A stationary exercising device which promotes cardiovascular exercise yet minimizes impact to critical joints. A base frame supports a pair of reciprocating members which are displaced in a horizontal direction parallel with the floor at one end yet reciprocate in a circular motion at the other end through a coupling system attached to the frame. Structure is included which permits each foot of the user to move in a generally elliptical path during the climbing exercise. This provides for more natural movement of the knee and ankle joints minimizing unnecessary stress on the joints yet permitting a cardiovascular workout. The device may include linkage to facilitate a corresponding upper body exercise involving movement of the arm in which case each hand of the user is displaced along an arc or a substantially elliptical path, again promoting a more natural movement of the ankle, knee, elbow and shoulder joints and permitting a cardiovascular workout.

Patent
   5924962
Priority
Jan 25 1995
Filed
Jun 18 1996
Issued
Jul 20 1999
Expiry
Jan 25 2015
Assg.orig
Entity
Large
70
36
all paid
12. An apparatus for exercising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a first end and a second end, a portion of said first and second reciprocating members being adapted for substantially linear motion;
a coupling member having (i) a pulley supported by said frame defining a pivot axis, and (ii) means for attaching said second ends of said first and second reciprocating members to said pulley so that rotation of said pulley results in orbital movement of said second ends of said first and second reciprocating members about said pivot axis while a portion of each of said first and second reciprocating members distal said second end of each first and second reciprocating members move in a reciprocating pattern on a generally horizontal support surface; and
first and second pivotal linkage assemblies operatively associated with a said respective first and second reciprocating member for orienting the bottom of the feet of the user of the apparatus so that each foot of the user follows a substantially elliptical path during operation of the apparatus.
9. An apparatus for exercising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a first end and a second end, a portion of said first and second reciprocating members being adapted for substantially linear motion;
a coupling member having (i) a pulley supported by said frame defining a pivot axis, and (ii) means for attaching said second ends of said first and second reciprocating members to said pulley so that rotation of said pulley results in orbital movement of said second ends of said first and second reciprocating members about said pivot axis while a portion of each of said first and second reciprocating members distal said second end of each first and second reciprocating members move in a reciprocating pattern; and
first and second pivotal linkage assemblies operatively connected with a respective first and second reciprocating member at a location intermediate the first and second ends of said reciprocating member for orienting the bottom of the feet of the user of the apparatus so that each foot of the user follows a substantially elliptical path during operation of the apparatus.
1. An exercising device comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a first end and a second end;
a coupling member having (i) a pulley supported by said frame defining a pivot axis, and (ii) means for attaching said second ends of said first and second reciprocating members to said pulley so that rotation of said pulley results in orbital movement of said second ends of said first and second reciprocating members about said pivot axis while a portion of each of said first and second reciprocating members distal said second end of each of said first and second reciprocating member moves in a reciprocating pattern;
first and second linkage assemblies, said first linkage assembly pivotally connected proximate one end to said first reciprocating member proximate said first end of said first reciprocating member, and said first linkage assembly having a foot pad, said second linkage assembly pivotally connected proximate one end to said second reciprocating member proximate said first end of said second reciprocating member, and said second linkage assembly having a foot pad, each linkage assembly being pivotally attached at its other end to said frame member,
wherein each foot of the user follows a substantially elliptical path.
5. An exercising device comprising:
a frame having a base portion adapted to be supported by a floor;
a first linkage assembly having a first reciprocating member and a first foot contact member, said first reciprocating member having a first end and a second end, said first end of said first reciprocating member being adapted for reciprocating movement, said first foot contact member having a first end and a second end and pivotally attached proximate said first end of said first foot contact member to said first reciprocating member proximate said first end of said first reciprocating member;
a second linkage assembly having a second reciprocating member and a second foot contact member, said second reciprocating member having a first end and a second end, said first end of said second reciprocating member being adapted for reciprocating movement, and said second foot contact member having a first end and a second end and pivotally attached proximate said first end of said second foot contact member to said second reciprocating member proximate said first end of said second reciprocating member; and
a coupling member having a pulley connected to said frame defining a pivot axis and means for attached said second ends of said first and second reciprocating members to said pulley so that rotation of said pulley results in orbital movement of said second ends of said reciprocating members about said pivot axis,
wherein during operation of the device, each foot of the user follows a substantially elliptical path.
13. An apparatus for exercising comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a first end and a second end, a portion of said first and second reciprocating members adapted for substantially linear motion;
a coupling member having (i) a pulley supported by said frame defining a pivot axis, and (ii) means for attaching said second ends of said first and second reciprocating members to said pulley so that rotation of said pulley results in orbital movement of said second ends of said first and second reciprocating members about said pivot axis while a portion of each of said first and second reciprocating members distal said second end of said first and second reciprocating members moves in a reciprocating pattern;
first and second pivotal linkage assemblies operatively associated with said reciprocating members for orienting the bottom of the feet of the user of the apparatus so that each foot of the user follows a substantially elliptical path during operation of the apparatus;
said first linkage assembly comprising a first link and a second link, one end of said first link of said first linkage assembly being pivotally attached proximate said one end between said first and second ends of said first reciprocating member, and said second link of said first linkage assembly being pivotally connected at one end to the other end of said first link and pivotally connected proximate the other end of said second link to said frame; and
a second linkage assembly comprising a first link and a second link, one end of said first link of said second linkage assembly being pivotally attached proximate said one end of said first link of said second linkage assembly between said first and second ends of said second reciprocating member, and said second link of said second linkage assembly being pivotally connected at one end to the other end of said first link of said second linkage assembly and pivotally connected proximate the other end of said second link to said frame;
said second links of said first linkage assembly and said second linkage assembly having a handle portion proximate said other ends so that the user of said apparatus may grip the handle portions during use of the apparatus enabling a substantially arcuate movement of said hand portions.
2. The exercising device according to claim 1 wherein said coupler member attaching means comprises:
a first element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said first reciprocating member; and
a second element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said second reciprocating member.
3. The exercising device according to claim 1 wherein said frame further comprises a top portion adapted to provide hand support for the user of the device.
4. The exercising device according to claim 1 wherein each reciprocating member includes means for enabling said first ends of said reciprocating members to contact said base portion.
6. The exercising device according to claim 5 wherein said coupler member attaching means comprises:
a first element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said first reciprocating member; and
a second element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said second reciprocating member.
7. The exercising device according to claim 5 wherein said frame further comprises a top portion adapted to provide hand support for the user of the device.
8. The exercising device according to claim 5 further comprising means for rotatably attaching said first and second foot contact members to said frame enabling the longitudinal movement of said foot contact members relative to said frame.
10. The exercising device according to claim 9 wherein said coupler member attaching means comprises:
a first element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said first reciprocating member; and
a second element attached at one end to said pulley proximate said pivot axis and at its other end to said second end of said second reciprocating member.
11. The exercising device according to claim 9 wherein said frame further comprises a top portion adapted to provide hand support for the user of the device.

