in a virtual machine |
6862594, | May 09 2000 | Oracle America, Inc | Method and apparatus to discover services using flexible search criteria |
6865657, | Jun 02 2000 | Oracle America, Inc | Garbage collector for a virtual heap |
6868447, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for returning results of services in a distributed computing environment |
6874066, | Jun 02 2000 | Sun Microsystems, Inc. | Caching mechanism for a virtual heap |
6877163, | Jun 14 1999 | Oracle America, Inc | Method and system for dynamic proxy classes |
6898618, | May 09 2000 | Oracle America, Inc | Client-specified display services in a distributed computing environment |
6901518, | Apr 08 1999 | Oracle America, Inc | Method and system for establishing trust in downloaded proxy code |
6917976, | May 09 2000 | Oracle America, Inc | Message-based leasing of resources in a distributed computing environment |
6918084, | May 09 2000 | Oracle America, Inc | Spawning new repository spaces using information provided in advertisement schema messages |
6925644, | Oct 11 1996 | Sun Microsystems, Inc. | Method, apparatus, and product for leasing of group membership in a distributed system |
6934758, | Dec 11 1997 | Sun Microsystems, Inc. | Stack-based access control using code and executor identifiers |
6938263, | Apr 23 1996 | Oracle America, Inc | SYSTEM AND METHOD FOR FACILITATING DYNAMIC LOADING OF “STUB” INFORMATION TO ENABLE A PROGRAM OPERATING IN ONE ADDRESS SPACE TO INVOKE PROCESSING OF A REMOTE METHOD OR PROCEDURE IN ANOTHER ADDRESS SPACE |
6950875, | May 09 2000 | Oracle America, Inc | Message conductors in a distributed computing environment |
6957237, | Jun 02 2000 | Oracle America, Inc | Database store for a virtual heap |
6957427, | Oct 15 1997 | Oracle America, Inc | Remote object activation in a distributed system |
6970869, | May 09 2000 | Oracle America, Inc | Method and apparatus to discover services and negotiate capabilities |
6973493, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for security of newly spawned repository spaces in a distributed computing environment |
7010573, | May 09 2000 | Oracle America, Inc | Message gates using a shared transport in a distributed computing environment |
7016966, | May 09 2000 | Oracle America, Inc | Generating results gates in a distributed computing environment |
7058954, | Apr 23 1996 | Sun Microsystems, Inc. | System and method for facilitating dynamic loading of stub information to enable a program operating in one address space to invoke processing of a remote method or procedure in another space |
7065574, | May 09 2000 | Oracle America, Inc | Messaging system using pairs of message gates in a distributed computing environment |
7072967, | May 09 2000 | Oracle America, Inc | Efficient construction of message endpoints |
7080078, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for URI-addressable repositories of service advertisements and other content in a distributed computing environment |
7188251, | May 09 2000 | Oracle America, Inc | System and method for secure message-based leasing of resources in a distributed computing environment |
7200848, | May 09 2000 | Oracle America, Inc | Migrating processes using data representation language representations of the processes in a distributed computing environment |
7210148, | Feb 26 1998 | Sun Microsystems, Inc. | Method and apparatus for dynamic distributed computing over a network |
7243356, | May 09 2000 | Oracle America, Inc | Remote method invocation with secure messaging in a distributed computing environment |
7260543, | May 09 2000 | Oracle America, Inc | Automatic lease renewal with message gates in a distributed computing environment |
7296275, | Jan 04 2001 | Oracle America, Inc | Method and system for passing objects in a distributed system using serialization contexts |
7370091, | May 09 2000 | Oracle America, Inc | Method and apparatus for obtaining space advertisements |
7395333, | May 09 2000 | Oracle America, Inc | Method and apparatus to obtain negotiated service advertisement |
7398533, | May 09 2000 | Oracle America, Inc | Remote function invocation with messaging in a distributed computing environment |
