Apparatus for measuring the variability of cardiovascular parameters, having a photoplethysmographic (PPG) probe, including a modulated first light source and a photodetector, a demodulator connected to the photodetector for demodulating PPG signals detected by the photodetector, an analog to digital converter for digitizing the demodulated signals, and a processor for repeatedly analysing the PPG signals for a predetermined number of times. A method for measuring the variability of cardovascular parameters.

Patent
   5862805
Priority
Nov 16 1995
Filed
Nov 06 1996
Issued
Jan 26 1999
Expiry
Nov 06 2016
Assg.orig
Entity
Small
61
5
all paid
1. A method for measuring variability of cardiovascular parameters, comprising:
performing a series of photoplethsymographic measurement on a patient over a predetermined period of time;
selecting parameters to be analyzed from the group of parameters consisting of: the blood volume (BV) of the measured tissue; the amplitude (AM) of the systolic increase in the blood volume of the tissue and the time duration (T) between the maxima of two adjacent photoplethsymographic pulses and the maximal rate of increase (Vmax) of the blood volume, and measuring the standard deviation of any selected parameter from said parameters.
2. The method as claimed in claim 1, further comprising performing correlation between the values of a selected parameter of two different sites on the body of said patient.
3. The method as claimed in claim 2, wherein said correlation is performed for each selected parameter P by the formula
CC(τ)=Pa (τ)Pb (t-τ)dt
where CC(τ) is the cross correlation which depends on the time lag between two parameters Pa and Pb ; Pa (τ) and Pb (τ) are the corresponding values of the same parameter in the two different sites, a and b, at a time t, and τ is time lag.
4. A method as claimed in claim 1, further comprising the step of displaying curves depicting variations of the selected parameters as a function of time.

The present invention relates to an apparatus and method for measuring the variability of cardiovascular parameters.

The heart rate fluctuates spontaneously about its average value in several frequencies. These fluctuations are attributed to the activity of the two branches of the Autonomic Nervous System (ANS): the sympathetic and the parasympathetic nervous systems. Power spectrum analysis revealed fluctuations in three main frequency ranges: the high frequency fluctuations in the respiration rate, which are related to the parasympathetic nervous system; the mid-frequency fluctuations, which are usually related to both branches of the ANS and the low frequency fluctuations, at the rate of 0.03-0.08 Hz, which are attributed to the activity of the sympathetic nervous system.

The Heart Rate Variability (HRV) measurement provides information on the ANS function: in several pathologies the HRV pattern is abnormal. The measurement itself is simple and noninvasive and has potential to be used as a clinical tool for the assessment of pathological ANS. At present, such measurements are not used routinely because the difference between pathological and normal HRV is not well defined. The pattern of the HRV differs greatly even between normal subjects, and masks the different pattern of the pathological HRV.

During systole (heart contraction), blood is ejected from the left ventricle into the peripheral organs, thereby increasing their blood volume. The measurement of this Systolic Blood Volume Increase (SBVI) is called plethysmography. The simplest plethysmographic method is Photoplethysmography (PPG), in which light is incident on some site of the skin, so that part of it enters the tissue. That light is partly scattered and partly absorbed by the red blood cells. The light which emerges out of the skin is measured by a photodetector. The output signal shows pulsations in the heart rate, due to the variations in tissue blood volume, which occur by the heart beats.

The PPG method is not suitable for absolute evaluation of the SBVI, because the absolute value of the signal depends on the skin color, on the pressure of the probe on the skin and because the signal varies spontaneously as a function of time even during the same examination. At present, the method is used for the measurement of the heart rate (where the absolute PPG is not important) and for pulse oximetry--measurement of oxygen saturation in the arterial blood, by measuring the ratio of the PPG signal for two or three different wavelenths (where only the ratio between two wavelengths is required).

U.S. Pat. No. 4,834,107 discloses a system which, in some respects, is similar to the present invention. In that patent, the PPG signal of one, single pulse, is digitally analyzed, in order to determine the systolic, diastolic and mean blood pressure and the pulse pressure.

In accordance with the present invention, however, no blood pressure value is derived from the PPG signal. Furthermore, the parameter which is derived, the degree of the variability of the PPG parameter or the maximal correlation coefficient between two PPG parameters or between the values of the same PPG parameter in two sites of the body and the lag between them, cannot be derived from a single pulse, but from a series of more than e.g., 30 pulses, in order to detect the low frequency sympathetic nervous system regulated fluctuations.

It is therefore a broad object of the present invention to overcome the above-mentioned and other drawbacks of the known methods for SBVI analysis and to provide a system and a method facilitating improved evaluation of the fluctuations in SBVI and other cardiovascular parameters.

In accordance with the present invention there is provided an apparatus for measuring the variability of cardiovascular parameters, comprising at least one photoplethysmographic (PPG) probe, each probe having a modulated first light source and a photodetector, a demodulator connected to said photodetector for demodulating PPG signals detected by said photodetector, an analog to digital converter for digitizing the demodulated signals, and a processor for repeatedly analysing said PPG signals for a predetermined number of times.

The invention further provides a method for measuring variability of cardiovascular parameters, comprising performing a series of PPG measurement on a patient over a predetermined period of time, selecting parameters to be analyzed for a group of parameters including the blood volume (BV) of the measured tissue; the amplitude (AM) of the systolic increase in the blood volume of the tissue and the time duration (P) between the maxima of two adjacent PPG pulses and the maximal rate of increase (Vmax) of the blood volume, and measuring the standard deviation of each parameter.

The invention will now be described in connection with certain preferred embodiments with reference to the following illustrative figures so that it may be more fully understood.

With specific reference now to the figures in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice .

FIG. 1 illustrates a known technique for effecting PPG measurements;

FIG. 2 illustrates a PPG signal obtained by the measurements effected by the technique of FIG. 1.

FIG. 3 illustrates a signal curve showing the dependency of the parameters on the pulse number;

FIG. 4 is a power spectrum of the dependency of the parameters of FIG. 3, on time;

FIG. 5 is a block diagram of the system according to the present invention, and

FIG. 6 is a block diagram of a system for performing measurements at two sites on a body.

There is illustrated in FIG. 1 the known PPG measurement effected on a patient's finger 2 by the application thereto of a light source 4 and a light detector 6. The PPG can be measured either by transmission of light through the tissue or by reflection from the skin.

The PPG signal obtained by the above-described measurement is shown in FIG. 2. Several parameters which can be derived from the pulse are also depicted on the curve:

1. The baseline (BL), which is inversely related to the tissue blood volume: higher blood volume results in higher absorption of the light and lower output signal. The parameter, BV defined by BV=Const.-BL is therefore a parameter which is directly related to the blood volume in the tissue under investigation.

2. The amplitude (AM) of the PPG signal, which is related to the SBVI. SBVI depends on the compliance to pressure of the blood vessels: higher rigidity of the vessels reduces their volume change during systole, while higher elasticity enables higher dilation during the systolic period.

3. The PPG pulse period P is actually the cardiac beating period, and its variability is therefore the classical HRV.

The PPG signal illustrated in FIG. 2 was measured for several hundred pulses and the three parameters BV, AM and P were derived for each pulse.

Shown in FIG. 3 is the dependence of each parameter on the pulse number. The power spectrum of the dependence on time of the three parameters BV, AM and P was then computed and the three spectra obtained for one of the subjects are shown in FIG. 4. It can be seen that all three parameters fluctuate in the three frequencies mentioned above, but the intensities of the fluctuations in the different frequencies differ between BV, AM and P: the high frequency fluctuations dominate the P curve, while the low frequency fluctuations are more prominent in the BV and AM curves.

It was found that neurologic pathologies result in difference in the BV and AM variability pattern, in accordance with the results obtained for HRV examinations. The changes in the low frequency are better seen and measured in the BV and AM curves, probably due to the direct effect of the smypathetic nervous system on the diameter of the blood vessels, changing thereby their volume and compliance. It is therefore expected that pathologies in the sympathetic nervous system, which dominate the low frequency fluctuations, will be better diagnosed by the PPG measurement through the analysis of the dependence of the PPG parameters on time.

In the preferred embodiment shown in FIG. 5, there is seen the PPG system arranged to reliably measure the variability of several parameters of the PPG signal, such as, the baseline BL, (or BV which is equal to a Const.-BL), the amplitude AM, the period P, the maximal rate of increase Vmax of the tissue blood volume, and the time duration T from the maximum to the minimum. As explained above, BV is related to the tissue blood volume, AM is related to the blood vessels' elasticity and P is the cardiac cycle period. Vmax is related to the maximal contraction rate of the left ventricle, and is influenced by several cardiac and peripheral vascular parameters.

The system comprises one or more PPG probes 8, each includes either one light source 10 or two light sources of different wavelengths, and a photodetector 12. The light intensity is modulated by modulator 14 and the detected PPG signal is amplified, and filtered in order to avoid background light, and then demodulated in circuit 16. The demodulated signal then digitized in the A/D converter 18 and the digitized signal is analyzed either by a microprocessor 20 or by computer, in order to obtain, for each pulse, the desired parameters, BV, AM, P, Vmax and T. A display 22 is used for displaying either the PPG signal or the curves of the different parameters as a function of the pulse number. When the measurement is performed in two sites, the correlation function can also be shown on the display.