The present application is a continuation of application Ser. No. 08/377,846 filed Jan. 25, 1995 for Stationary Exercise Apparatus, now U.S. Pat. No. 5,573,480.

1. Field of the Invention

The present invention relates to an improved stationary exercising apparatus. More particular, the invention relates to an improved exercising apparatus which enables the user to move his feet in an elliptical path more accurately representing the body motion associated with climbing stairs or an inclined ramp.

2. Description of the Prior Art

Stair climbing is a popular form of exercise for the cardiovascular system. However, it can over prolonged use overstress the knees. Walking is also a popular form of exercise but it does not load the cardiovascular system to the extent stair climbing does. Therefore, the need exists for an improved stationary exercising device which will load the cardiovascular system as stair climbing does but does not overload or unduly stress the knees and other joints. Prior art stair climbing devices have two common draw backs. First, they require excessive lifting of the knees or an exaggerated vertical movement of the lower legs. See, for example, U.S. Pat. Nos. 3,316,898; 4,949,993; 4,989,857; and 5,135,477. Alternatively, the devices which do tend to promote a more natural movement of the knees and ankles are difficult to ascend and descend because of the configuration of the devices. See, for example, U.S. Pat. No. 5,242,343.

In addition, the need exists for a more rhythmic movement of the hand motions in combination with a stair climbing exercise to accelerate a cardiovascular workout and exercise the upper body muscle groups without unduly overstressing the elbows and shoulders. Hence, the need exists for an improved stationary exercise device which can combine the movements of the feet and hands in a more natural and rhythmic motion.

Briefly, the invention relates to an improved stationary exercising device. A frame is provided which includes a base portion adapted to be supported by the floor, a mid portion and a top portion. A coupling member is attached to the frame which includes a pulley defining a pivot axis. Two reciprocating members are positioned in spaced relationship to the base portion of the frame. One end of each reciprocating member is adapted for linear movement substantially parallel with the floor. That end of each of the reciprocating member being linearly displaced may contact the base portion or it may slide directly on the floor. The other end of each reciprocating member is attached, directly or indirectly, to the pulley of the coupling member. In this manner, rotation of the pulley causes one end of each reciprocating member to orbit while the other end of each reciprocating member moves in a linear manner. Means are also included for orienting the bottom of each foot of the user so that each foot follows a substantially elliptical path during the operation of the apparatus.

Such means for orienting the bottom of the foot may include a linkage assembly for each reciprocating member. Each such linkage assembly comprises at least one link which is pivotally connected proximal one end between the two ends of the reciprocating member, closest to the end that is being displaced along the floor. This additional linkage is restrained at its other end within the base portion of the frame permitting the second end of the link only to move substantially parallel with the floor or base as is the case for the first and of each reciprocating member.

In the preferred embodiment, each linkage assembly includes a second link which is pivotally connected to the second end of the first link. The second link is then pivotally restrained to the top portion of the frame proximate its other end. This second link also provides for hand movement.

In another alternate embodiment, each linkage assembly includes a single member which is pivotally supported proximal one end to the reciprocating member closest to the end moving substantially parallel with the floor or base and is vertically restrained proximal its other end to the base portion of the frame.

In yet another alternate embodiment, each linkage assembly includes a single member having a foot contact portion and an elongated portion. One end of the single member is pivotally attached proximal the foot portion to a reciprocating member proximal the first end of the reciprocating member. The single member is then laterally restrained proximal its distal end to the top portion of the frame permitting a substantially elliptical movement of the foot portion with the reciprocating member yet limiting displacement of the upper portion to a rotational or angular movement coupled with the longitudinal movement of the upper portion relative to the frame.

In yet a further alternate embodiment, the means for providing substantially elliptical movement includes a pair of wedge members. One wedge member being attached to each reciprocating member proximal the first end of said reciprocating member being linearly displayed substantially parallel with the floor.

In yet another embodiment of the previous alternate embodiment, a linkage assembly is provided for each reciprocating member comprising two links, a first link being attached at one end to the first end of the reciprocating member being linearly displaced substantially parallel with the floor. The second end of the first link is pivotally attached to the first end of the second link. The second link is pivotally attached proximal to its other end to the top portion of the frame, and the other end of the second link includes a handle portion.

The more important features of this invention have been summarized rather broadly in order that the detailed description may be better understood. There are, of course, additional features of the invention which will be described hereafter and which will also form the subject of the claims appended hereto.

In order to more fully describe the drawings used in the detailed description of the present invention, a brief description of each drawing is provided.

FIG. 1 is an elevation view of the preferred embodiment of the present invention.

FIG. 2 is a plan view of the preferred embodiment of the present invention.

FIG. 3 is an elevation view of an alternate embodiment of the present invention.

FIG. 4 is an elevation view of another alternate embodiment of the present invention.

FIG. 5 is an elevation view of yet another alternate embodiment of the present invention.

FIG. 6 is an elevation view of yet a further alternate embodiment of the present invention.

Referring to FIGS. 1 and 2, a frame 10 is shown comprising a base portion 12, a mid portion 14, and a top portion 16. Referring briefly to FIG. 2, the frame 10 comprises two bottom portions 12a and 12b, two mid portions 14a and 14b, and two top portions 16a and 16b. In essence, the frame is comprised of two separate bents "a" and "b". obviously, variations can be made to frame 10 as disclosed without departing from the spirit of the invention.

A coupling system 20 is fixed relative to the frame and comprises a pulley 22, crank members 24, resistant brake 23, sheave 28 and belt 30. Two reciprocating members 32 are positioned in the lower proximity of frame 10. Each reciprocating member 32 has one end 34 which is adapted to move laterally in a linear direction as shown in FIG. 1. A roller 36 is mounted at each end 34 of reciprocating member 32 and is adapted, as shown in FIG. 1, to ride on base portion 12 of frame 10. Alternatively, roller 36 may directly engage the floor, if desirable. The other end 38 of each reciprocating member 32 is pivotally connected to one end of a crank 24. The pivotal connection at end 38 may be through a pivotal connection member 25 (see FIG. 2) which extends between the other ends 38 of reciprocating members 32 and cranks 24. The other end of crank 24 is attached to pulley 22 at the pivot axis 26 of the coupling system 20. The pivot axis 26 is the axis about which pulley 22 rotates.

In the preferred embodiment, the present invention also includes two foot members, or contact members, 40. Each foot member 40 is pivotally attached proximate a first end 42 through a pinned connection 44 to the reciprocating arm 32. A foot pad 50 is attached to the top surface of each foot member 40 at its first end 42. Each foot member 40 is pivotally attached at its other end 46 to an arm member 48. Each arm member 48 is also pivotally attached proximal its other end to the top portion 16 of frame 10. A handle portion 47 (see FIG. 2) is included at the top end 49 of each hand member 48. Referring to FIG. 2, it can be easily seen that the frame 10 comprises dual base portions 12A/12B, mid portions 14A/14B and top portions 16A/16B. Furthermore, it can be seen that reciprocating members 32, foot members 40 and arm members 48 provide identical dual systems; each system resting on a base portion 12A or 12B of the frame and each arranged to accommodate one foot and one arm of the user.

In the operation of the preferred embodiment the user "U" can ascend the present invention from the back or the sides which facilitate its use. In some prior art disclosures ascending and descending is difficult and cumbersome due to the location of the pulleys and other structures. So, for example, U.S. Pat. No. 5,242,343. However, in the case of the present invention it is easy to ascend and descend the device as there is a minimal amount of interference in the structure during exercise activity.

During operation, a climbing motion by the user results in the displacement of first ends 34 of each reciprocating member 32 in the direction of arrow 100. Similarly, an orbiting motion which in the preferred embodiment is a circulating motion occurs at the second end 38 of each reciprocating member 32. However at points between the opposite ends 34 and 38 of each reciprocating member 32, the motion gradually changes from a circular motion (at ends 38) to a linear motion the ends 34. This geometric transition occurs in the form of an approximate ellipse. It is not a perfect elliptical shape; and it tends to be slightly more egg-shaped. However, it provides a more natural and rhythmic body movement.

It appears that the preferred location of pinned connection 44 relative to the length of the reciprocating member 32 is in that 1/3 portion closest to the first end 34 of each reciprocating member 32. It is in this range that the movement of each foot of the user follows an elliptical path (as shown by approximate ellipse 102) which is the more natural and comfortable geometric motion of the ankle and knees, minimizing stress on these joints yet permitting continued cardiovascular exercise. During operation, the upper end 49 of each arm member 48 moves in an arc as shown by arrow 104. Such permits hand/arm/shoulder movements for exercising the upper body muscle groups while continuing the cardiovascular exercise.

Resistant brake 26 of coupling system 20 operates in a manner well known to those skilled in the art. Resistant brake 26 serves to increase or decrease the load on the pulley through the sheave 28/belt 30 arrangement. Thus, resistant brake 26 serves to increase or decrease the extent of the cardiovascular workout.

Referring now to FIG. 3, an alternate embodiment of the present invention is shown. Identical two-digit reference numerals will be used to designate similar structure found in the preferred embodiment but with a 100 series prefix. Frame 110 comprises a lower portion 116, a mid portion 114, and a top portion 116. A coupling system 120 is included having identical components of the coupling system 20 described above for the preferred embodiment. Furthermore, coupling system 120 performs in an identical manner to coupling system 20 described above for the preferred embodiment.

A pair of reciprocating members 132 are also included, each having a first end 134 on which rollers 136 are mounted. The second end 138 of each reciprocating member 132 is pivotally connected via a pinned connection or pin member 125 to one end of each crank 124. Again, two foot members 140 are included, each being pivotally connected proximate a first end 142 at pinned connection 144 to a corresponding reciprocating member 132. Each foot member 140 also includes a foot pad 150 attached to the top surface of each foot member 140 at first end 142. In this embodiment, however, a roller 146 is attached to each foot member 140 at its second end 145. Each roller 146 engages a top bar 113 of frame 110. Each top bar 113 is connected at one end to mid portion 114 of frame 110 and its other end to base portion 112. In addition, the top portion 116 of each bent of frame 110 is connected by a bar 147 which is adapted to be held by the user during exercising to provide added stability.