7412518, | May 09 2000 | Oracle America, Inc | Method and apparatus for proximity discovery of services |
7426721, | May 09 2000 | Oracle America, Inc | Transformation of objects between a computer programming language and a data representation language |
7444644, | May 09 2000 | Oracle America, Inc | Secure access of objects generated from data representation language representations of the objects in a distributed computing environment |
7458082, | May 09 2000 | Oracle America, Inc | Bridging between a data representation language message-based distributed computing environment and other computing environments using proxy service |
7509360, | Oct 11 1996 | Sun Microsystems, Inc. | Methods, apparatus, and product for distributed garbage collection |
7548946, | May 09 2000 | Oracle America, Inc | Pre-generated message endpoints |
7577834, | May 09 2000 | Oracle America, Inc | Message authentication using message gates in a distributed computing environment |
7660887, | Sep 07 2001 | Oracle America, Inc | Systems and methods for providing dynamic quality of service for a distributed system |
7716492, | May 09 2000 | Oracle America, Inc | Method and apparatus to obtain service capability credentials |
7734747, | Feb 26 1998 | Oracle America, Inc. | Dynamic lookup service in a distributed system |
7756969, | Sep 07 2001 | Oracle America, Inc | Dynamic provisioning of identification services in a distributed system |
7792874, | Jan 30 2004 | Oracle America, Inc | Dynamic provisioning for filtering and consolidating events |
8001232, | May 09 2000 | Oracle America, Inc | Event message endpoints in a distributed computing environment |
8082491, | May 09 2000 | Oracle America, Inc | Dynamic displays in a distributed computing environment |
8135796, | May 09 2000 | Oracle America, Inc | Mechanism and apparatus for accessing and addressing services in a distributed computing environment |
8713089, | Feb 26 1998 | Oracle America, Inc. | Dynamic lookup service in a distributed system |
9110711, | May 09 2000 | Oracle International Corporation | Dynamic displays in a distributed computing environment |
9183066, | Mar 20 1998 | Oracle America, Inc | Downloadable smart proxies for performing processing associated with a remote procedure call in a distributed system |
Patent | Priority | Assignee | Title |
3713214, | |||
3803695, | |||
4095336, | Sep 06 1977 | Minnesota Mining and Manufacturing Company | Comb means for connecting station |
4110896, | Oct 26 1976 | Minnesota Mining and Manufacturing Company | Cable connecting station |
4282644, | Aug 30 1979 | AT & T TECHNOLOGIES, INC , | Tool for assembling conductors to connector element |
4446617, | Feb 16 1982 | Splicing head for adding conductors to an electrical connector | |
4551893, | Jul 05 1983 | AMP INCORPORATED, A CORP OF NJ | Wire processing apparatus |
4825530, | Apr 28 1987 | AMP Incorporated | Electrical connector applicator |
5174781, | May 01 1992 | ITT Corporation | Connector bail latch |
5231683, | Oct 11 1991 | JDS Uniphase Corporation | Attaching optical fibers to integrated optic chips |
DE3920367A1, | |||
EP560043A2, | |||
GB2108017, | |||
WO9321550, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 22 1997 | Minnesota Mining and Manufacturing Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 28 2002 | REM: Maintenance Fee Reminder Mailed. |
Aug 28 2002 | ASPN: Payor Number Assigned. |
Nov 12 2002 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 10 2001 | 4 years fee payment window open |
May 10 2002 | 6 months grace period start (w surcharge) |
Nov 10 2002 | patent expiry (for year 4) |
Nov 10 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 10 2005 | 8 years fee payment window open |
May 10 2006 | 6 months grace period start (w surcharge) |
Nov 10 2006 | patent expiry (for year 8) |
Nov 10 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 10 2009 | 12 years fee payment window open |
May 10 2010 | 6 months grace period start (w surcharge) |
Nov 10 2010 | patent expiry (for year 12) |
Nov 10 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |