A semiconductor laser driver circuit that provides single supply operation over a wide supply voltage range (e.g., 3 V to 5.5 V), is capable of high speed data transmission, and is programmable over a wide laser modulation current range (such as 5 mA to 60 mA). The circuit includes temperature sensitive circuits to adjust for changes in Vbe over the operating temperature range, and to adjust a bias current to maintain transistor gm in the presence of temperature changes. Also included is an adaptive drive feature to accommodate different laser drive currents. Details of these and other features are disclosed.
|
6. In a semiconductor laser driver circuit, the improvement comprising:
first and second power supply connections; first, second, third and fourth transistors, each having an emitter, a base and a collector; the first and second transistors having their emitters coupled together and through a first current source to the second power supply connection; the collector of the first transistor being coupled to a laser diode connection to provide laser drive current thereto, and the collector of the second transistor being coupled to the first power supply connection; the emitters of the third and fourth transistors being coupled to the second power supply connection; the collectors of the third and fourth transistors being coupled to the bases of the first and second transistors, respectively; the bases of the third an fourth transistors being coupled to receive a differential control voltage.
1. A circuit for providing a semiconductor laser drive current comprising:
a laser drive circuit having first and second input lines forming a differential input for providing the laser drive current when the voltage on the first line is higher than the voltage on the second line and for not providing the laser drive current when the voltage on the second line is higher than the voltage on the first line; and, an active differential pull-up/pull-down circuit responsive to differential signals for actively pulling the voltage on the first input line of the laser drive circuit up and actively pulling the voltage on the second input line of the laser drive circuit down when the laser drive current is to be provided, and pulling the voltage on the first input line of the laser drive circuit down and pulling the voltage on the second input line of the laser drive circuit up when the laser drive current is not to be provided.
2. The laser drive circuit of
3. The laser drive circuit of
4. The laser drive circuit of
5. The laser drive circuit of
7. The improvement of
8. The improvement of
9. The improvement of
fifth and sixth transistors, each having an emitter, a base and a collector; the collectors of the fifth and sixth transistors being coupled to the first power supply connection, the emitters of the fifth and sixth transistors being coupled to the collectors of the third and fourth transistors, respectively, and to the bases of first and second transistors, respectively; and, an input circuit coupled to the bases of the third, fourth, fifth and sixth transistors to provide first and second control signals complimentary to third and fourth control signals, the first, second, third and fourth control signals being responsive to a differential input signal, the first and second control signals being coupled to the bases of the fourth and fifth transistors, respectively, and the third and fourth control signals being coupled to the bases of the third and sixth transistors, respectively.
10. The improvement of
11. The improvement of
12. The improvement of
13. The improvement of
fifth, sixth, seventh and eighth transistors, each having an emitter, a base and a collector; the emitters of the third and fourth transistors being coupled to the second power supply connection through a second current source; the collectors of the fifth and sixth transistors being coupled to the first power supply connection, the emitters of the fifth and sixth transistors being coupled to the collectors of the third and fourth transistors, respectively, and to the bases of first and second transistors, respectively; the emitters of the seventh and eighth transistors being coupled together and through a third current source to the second power supply terminal; the collectors of the seventh and eighth transistors being coupled to the bases of the fifth and sixth transistors, respectively, and through first and second resistors to a common node, the common node being coupled to the first power supply connection through a third resistor a fourth current source coupled between the common node and the second power supply connection; and, an input circuit coupled to the bases of the third, fourth, seventh and eighth transistors to provide first and second complimentary control signals, the first and second control signals being responsive to a differential input signal, the first control signal being coupled to the bases of the fourth and eighth transistors, respectively, and the second control signal being coupled to the bases of the third and seventh transistors, respectively.
15. The improvement of
16. The improvement of
17. The improvement of
ninth and tenth transistors, each having an emitter, a base and a collector; fifth and sixth current sources; the input circuit being coupled to the bases of the ninth and tenth transistors; the ninth and tenth transistors having their collectors coupled to the first power supply connection and their emitters coupled to the bases of the fourth and the third transistors, respectively, and through the fifth and sixth current sources, respectively to the second power supply connection.
18. The improvement of
eleventh, twelfth, thirteenth and fourteenth transistors, each having an emitter, a base and a collector; fourth, fifth, sixth and seventh resistors; and, seventh, eighth, ninth, tenth, eleventh, twelfth and thirteenth current sources; the eleventh and twelfth transistors having their emitters coupled together and through the seventh current source to the second power supply connection, their bases coupled to form differential inputs to the differential laser driver circuit, and their collectors coupled to the bases of the thirteenth and fourteenth transistors, respectively, to the second power supply connection through the eighth and ninth current sources, respectively, and through the fourth and fifth resistors respectively to the first power supply connection; the thirteenth and fourteenth transistors having their collectors coupled to the first power supply connection, and their emitters coupled to the second power supply connection through the tenth and the eleventh current sources, and to the bases of the tenth and the ninth transistors, respectively, through the sixth and the seventh resistors, respectively; the bases of the ninth and tenth transistors being coupled to the second power supply connection through the twelfth and thirteenth current sources, respectively.
20. The improvement of
21. The improvement of
22. The improvement of
|
1. Field of the Invention
The present invention relates to the field of semiconductor laser driver circuits.
2. Prior Art
Existing high speed laser driver integrated circuits require a single power supply of approximately 5 V, or multiple power supplies. However, electronics systems are evolving toward lower supply voltages to conserve power and to exploit improving low voltage, high frequency IC processes. Therefore, it is an objective to provide a laser driver circuit capable of operating with a single supply voltage as low as 3 V. It is also an objective to provide operation with existing 5 V systems.
It is also an objective of the invention to comply with existing SDH/SONET specifications at 2.448 Gb/s, or faster.
It is also an objective of the invention to minimize power consumption.
It is also an objective of the invention to provide a wide range of laser modulation current (such as 5 mA to 60 mA) while meeting the previous objectives.
It is a further objective of the invention to be directly compatible with standard PECL logic at the data inputs.
FIG. 1 is a simplified schematic of a typical (Maxim MAX3261, Sony CXB1108AQ) integrated bipolar laser driver. The output transistors Q1 and Q2 switch the modulation current Imod into an external laser depending on the state of the differential data inputs Vin+, Vin-. RL represents the typical matching impedance of a high speed laser (e.g., 25 Ω). Emitter follower transistors Q3 and Q4 provide level shifting and current gain to drive the output transistors. Additional emitter followers can be included for more level shifting and current gain ("A Versatile Si-Bipolar Driver Circuit with High Output Voltage Swing for External and Direct Laser Modulation in 10 Gb/s Optical-Fiber Links", H.-M. Rein et al., IEEE Journal of Solid-State Circuits, Vol. 29, No. 9, September 1994). Differential pair Q5 and Q6 provides voltage gain to ensure full switching of the output devices by switching current I3 through R1 or R2 depending on the input data. The inputs can be buffered by optional emitter followers (not shown).
The circuit of FIG. 1 directly couples the output current from the collector of transistor Q1 to the laser. Since the supply voltage must be greater than the headroom needed by the current source Imod, plus the output transistor Q1, plus the laser, this topology is not capable of operation with a supply voltage of 3 V. For example, transistor Q1 and current source Imod both need about 1 V of headroom for high speed operation, the typical DC laser drop is 1.5 V, and a modulation current of 60 mA multiplied by the 25 Ωof RL is 1.5 V. This is a total of 5 V, which clearly shows that operation on a single 3 V DC supply is not possible.
The circuit of FIG. 2 can be used to AC couple the output current from the collector of transistor Q1 to a semiconductor laser. By using an inductor to set the DC voltage at the collector of Q1 to be equal to the supply, adequate headroom is achieved. The value of the inductor LAC is chosen to limit droop during long consecutive streams of data ones or zeros and the value of the capacitor CAC is chosen to provide the desired high pass cutoff frequency. The use of this output topology allows sufficient headroom for 3 V operation. This topology is commonly used in RF applications, and it has been previously applied to semiconductor lasers. Similar AC coupling networks with resistive pull-up have been previously implemented.
A disadvantage of the circuit of FIG. 1 is that the emitter follower currents I1 and I2 must be approximately equal to the peak base current (caused by collector to base capacitance) of the output transistors Q1 and Q2. At high data rates and with large modulation current, I1 and I2 can become very large (10's of mA). Transistors Q3 and Q4 must therefore be large devices and will also have significant transient base current. This sets a maximum value for R1 and R2 and can cause the value of current I3 to be larger than desired. The value of current I3 multiplied by R1 (or R2) results in the peak magnitude of the differential voltage signal across the bases of transistors Q1 and Q2. This signal must be large enough to fully switch the modulation current at its maximum value. The required amplitude is typically 400 mV for 60 mA of modulation current.
A semiconductor laser driver circuit that provides single supply operation over a wide supply voltage range (e.g., 3 V to 5.5 V), is capable of high speed data transmission, and is programmable over a wide laser modulation current range (such as 5 mA to 60 mA) is disclosed. The circuit includes temperature sensitive circuits to adjust for changes in Vbe over the operating temperature range, and to adjust a bias current to maintain transistor gm in the presence of temperature changes. Also included is an adaptive drive feature to accommodate different laser drive currents.
Details of these and other features are disclosed.
FIG. 1 is a simplified schematic of a typical prior art integrated bipolar laser driver.
FIG. 2 is illustrates AC coupling of the output current to a semiconductor laser using an inductor to set the DC voltage at the collector of the laser drive transistor to be equal to the supply to achieve adequate headroom.
FIG. 3 is a circuit diagram for a first embodiment of the present invention having a switch driver with differential active pull-down.
FIG. 4 is a circuit similar to the circuit of FIG. 3 and includes a resistive level shift R3 controlled by a supply and temperature dependent current source I7.
FIG. 5 is a circuit similar to the circuit of FIG. 4 and includes the addition of a level shifting input stage that is directly compatible with standard PECL logic.
FIG. 6 is a circuit similar to the circuit of FIG. 4 and includes additional circuit components to implement an adaptive drive feature to accommodate different laser drive currents.
FIGS. 7 through 10 present circuits for providing bias currents with various characteristics for the circuit of FIG. 6.
First referring to FIG. 3, a first embodiment of the present invention may be seen. In this embodiment, the output transistors Q1 and Q2 are driven by two parallel circuits. One circuit pulls the base of the conducting output device high, and the other circuit pulls the base of the non-conducting output device low. The first circuit, comprised of differential pair Q5 and Q6, load resistors R1 and R2, emitter follower transistors Q3 and Q4, and current sources I1 and I2, is the identical topology as FIG. 1. The emitter of transistor Q3 or Q4, whichever is higher, pulls up on the base of the conducting output device. The additional second circuit is comprised of emitter followers Q9 and Q10, differential pair Q7 and Q8, and switched current source I4. (Additionally, current sources I5 and I6 are required to provide bias currents for transistors Q9 and Q10.) The collectors of transistors Q7 and Q8 are connected such that the current I4 is switched to the base of the non-conducting output device Q1 or Q2, thereby pulling it down.
The first advantage of the circuit of FIG. 3, when compared to the circuit of FIG. 1, is improved high frequency performance with lower power consumption. To understand the transient behavior of this circuit, assume that the differential data input signal is being switched from a logic zero to a logic one. In other words, the voltage at the base of transistor Q9 is moving higher and the voltage at the base of transistor Q10 is moving lower. The voltage at the collector of transistor Q5, which is connected to the base of transistor Q4, is moving lower because current source I3 is being switched through transistor Q5. Similarly, the voltage at the connection of the collector of transistor Q6 and the base of transistor Q3 is moving higher since I3 is being switched away from transistor Q6. The transient voltages at the emitters of transistors Q3 and Q4 are moving in the same direction as the voltages at the bases. Thus, the voltage at the emitter of transistor Q3 (base of transistor Q1) is rising, and the voltage at the emitter of transistor Q4 (base of transistor Q2) is falling. Because of stored base charge and junction capacitance, this differential voltage transient across the bases of large switching transistors Q1 and Q2 results in a surge of current into the base of transistor Q1 and a surge of current out of the base of transistor Q2. Emitter follower transistor Q3 can supply the current surge into the base of transistor Q1, but the current surge out of the base of transistor Q2 must be supplied by either current source I2 or the collector of transistor Q8. Remembering that the base of emitter follower transistor Q9 is moving higher and the base of emitter follower transistor Q10 is moving lower, the respective emitters will be moving in the same manner. Because of the circuit connections, the base of transistor Q8 is moving higher, and the base of transistor Q7 is moving lower. This action switches current source I4 through transistor Q8 (and away from transistor Q7) at the moment that it is most needed to supply the current surge coming from the base of transistor Q2. The end result is very fast switching of the modulation current Imod from transistor Q2 to transistor Q1. The output current from the collector of transistor Q1 flows through the coupling capacitor CAC and increases the laser current, signifying a transition from a logic zero to a logic one.
Because the dynamic nature of this circuit supplies transient current to the bases of transistors Q1 and Q2, constant current sources I1 and I2 can be significantly reduced, down to the small value required to prevent emitter followers Q3 and Q4 from turning off. Simulations have shown superior output transient current edge speeds when the total of current sources I1, I2 and I4 is less than half of the total current through I1 and I2 in FIG. 1.