In the operation of this alternate embodiment, the user ascends the device from the side or the rear with ease, places both feet on pads 150, grabs bar 147 and begins a stair climbing motion. At that point, first ends 134 of each foot member 140 are displaced in a linear manner in the direction of arrow 200, as in the case of the preferred embodiment. Similarly, as in the case of the preferred embodiment, ends 138 of each reciprocating member 132 move in a circular motion about pulley 122. Again, the change from a linear movement of first ends 134 of reciprocating members 132 and a circular movement of second end 138 of reciprocating member 132 is an approximate ellipse of varying shape. In this alternate embodiment, the second end 145 of each foot member 140 is restrained also to move linearly in the direction of arrow 200. Each roller 146 is restrained from vertical movement by means of bar 113. Thus, in this embodiment, the user does not employ an arm member as shown on the preferred embodiment. Rather, the user grabs the bar 147 for added stability.

Referring now to FIG. 4, another alternate embodiment of the present invention is shown. As before, similar parts will be designated by the same two-digit reference numeral as shown in the preferred embodiment but now with a 200 series prefix. Frame 210 again comprises a base portion 212, a mid portion 214 and a top portion 216. A coupler system 220 is also provided which is identical in structure and function to coupling system 20 of the preferred embodiment (FIGS. 1-2). This alternate embodiment also includes a pair of reciprocating members 232, each having a first end 234 which moves linearly in the direction of arrow 300 by means of rollers 236. As in the case of the previous embodiments, rollers 236 are shown engaging bottom portion 212 of the frame; however, they may slide along the floor rather than the base of the frame. Similarly, each reciprocating member 232 includes a second end 238 pivotally attached to one end of a crank 224. In this alternate embodiment two contact members 240 are included having a foot portion 250 angularly displaced from a longitudinal portion 251. Each contact member 240 is pivotally connected at a first end 242 via pinned connection 244 to a reciprocating member 232. This alternate embodiment also includes a sleeve 260 rotatably mounted to the top portion 216 of frame 210. Each sleeve 260 serves to laterally restrain longitudinal member 251 of contact member 240 permitting only axial (or longitudinal) movement of member 251 relative to sleeve 260 and angular movement of member 251 relative to the top portion 216 of frame 210.

In operation the user ascends the device from the side or the rear and begins the climbing motion using his feet engaging foot portions 250. The upper portion of each longitudinal member 251 includes a handle portion 247 which can be grabbed by the user. As in the case of the previous embodiments, the climbing motion results in a lateral or linear displacement of first ends 234 of each reciprocating member 232 in the direction of arrow 300. However, movement of the user's hands via handle portions 247 is not in an arc as described above with respect to the preferred embodiment or stationary as in the case of the first alternate embodiment. Rather, the path which the hands of the user takes in this alternate embodiment follows a generally elliptical path 304 as do the feet (see approximate elliptical path 302). Thus, this embodiment provides a more extensive cardiovascular exercise in that both upper and lower body motion occurs in a more natural and rhythmic pattern minimizing excessive stress on the ankle, knee, elbow, and shoulder joints.

Referring now to FIGS. 5 and 6, two further embodiments are shown. As in the case of the previous embodiments, similar structure will be referred with the same two-digit reference numeral but with a different prefix. In the case of FIG. 5, the designated structure has a 400 series prefix and in the case of FIG. 6, the designated structure has a 500 series prefix.

Referring to FIG. 5, the frame 410 comprises a bottom portion 412, a mid portion 414 and a top portion 416. A coupler system 420 is shown which includes the same components and functions identically with the coupling system 20 of the preferred embodiment. Two reciprocating members 432 are included, each having a first end 434 to which a roller 436 is attached. The other end 438 of each reciprocating member 432 is pivotally connected to one end of a crank 424 of coupling system 420. The upper portion 416 of frame 410 includes a bar 447 to be grabbed by the user for stability. A wedge or block 440 is attached to the top of each reciprocating member 432 proximate its first end 434. Each block includes a foot pad 450.

As in the case of previous embodiments, the user ascends the device from the side or rear and begins a stair climbing motion by pressing downwardly on each foot pad 450. In this manner the first end 434 of each reciprocating member 432 is linearly displaced in the direction of arrow 400 and end 438 of each reciprocating member 432 is rotated about the pivot axis of 426 of coupling system 420. As in the previous embodiments, such a configuration permits each foot of the user to follow an elliptical path generally shown by approximate ellipse 402.

Referring now to FIG. 6, an alternate embodiment of the version depicted in FIG. 5 is illustrated. Frame 510 comprises base portion 512, mid portion 514 and top portion 516. Once again, a coupling system 520 is shown identical to that in structure and function of coupling system 420 in FIG. 5. Moreover, reciprocating members 532 and wedge members 540 and their interrelationship to coupling system 520 are identical to that depicted by elements 432, 440 and 420, respectively, of FIG. 5.

As in the case of the previous embodiments, operation of the device shown in FIG. 6 results in linear movement of first ends 534 of reciprocating members 532 in the direction of arrow 500. The difference in this alternate embodiment, however, is a pair of linkage assemblies (one for each reciprocating member 532) comprising a first link 547 and a second link 548. One end of link 547 is attached to roller 536 of each reciprocating member 532. First link 547 is pivotally connected at pinned connection 546 to second link 548. Second link 548 is pivotally connected proximate its other end to the top potion 516 of frame 510. The end of second link 548 distal said pinned connection 546 includes a handle portion similar to handle portion 47 of FIG. 2. As in the case of the embodiment shown in FIG. 5, the user of the device shown in FIG. 6 easily ascends the device from the side or the rear, grabs the handle portion and begins to exert downward pressure on the foot pad portions of each wedge or block 540 in a stair climbing motion. As in the previous embodiments, this results in a smooth substantially elliptical motion of each foot of the user as shown by approximate ellipse 502. It also results in the exercising of certain muscle groups in the upper body through rotation of the hands along the arc in the direction of arrow 504.

An improved stationary exercising device is disclosed in the foregoing preferred and alternate embodiments which maximizes cardiovascular exercise yet minimizes stress on critical joints. Obviously, modifications and alternations to the embodiments disclosed herein will be apparent to those skilled in the art in view of this disclosure. However, it is intended that all such variations and modifications fall within the spirit and scope of this invention as claimed.

Rodgers, Jr., Robert E.