In order to reliably measure the above-mentioned parameters the electronic components should be accurately designed. RC filtration of the high DC component of the PPG signal is not allowed, since it may significantly modify the other parameters. The discrimination between the DC and the AC components of the PPG signal (BL and AM, respectively) should therefore, be done digitially, using an A/D convertor of high resolution.

The preferred site of measurement is the fingertip, since the fingertip blood vessels are highly inervated by the symphathetic nervous system. Other sites on the body can also be used for the examination, such as the forearm, toe, leg or earlobe.

The examination of the PPG parameters variability can also be performed on different sites of the body, such as different fingertips of the same hand or on different hands, on fingers and toes, or on fingers and forearm. The different curves from the different sites can then be compared in order to detect pathological or physiological changes between the different sites.

The analysis of the PPG parameters may include:

1. Automatic derivation of the above parameters for each pulse signal as described with reference to FIG. 2. For that task the minimum and the maximum for each pulse is determined in order to derive BL, AM, P and T, and the derivative of the PPG curve is calcualated in order to obtain the maximal rate of increase of the blood volume;

2. Plottings of each parameter vs. time curve in order to check that the automatic analysis was properly performed;

3. Power spectrum analysis of each parameter;

4. Cross correlation (CC) analysis for each desired pair of these parameters, e.g., P1 and P2, according to the well known formula for CC: ##EQU1## CC provides information on the degree of correlation between the two parameters, P1 and P2. CC is function of the parameter τ, the lag between P1 and P2. The CC curve is displayed and two parameters are derived therefrom: the maximal correlation coefficient and the lag τ required for obtaining that maximal correlation.

The examination of the PPG parameters' variability can also be performed on different sites of the body, such as different fingertips of the same hand or on different hands, on fingers and toes, or on fingers and forearm. As illustrated in FIG. 6, for each PPG parameter, the curves describing the value of the parameter as a function of the pulse number can be obtained for each site of measurement and the parameter dependence on time for the different sites can be compared. A correlation processor 24 can advantageously be connected between the processors 20 of each of the probes.

One of the methods for detecting pathological changes between the different sites is the use of the correlation function ##EQU2## where Pa (t) and Pb (t) are the corresponding values of the same parameter in the two different sites, a and b. As an example, the correlation coefficient CC(τ=0) between two fingers in different hands for normal subjects is above 0.90. Lower values indicate lower coordination between the two sites.

It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Nitzan, Meir

Patent Priority Assignee Title
10022068, Oct 28 2013 Covidien LP Systems and methods for detecting held breath events
10045701, Aug 22 2008 Pacesetter, Inc. Implantable hemodynamic monitor and methods for use therewith
10342493, Jun 30 2011 LEMAN MICRO DEVICES, LLC Personal health data collection
10376157, Jan 04 2012 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information using phase locked loop
10537289, Feb 20 2014 Covidien LP Systems and methods for filtering autocorrelation peaks and detecting harmonics
10918281, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
10993627, Jan 24 2017 Device for determining blood pressure without a cuff
11129575, Jun 30 2011 LEMAN MICRO DEVICES, LLC Personal health data collection
11229374, Dec 09 2006 Masimo Corporation Plethysmograph variability processor
11246495, Oct 27 2014 VITAL SINES INTERNATIONAL INC System and method for monitoring aortic pulse wave velocity and blood pressure
11399722, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
11813036, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
6120459, Jun 09 1999 NINBAR LTD Method and device for arterial blood pressure measurement
6132380, Sep 16 1998 Massachusetts Institute of Technology Method and apparatus for measuring perfusion of biological tissue by blood
6280390, Dec 29 1999 Ramot University Authority for Applied Research and Industrial Development System and method for non-invasively monitoring hemodynamic parameters
6402696, Apr 07 2000 Ninbar Ltd. Method for systolic blood pressure measurement
6527729, Nov 10 1999 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
6540688, Oct 11 2001 Datex-Ohmeda, Inc.; Datex-Ohmeda, Inc Method and system for assessing collateral blood flow to a tissue region of interest
6616613, Apr 27 2000 Vitalsines International, Inc. Physiological signal monitoring system
6702752, Feb 22 2002 Datex-Ohmeda, Inc Monitoring respiration based on plethysmographic heart rate signal
6709402, Feb 22 2002 Datex-Ohmeda, Inc Apparatus and method for monitoring respiration with a pulse oximeter
6805673, Feb 22 2002 Datex-Ohmeda, Inc Monitoring mayer wave effects based on a photoplethysmographic signal
6896661, Feb 22 2002 Datex-Ohmeda, Inc Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal
6990426, Mar 16 2002 Samsung Electronics Co., Ltd. Diagnostic method and apparatus using light
6997879, Jul 09 2002 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
7001337, Feb 22 2002 Datex-Ohmeda, Inc Monitoring physiological parameters based on variations in a photoplethysmographic signal
7292883, Mar 31 2004 JPMorgan Chase Bank, National Association Physiological assessment system
7403806, Jun 28 2005 General Electric Company System for prefiltering a plethysmographic signal
7738935, Jul 09 2002 Pacesetter, Inc Methods and devices for reduction of motion-induced noise in pulse oximetry
7922666, Sep 21 2006 Starr Life Sciences Corporation Pulse oximeter based techniques for controlling anesthesia levels and ventilation levels in subjects
8038626, Feb 28 2007 Medtronic, Inc Implantable tissue perfusion sensing system and method
8055330, Aug 28 2002 Sensing gas bubbles in a living body
8090432, Feb 28 2007 Medtronic, Inc Implantable tissue perfusion sensing system and method
8116839, Feb 25 2005 General Electric Company System for detecting potential probe malfunction conditions in a pulse oximeter
8147416, Aug 31 2007 Pacesetter, Inc Implantable systemic blood pressure measurement systems and methods
8162841, Aug 31 2007 Pacesetter, Inc Standalone systemic arterial blood pressure monitoring device
8165662, Feb 28 2007 Medtronic, Inc Implantable tissue perfusion sensing system and method
8170650, Feb 28 2007 Medtronic, Inc Implantable tissue perfusion sensing system and method
8328728, Aug 22 2008 Pacesetter, Inc. Implantable hemodynamic monitor and methods for use therewith
8343057, Dec 01 2003 PHILIPS RS NORTH AMERICA LLC Apparatus and method for monitoring pressure related changes in the extra-thoracic arterial circulatory system
8515513, Nov 05 2008 Covidien LP System and method for facilitating observation of monitored physiologic data
8755871, Nov 30 2011 Covidien LP Systems and methods for detecting arrhythmia from a physiological signal
8880576, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
8886465, Feb 28 2007 Medtronic, Inc Implantable tissue perfusion sensing system and method
9060746, Nov 30 2011 Covidien LP Systems and methods for detecting arrhythmia from a physiological signal
9119597, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
9179876, Apr 30 2012 Covidien LP Systems and methods for identifying portions of a physiological signal usable for determining physiological information
9247896, Jan 04 2012 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information using phase locked loop
9402554, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
9554712, Feb 27 2013 Covidien LP Systems and methods for generating an artificial photoplethysmograph signal
9560978, Feb 05 2013 Covidien LP Systems and methods for determining respiration information from a physiological signal using amplitude demodulation
9636059, Feb 28 2007 Medtronic, Inc. Implantable tissue perfusion sensing system and method
9675274, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
9687159, Feb 27 2013 Covidien LP Systems and methods for determining physiological information by identifying fiducial points in a physiological signal
9687656, Jul 08 2009 Pacesetter, Inc. Arterial blood pressure monitoring devices, systems and methods for use while pacing
9693709, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
9693736, Nov 30 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information using historical distribution
9737266, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
9820691, Sep 13 2007 JPMorgan Chase Bank, National Association Fluid titration system
9848820, Jan 07 2014 Covidien LP Apnea analysis system and method
9901308, Feb 20 2014 Covidien LP Systems and methods for filtering autocorrelation peaks and detecting harmonics
Patent Priority Assignee Title
3980075, Feb 08 1973 Audronics, Inc. Photoelectric physiological measuring apparatus
4834107, May 10 1984 WARNER, SYLVIA, 3010 MATIS ST , ST LAURENT, QUEBEC, CANADA H4R 1A3; SANKAR, PRIYAMVADA, 8000 NANTES ST , BROSSARD, QUEBEC, CANADA J4Y 1Z1 Heart-related parameters monitoring apparatus
5379774, Oct 23 1990 Sankyo Company Limited Measurement of arterial elasticity and the frequency characteristic of the compliance of an artery
5423322, Dec 29 1988 Medical Physics, Inc. Total compliance method and apparatus for noninvasive arterial blood pressure measurement
5632272, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 24 1996NITZAN, MEIROPTELMED LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0082990474 pdf
Nov 06 1996Optelmed Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 23 2002M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jul 12 2006M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jun 09 2010ASPN: Payor Number Assigned.
Jul 19 2010M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jan 26 20024 years fee payment window open
Jul 26 20026 months grace period start (w surcharge)
Jan 26 2003patent expiry (for year 4)
Jan 26 20052 years to revive unintentionally abandoned end. (for year 4)
Jan 26 20068 years fee payment window open
Jul 26 20066 months grace period start (w surcharge)
Jan 26 2007patent expiry (for year 8)
Jan 26 20092 years to revive unintentionally abandoned end. (for year 8)
Jan 26 201012 years fee payment window open
Jul 26 20106 months grace period start (w surcharge)
Jan 26 2011patent expiry (for year 12)
Jan 26 20132 years to revive unintentionally abandoned end. (for year 12)