Other advantages of the circuit in FIG. 3 are:
1. The propagation delay of the pull-up signal path consisting of differential pair Q5 and Q6 and emitter followers Q3 and Q4 is similar to the propagation delay of the pull-down signal path consisting of emitter followers Q9 and Q10 and differential pair Q7 and Q8. This delay match results in improved output current edge speed when compared to other active pull-down circuits.
2. Because of the switching action of transistors Q7 and Q8, the peak currents in the collectors and in the bases of emitter followers Q3 and Q4 are reduced. The reduced collector currents allows the use of smaller devices than Q3 and Q4 in FIG. 1, decreasing capacitive loading on sensitive high frequency nodes. The smaller transient base currents allow the use of larger values for R1 and R2, which in turn reduces the required value of I3, saving more power.
3. Because the value of I3 is also related to the current required in level shifting circuitry to be described below, the topology of FIG. 3 also results in reduced power (and device size) in the preceding stage.
It is desirable for the bias voltages at the coupled emitters of transistors Q1 and Q2 to be maintained at a constant voltage of about 1 V. This value of 1 V, which results in a voltage of about 1.8 V at the bases of transistors Q1 and Q2, allows sufficient headroom for the AC coupled topology of FIG. 2 when using a 3 V supply, and allows the DC coupled topology of FIG. 1 for moderate modulation currents when using a 5 V nominal supply. Use of the DC coupled topology is desired when possible to eliminate the need for the inductive AC coupling network.
FIG. 4 shows a circuit topology with a resistive level shift R3 controlled by a supply and temperature dependent current source I7. A capacitor can be included across resistor R3 to minimize transient voltage variation at the connection of resistors R1, R2, R3 and current source I7.
The voltage across R3 is simply the value of resistor R3 multiplied by the sum of the currents I3 and I7. The optimum value of the current I7 is given by: ##EQU1## where: VCC is the supply voltage, Vbe is the base to emitter voltage of a bipolar device on the process being used to implement the circuit, specifically the combination of devices Q3 and Q1, and devices Q4 and Q2, and the 1 V is the headroom for Imod.
It has been determined that it is advantageous to compensate for the base to emitter variation of the switching transistors Q1 and Q2 by setting the Vbe multiplier in the above equation to 2, as in equation (1). This extra temperature compensation (compared to only 1Vbe compensating for transistors Q3 and Q4) gives the maximum possible collector to base voltage on output transistors Q1 and Q2, and results in optimum high frequency performance.
A current source circuit resulting in the desired temperature and supply dependence of the current in accordance with equation (1) is presented in FIG. 7. In this circuit, neglecting base currents:
VCC=IR8 *R8+2Vbe (the Vbes of Q16 and Q17)
IQ15 =IR8 -I16
Substituting for IR8, the foregoing equation can be rewritten as: ##EQU2## with the current IQ15 in transistor Q15 being mirrored to transistor Q17 to provide current I7 (or I8 or I9). Equation (2) can now be made identical to equation (1) with proper component value selection.
Because of the addition of the resistive level shift in FIG. 4, the voltage at the collectors of transistors Q5 and Q6 remains at a nearly constant value with respect to ground at a given temperature regardless of supply voltage. Therefore, the stage that drives the circuit of FIG. 4 must also include a level shift to prevent transistors Q5 and Q6 from saturating over the supply voltage range. FIG. 5 shows a circuit containing the circuit of FIG. 4 and the addition of a level shifting input stage that is directly compatible with standard PECL logic.
The circuit of FIG. 5 contains input gain stage transistors Q13 and Q14 with current source I12 and load resistors R4 and R5. This stage is buffered by emitter followers Q11 and Q12 with bias current sources I10 and I11. The level shift is provided by current sources I8 and I9 through load resistors R6 and R7. Speed-up capacitors C1 and C2 are included to compensate for device and metal interconnect capacitance. Note that I4 has been replaced with a resistor because the additional voltage drop caused by transistors Q11 and Q12 reduces the headroom on I4 to a value lower than that required by a transistor current source. The current through I4 is set by the voltage at the emitters of transistors Q7 and Q8, which is related to the base to emitter voltages of switch transistors Q7 and Q8, emitter followers Q9 through Q12, and the level shift voltage across resistors R6 and R7. For optimum high frequency response, it is desired for the current of I4 to increase with temperature. This increasing current compensates for the decreasing transconductance (gm) of transistors Q1 through Q4 and Q7 and Q8 in the final stage, resulting in nearly constant output current rise time over temperature. If the average voltage at the bases of transistors Q7 and Q8 is held at the silicon bandgap voltage (1.2 V) regardless of power supply or temperature, a commonly used analog design technique, the resulting current through the resistor providing the current I4 will be proportional to absolute temperature (PTAT). Since it is desired to maintain the average voltage at the bases of transistors Q7 and Q8 to 1.2 V (neglecting signal voltage swings), the required level shift currents are given by equation (3): ##EQU3## where again: Vcc is the supply voltage, Vbe is the base to emitter voltage of a bipolar device on the process being used to implement the circuit, this time the combination of devices Q9 and Q11, and the 1.2 V is the silicon bandgap voltage (transistor Q8 in the specific path being considered).
Assuming balanced differential operation, R7 is equal to R6 and I9 is identical to I8. Since this equation is of the same general form as equation (1), the circuit of FIG. 7 will work for either case (current source I7, and current sources I8 and I9) with the appropriate choice of component values.
A major problem associated with the design of high speed semiconductor laser driver circuits is satisfying the need for a wide range of modulation current. Emerging laser technologies are achieving greater efficiencies resulting in smaller required modulation currents. However, existing devices require modulation currents of 60 mA or more. Because of the major investment required to develop production quality analog integrated circuits, it is highly desirable to provide a wide range of modulation current (5 mA to 60 mA) with a single integrated circuit. Unfortunately, it is difficult to provide such a wide current range with good high frequency signal response. The output device size must be large enough to reliably conduct the largest required modulation current. Large devices obviously will have higher junction and metal interconnect capacitance. The signal swing across the bases of the output transistors Q1 and Q2 must also be large enough to fully switch the output devices with the maximum modulation current. As mentioned above, this drive signal swing is on the order of about 400 mV per side with 60 mA of laser modulation current. If the modulation current is reduced by an order of magnitude without adjusting the switch transistor drive characteristics, excessive overshoot and ringing results on the output current waveform. These aberrations are a result of direct current injection through the collector to base capacitance of transistors Q1 and Q2 and indirect current injection caused by the capacitance of current source Imod. This second effect is caused by transient common mode voltage swings at the coupled emitter of transistors Q1 and Q2. It is therefore desirable to reduce the drive signal across the bases of transistors Q1 and Q2 when small modulation currents are being switched. This effect is reported in the paper by Rein et al., herein before referred to, after using an analog computer to optimize several current sources. The method in which an adaptive driver is implemented in this invention, however, is unique.
The circuit of FIG. 6 includes additional circuit components to implement the adaptive drive feature discussed above. First, it is desirable to reduce the voltage swing across the base of transistors Q1 and Q2 when using small modulation current. This can be accomplished by reducing the value of current source I3, as indicated by the variable current source I3 in FIG. 6. In order to preserve the level shift voltage across R3, an additional current source I15 must be introduced to counteract the DC effect of I3 across R3. In other words, I3 is reduced at low modulation current to reduce the signal amplitude across the collectors of transistors Q5 and Q6, and I15 is increased at low modulation currents to maintain the proper DC level shift across R3 in spite of the reduction in the current I3.
In addition to reducing the signal voltage across output transistors Q1 and Q2 at low modulation currents, it is advantageous to reduce the switched pull-down current available at the collectors of transistors Q7 and Q8. Because of the resistive current source I4, this adjustment must be accomplished indirectly. The additional current sources I13 and I14 in FIG. 6 have been included to accomplish the adjustment of the current source I4. By increasing the currents through I13 and I14 at low modulation currents, the common mode voltage at the bases of emitter followers Q11 and Q12 is reduced. This change of common mode. voltage is transferred by emitter followers Q11 and Q12, level shift resistors R6, R7, and emitter followers Q9 and Q10 to the bases of transistors Q7 and Q8. The lower common mode voltage at the bases of transistors Q7 and Q8 in turn results in a lower voltage at the coupled emitters of transistors Q7 and Q8, which reduces the current through I4, as desired. In summary, currents I13 and I14 must increase at lower modulation current values to reduce the drive current switched by transistors Q7 and Q8.
Other methods could be used to attain the desired adjustment. For example, a current variation could be implemented as part of current sources I8 and I9, or I4 could be directly adjusted if the specific requirements allowed a transistor current source for I4. The method described above is preferred to minimize current source complexity because of the available headroom at the collectors of transistors Q13 and Q14.
Circuits to provide the required dependent current sources mentioned have been designed using common analog circuit design practices. FIG. 7 provides the desired supply and temperature dependence of equations (1), (2) and (3). The relative emitter area of transistors Q15 and Q17 and other component values can be adjusted to achieve DC current gain to minimize bias current power dissipation.
The circuit of FIG. 8 is used to generate a differential voltage that is proportional to modulation current for use in the circuits of FIG. 9 and FIG. 10. The voltage at node DriveH is VCC-I18*R10-Vbe and the voltage at DriveL is VCC-(Imod/X)*R9-Vbe. The differential voltage DriveH-DriveL is Imod/X*R9-(I18*R10), which is proportional to the modulation current Imod if X is a constant. The current source Imod/X can be easily implemented as a current mirror addition to transistor current source Imod.
FIG. 9 is used to derive the level shift currents I13 and I14. By including degeneration resistors R11 and R12 in the emitters of differential amplifier transistors Q20 and Q21, the current through transistor Q21 is inversely proportional to the differential "Drive" signal as desired. The current through transistor Q21 is equal to current source I19 at low modulation currents and zero at high modulation currents if the values of resistors R11 and R12 are selected properly. By way of example, if resistors R11 and R12 are equal, and DriveH exceeds DriveL by at least I19*R11, then all of the current I19 will flow through transistor Q20. Since DriveH-DriveL=Imod/X*R9-(I18*R10), this will occur when Imod/X*R9-(I18*R10)≧I19*R11, or Imod≧(X/R9) ((I19* R11)-(I18*R10)). When Imod is low, then DriveH-DriveL=Imod/X*R9-(I18*R10) will approach-(I18*R10), or DriveL will exceed DriveH by approximately (I18*R10). Now if (I18*R10)≧I19* R11, essentially all of the current I19 will flow through transistor Q20, as previously stated.
Similarly, FIG. 10 is used to generate the desired variation of current sources I3 and I15. The current through transistor Q22 increases with Imod and the current through transistor Q23 decreases with Imod because of the nature of the differential "Drive" signal. Because of the limited headroom in FIG. 6, current mirror transistors Q24 through Q31 are included to transfer the currents in transistors Q22 and Q23 to the collectors of transistors Q29 and Q31, respectively. The result is that the collector current of transistor Q29 is approximately proportional to Imod, and I15 at the collector of transistor Q31 is approximately inversely proportional to Imod, as desired. By properly choosing the values R13 and R14, the currents in the collectors of transistors Q29 and Q31 will vary between zero and the value of current source I20 over the full modulation current range. Constant current source I21 is included to set the minimum voltage swing across the collectors of transistors Q5 and Q6 in FIG. 6.
Several modifications to the circuit of FIG. 6 can be implemented without changing the spirit of the invention. These include:
1. Additional emitter followers can be added to buffer the PECL inputs.
2. If DC coupled operation at a 5 V nominal supply is not required, the level shifting circuitry of FIGS. 4 through 6 could be deleted. In this case, current source I4 could be a transistor current source and varied directly for adaptive drive.
3. Additional adaptive drive can be accomplished by directly varying current sources I1 and I2. However, since the topology allows for significant reduction in the value of these current sources, this is a minor improvement.
There has been described herein a new and unique semiconductor laser driver circuit that provides single supply operation over a wide supply voltage range, such as 3 V to 5.5 V, is capable of high speed data transmission, and is programmable over a wide laser modulation current range, such as 5 mA to 60 mA. While certain preferred embodiments have been described herein, it will be recognized by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
10079645, | Dec 31 2015 | Adtran, Inc. | Optical telecommunications devices, systems, and methods |
11387624, | Feb 04 2020 | Analog Devices International Unlimited Company | Resonant laser driver |
6021143, | Apr 21 1998 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Dynamic control for laser diode drivers |
6067307, | Jun 12 1998 | HANGER SOLUTIONS, LLC | Vertical cavity surface emitting laser driving circuit |
6433611, | Mar 24 2000 | SIGE SEMICONDUCTOR INC | Voltage level shifting circuit |
6483345, | Jun 23 1999 | CIENA LUXEMBOURG S A R L ; Ciena Corporation | High speed level shift circuit for low voltage output |
6490301, | Nov 30 1999 | Matsushita Electric Industrial Co., Ltd. | Laser drive device |
6510168, | Mar 06 2000 | NeoPhotonics Corporation | Laser diode drive circuit |
6535534, | Sep 10 2001 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Optical source driver with bias circuit for controlling output overshoot |
6597209, | Nov 02 1998 | Fujikura Ltd. | Semiconductor laser driving circuit |
6618406, | Jun 29 1998 | Kabushiki Kaisha Toshiba | Optical semiconductor diode driver circuit and optical tranceiver module |
6624917, | Oct 28 1999 | International Business Machines Corporation | Optical power adjustment circuits for parallel optical transmitters |
6667661, | May 04 2001 | Euvis, Inc. | Laser diode driver with high power efficiency |
6674774, | May 10 2000 | Maxlinear, Inc | Chopped laser driver for low noise applications |
6683896, | Nov 06 2000 | MICROSEMI STORAGE SOLUTIONS, INC | Method of controlling the turn off characteristics of a VCSEL diode |
6717968, | Nov 30 1999 | Matsushita Electric Industrial Co., Ltd. | Laser drive device |
6738401, | Oct 11 2001 | Google Technology Holdings LLC | High speed switching driver |
6759692, | Feb 04 2002 | Littelfuse, Inc | Gate driver with level shift circuit |
6760353, | Jul 30 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Jitter suppression techniques for laser driver circuits |
6778569, | Nov 15 2001 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Optical source driver with improved input stage |
6778571, | Sep 03 2001 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Laser driver circuit |
6792019, | Feb 28 2002 | Texas Instruments Incorporated | Driver with tail currents in discrete subranges |
6801556, | Nov 09 2001 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Optical source driver with output load detection circuit |
6810051, | Jan 22 2002 | Telefonaktiebolaget LM Ericsson (publ) | Apparatus and method for laser driver operation |
6816101, | Mar 08 2002 | INTERSIL AMERICAS LLC | High-speed analog-to-digital converter using a unique gray code |
6831520, | Nov 19 2001 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Amplifier circuit apparatus and method of EMI suppression |
6850546, | Jun 08 2001 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Driver circuit |
6897492, | Feb 04 2002 | Littelfuse, Inc | Power device with bi-directional level shift circuit |
6928094, | Dec 16 2002 | Intel Corporation | Laser driver circuit and system |
6931040, | Jun 20 2003 | Maxim Integrated Products, Inc. | System and method for using an output transformer for laser diode drivers |
6980575, | Mar 08 2001 | MUFG UNION BANK, N A | Topology on VCSEL driver |
7003007, | Jun 20 2003 | Maxim Integrated Products, Inc. | System and method for using an output transformer for packaged laser diode drivers |
7006543, | Aug 30 2002 | MOBIX LABS, INC | System and circuit for a multi-channel optoelectronic device driver |
7031357, | Oct 11 2001 | Google Technology Holdings LLC | High speed switching driver |
7035302, | Dec 13 2002 | LUMENTUM JAPAN, INC | Optical transmission module |
7035303, | Jul 30 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Jitter suppression techniques for laser driver circuits |
7035361, | Jul 15 2002 | INTERSIL AMERICAS LLC | Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding |
7050388, | Aug 07 2003 | INTERSIL AMERICAS LLC | Method and system for crosstalk cancellation |
7123676, | Nov 17 2003 | INTERSIL AMERICAS LLC | Method and system for antenna interference cancellation |
7142574, | May 21 2003 | Intel Corporation | Laser driver circuit and system |
7145928, | Aug 18 2003 | Maxim Integrated Products, Inc.; Maxim Integrated Products, Inc | Systems and methods for using cascoded output switch in low voltage high speed laser diode and EAM drivers |
7149256, | Mar 29 2001 | INTERSIL AMERICAS LLC | Multilevel pulse position modulation for efficient fiber optic communication |
7173551, | Mar 29 2001 | INTERSIL AMERICAS LLC | Increasing data throughput in optical fiber transmission systems |
7180921, | Jun 07 2001 | Science Research Laboratory, Inc. | Method and apparatus for driving laser diode sources |
7194012, | Apr 05 2004 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Laser driver circuit for externally modulated lasers |
7212580, | Feb 15 2002 | INTERSIL AMERICAS LLC | Multi-level signal clock recovery technique |
7215721, | Apr 04 2001 | INTERSIL AMERICAS LLC | Method and system for decoding multilevel signals |
7307569, | Mar 29 2001 | Quellan, Inc. | Increasing data throughput in optical fiber transmission systems |
7352824, | Mar 29 2001 | INTERSIL AMERICAS LLC | Multilevel pulse position modulation for efficient fiber optic communication |
7366244, | Nov 17 2003 | INTERSIL AMERICAS LLC | Method and system for antenna interference cancellation |
7391797, | Sep 14 2001 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Integrated circuit for controlling a laser diode |
7411986, | Mar 25 2004 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Optical system laser driver with a built in output inductor for improved frequency response |
7411987, | Jun 20 2003 | Maxim Integrated Products, Inc. | System and method for using an output transformer for laser diode drivers |
7502400, | Feb 05 2003 | Alcatel | Drive circuit and method of operating a semiconductor laser |
7522883, | Dec 14 2004 | INTERSIL AMERICAS LLC | Method and system for reducing signal interference |
7573966, | Jul 15 2003 | INTERSIL AMERICAS LLC | Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding |
7602860, | Mar 28 2002 | INTERSIL AMERICAS LLC | Method and system for decoding multilevel signals |
7616700, | Dec 22 2003 | INTERSIL AMERICAS LLC | Method and system for slicing a communication signal |
7626916, | Aug 07 2003 | INTERSIL AMERICAS LLC | Method and system for crosstalk cancellation |
7659776, | Oct 17 2006 | MONTEREY RESEARCH, LLC | Offset voltage correction for high gain amplifier |
7725079, | Dec 14 2004 | INTERSIL AMERICAS LLC | Method and system for automatic control in an interference cancellation device |
7729431, | Nov 17 2003 | INTERSIL AMERICAS LLC | Method and system for antenna interference cancellation |
7760781, | Apr 29 2008 | Integrated Device Technology, inc | Current control mechanism for low voltage applications |
7804760, | Aug 07 2003 | INTERSIL AMERICAS LLC | Method and system for signal emulation |
7934144, | Nov 12 2002 | INTERSIL AMERICAS LLC | High-speed analog-to-digital conversion with improved robustness to timing uncertainty |
8005430, | Dec 14 2004 | INTERSIL AMERICAS LLC | Method and system for reducing signal interference |
8036539, | Jun 28 2005 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Gigabit ethernet longwave optical transceiver module having amplified bias current |
8054128, | Apr 29 2008 | Integrated Device Technology, inc | Current control mechanism for low voltage applications |
8068406, | Jan 19 2006 | INTERSIL AMERICAS LLC | Method and system for crosstalk cancellation |
8125273, | Apr 23 2009 | Texas Instruments Incorporated | Apparatus and method for driving an LED |
8135350, | Dec 14 2004 | INTERSIL AMERICAS LLC | System for reducing signal interference |
8228962, | Jan 23 2009 | Nvidia Denmark ApS | Low power drive circuit |
8311168, | Feb 21 2006 | INTERSIL AMERICAS LLC | Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding |
8503940, | Dec 14 2004 | Quellan, Inc. | Reducing signal interference |
8576939, | Dec 22 2003 | INTERSIL AMERICAS LLC | Method and system for slicing a communication signal |
8605566, | Aug 07 2003 | INTERSIL AMERICAS LLC | Method and system for signal emulation |
8861560, | Nov 06 2012 | Fujitsu Limited | Vertical-cavity surface-emitting laser driver with improved output impedance |
9252983, | Apr 26 2006 | INTERSIL AMERICAS LLC | Method and system for reducing radiated emissions from a communications channel |
9520849, | Nov 16 2012 | Texas Instruments Incorporated | Rail-to-rail constant transconductance differential input stage |
Patent | Priority | Assignee | Title |
4709370, | Jun 17 1985 | L-3 Communications Corporation | Semiconductor laser driver circuit |
5563898, | Feb 28 1994 | Fujitsu Limited | Semiconductor laser drive |
5734668, | Oct 07 1992 | Diomed Limited | Laser diode drive circuit |
5736844, | Jul 28 1995 | NEC Corporation | Voltage controlled laser diode drive circuit |
5742133, | Sep 07 1995 | LANTIQ BETEILIGUNGS-GMBH & CO KG | Driver circuit for an led |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 30 1997 | LINK, GARRY N | Maxim Integrated Products, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008689 | /0606 | |
Jul 03 1997 | Maxim Integrated Products, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 13 2002 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 02 2002 | REM: Maintenance Fee Reminder Mailed. |
Oct 23 2002 | ASPN: Payor Number Assigned. |
Jun 22 2006 | ASPN: Payor Number Assigned. |
Jun 22 2006 | RMPN: Payer Number De-assigned. |
Oct 04 2006 | REM: Maintenance Fee Reminder Mailed. |
Mar 16 2007 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 16 2002 | 4 years fee payment window open |
Sep 16 2002 | 6 months grace period start (w surcharge) |
Mar 16 2003 | patent expiry (for year 4) |
Mar 16 2005 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 16 2006 | 8 years fee payment window open |
Sep 16 2006 | 6 months grace period start (w surcharge) |
Mar 16 2007 | patent expiry (for year 8) |
Mar 16 2009 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 16 2010 | 12 years fee payment window open |
Sep 16 2010 | 6 months grace period start (w surcharge) |
Mar 16 2011 | patent expiry (for year 12) |
Mar 16 2013 | 2 years to revive unintentionally abandoned end. (for year 12) |