Patent Priority Assignee Title
10201727, Mar 30 2001 BOWFLEX INC Exercise machine
10369403, Nov 04 2005 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
10493349, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Display on exercise device
10625114, Nov 01 2016 ICON PREFERRED HOLDINGS, L P Elliptical and stationary bicycle apparatus including row functionality
10625137, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Coordinated displays in an exercise device
10814160, Nov 04 2005 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
10960261, Nov 04 2005 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
11529544, Nov 04 2005 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
6440046, Nov 17 1998 ALTIMATE MEDICAL, INC Disabled user lift system
6575877, Jul 23 1998 Core Industries, LLC Exercise trainer with interconnected grounded movement
6626802, Dec 22 1999 Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
6689019, Mar 30 2001 BOWFLEX INC Exercise machine
6908416, Jul 23 1998 Core Industries, LLC Exercise and therapeutic trainer
7025710, Jul 23 1998 Core Industries, LLC Elliptical exercise device and arm linkage
7097593, Aug 11 2003 BOWFLEX INC Combination of treadmill and stair climbing machine
7137927, Jun 30 1995 Exercise methods and apparatus
7169088, Jun 06 2003 Compact variable path exercise apparatus
7169089, Jul 06 2003 Compact variable path exercise apparatus with a relatively long cam surface
7172531, Jun 06 2003 Variable stride exercise apparatus
7179201, Jun 06 2003 Variable stride exercise apparatus
7201705, Jun 06 2003 Exercise apparatus with a variable stride system
7214168, Jun 06 2003 Variable path exercise apparatus
7244217, Jun 06 2003 Exercise apparatus that allows user varied stride length
7267637, Jul 23 1998 Core Industries, LLC Exercise and therapeutic trainer
7267638, Oct 31 2005 Pace-adjusting mechanism of an elliptical cross trainer
7270626, Jan 23 2004 Octane Fitness, LLC Exercise equipment with automatic adjustment of stride length and/or stride height based upon direction of foot support rotation
7341542, Mar 30 2001 BOWFLEX INC Exercise machine
7344480, Jun 30 1995 Exercise methods and apparatus
7361122, Feb 18 2004 Octane Fitness, LLC Exercise equipment with automatic adjustment of stride length and/or stride height based upon speed of foot support
7438671, Dec 29 2006 Manual pace-adjusting mechanism of an elliptical cross trainer
7448986, Feb 18 2004 Octane Fitness, LLC Exercise equipment with automatic adjustment of stride length and/or stride height based upon the heart rate of a person exercising on the exercise equipment
7462134, Jun 23 2003 BOWFLEX INC Variable stride exercise device
7544152, Jul 30 2004 Core Industries, LLC Linkage based exercise machine
7614639, Oct 12 2004 Invacare Corporation Modular standing frame
7618350, Jun 04 2007 ICON PREFERRED HOLDINGS, L P Elliptical exercise machine with adjustable ramp
7654936, May 15 2006 Johnson Health Tech Stationary exercise apparatus
7658698, Aug 02 2006 Icon IP, Inc Variable stride exercise device with ramp
7666122, Jul 18 2005 Core Industries, LLC Elliptical exercise machine
7670266, Jul 30 2004 Core Health & Fitness, LLC Articulating linkage exercise machine
7674205, May 08 2007 ICON PREFERRED HOLDINGS, L P Elliptical exercise machine with adjustable foot motion
7682290, Nov 04 2005 Johnson Health Tech Stationary exercise apparatus
7717828, Aug 02 2006 ICON HEALTH & FITNESS, INC Exercise device with pivoting assembly
7722505, May 15 2006 JOHNSON HEALTH TECH CO , LTD ; Johnson Health Tech Stationary exercise apparatus
7731634, Feb 09 2005 Precor Incorporated Elliptical exercise equipment with stowable arms
7736278, Jun 23 2003 BOWFLEX INC Releasable connection mechanism for variable stride exercise devices
7736279, Feb 20 2007 ICON PREFERRED HOLDINGS, L P One-step foldable elliptical exercise machine
7740563, Aug 11 2004 ICON PREFERRED HOLDINGS, L P Elliptical exercise machine with integrated anaerobic exercise system
7744508, May 15 2006 JOHNSON HEALTH TECH CO , LTD Stationary exercise apparatus
7758473, Jun 23 2003 BOWFLEX INC Variable stride exercise device
7766797, Jun 16 2005 ICON PREFERRED HOLDINGS, L P Breakaway or folding elliptical exercise machine
7775940, Jun 16 2005 ICON PREFERRED HOLDINGS, L P Folding elliptical exercise machine
7785235, Jun 23 2003 BOWFLEX INC Variable stride exercise device
7811206, Jul 06 2007 Elliptical exercise device
7909740, Aug 11 2004 ICON HEALTH & FITNESS, INC Elliptical exercise machine with integrated aerobic exercise system
7972248, May 15 2006 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
7976435, May 15 2006 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
7985165, May 12 2010 Strength Master Fitness Tech. Co., Ltd. Elliptical exercise machine
8062187, Jun 23 2003 BOWFLEX INC Releasable connection mechanism for variable stride exercise devices
8062188, May 12 2010 Strength Master Fitness Tech Co., Ltd. Elliptical exercise machine
8092349, Nov 04 2005 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
8104835, Jul 08 2008 ALTIMATE MEDICAL, INC Standing frame with supine mode
8123664, Jan 22 2008 ALTIMATE MEDICAL, INC Seat
8323155, Mar 30 2001 BOWFLEX INC Exercise machine
8388505, Jan 22 2008 ALTIMATE MEDICAL, INC Seat
8403815, Nov 04 2005 JOHNSON HEALTH TECH CO , LTD Stationary exercise apparatus
8567808, Oct 12 2004 Altimate Medical, Inc. Modular standing frame
8858403, Mar 30 2001 BOWFLEX INC Exercise machine
9079089, Jan 22 2008 ALTIMATE MEDICAL, INC Seat
9272182, Mar 30 2001 BOWFLEX INC Exercise machine
9339684, Nov 04 2005 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
Patent Priority Assignee Title
219439,
2603486,
3316898,
3432164,
3759511,
4053173, Mar 23 1976 Bicycle
4188030, Oct 18 1976 BOWFLEX INC Cycle exerciser
4379566, Jan 26 1981 Creative Motion Industries, Inc. Operator powered vehicle
4456276, Apr 15 1981 Bicycle assembly
4509742, Jun 06 1983 BOWFLEX INC Exercise bicycle
4555109, Sep 14 1983 Exercising machine
4561318, Oct 05 1981 Lever power system
4645200, May 28 1985 Isometric exercising device
4679786, Feb 25 1986 Mettler Electronics Corporation Universal exercise machine
4720093, Jun 18 1984 Del Mar Avionics Stress test exercise device
4869494, Mar 22 1989 Exercise apparatus for the handicapped
4900013, Jan 27 1988 Mettler Electronics Corporation Exercise apparatus
4949954, May 04 1989 Jointed bicycle-simulation device for isometric exercise
4949993, Jul 31 1989 Laguna Tectrix, Inc. Exercise apparatus having high durability mechanism for user energy transmission
4989857, Jun 12 1990 Stairclimber with a safety speed changing device
5039087, May 11 1990 Power stairclimber
5039088, Apr 26 1990 Exercise machine
5131895, Jan 27 1988 Mettler Electronics Corporation Exercise apparatus
5135447, Oct 21 1988 Brunswick Corporation Exercise apparatus for simulating stair climbing
5186697, Jan 31 1989 Bi-directional stair/treadmill/reciprocating-pedal exerciser
5242343, Sep 30 1992 THE LARRY D MILLER TRUST, LARRY D MILLER AND MARY L MILLER TRUSTEES, DTD 06-12-98 Stationary exercise device
5290211, Oct 29 1992 STEARNS TECHNOLOGIES, INC Exercise device
5295928, Jan 31 1989 Bi-directional stair/treadmill/reciprocating-pedal exerciser
5299993, Dec 01 1992 STEARNS TECHNOLOGIES, INC Articulated lower body exerciser
5383829, Sep 30 1992 THE LARRY D MILLER TRUST, LARRY D MILLER AND MARY L MILLER TRUSTEES, DTD 06-12-98 Stationary exercise device
5401226, Oct 29 1992 Stearns Technologies, Inc. Exercise device
5423729, Aug 01 1994 Collapsible exercise machine with arm exercise
5527246, Apr 19 1995 BOWFLEX INC Mobile exercise apparatus
5540637, Jan 25 1995 BOWFLEX INC Stationary exercise apparatus having a preferred foot platform orientation
5573480, Jan 25 1995 BOWFLEX INC Stationary exercise apparatus
DE2919494,
/////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 18 1996CCS Fitness, Inc.(assignment on the face of the patent)
Jun 23 1998CCS, LLCCCS FITNESS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092570602 pdf
Feb 12 2002CCS FITNESS, INC RODGERS JR , ROBERT E ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0126310375 pdf
Jul 06 2006RODGERS JR , ROBERT E NAUTILUS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0180260801 pdf
Oct 05 2007NAUTILUS, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTNOTICE OF GRANT OF SECURITY INTEREST0200980682 pdf
Jan 16 2008NAUTILUS, INC BANK OF AMERICA, N A SECURITY AGREEMENT0205250445 pdf
Jan 16 2008DASHAMERICA, INC BANK OF AMERICA, N A SECURITY AGREEMENT0205250445 pdf
Dec 29 2009BANK OF AMERICA, N A DASHAMERICA, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0238820981 pdf
Dec 29 2009BANK OF AMERICA, N A NAUTILUS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0238820981 pdf
Jan 26 2010BANK OF AMERICA, N A NAUTILUS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0238920032 pdf
Mar 05 2010NAUTILUS, INC BANK OF THE WESTSECURITY AGREEMENT0241030691 pdf
Nov 30 2015BANK OF THE WESTNAUTILUS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0372310613 pdf
Oct 17 2023NAUTILUS, INC BOWFLEX INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0658200610 pdf
Date Maintenance Fee Events
Dec 18 2002M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 03 2006STOL: Pat Hldr no Longer Claims Small Ent Stat
Jan 22 2007M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 26 2011M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jan 26 2011M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Jul 20 20024 years fee payment window open
Jan 20 20036 months grace period start (w surcharge)
Jul 20 2003patent expiry (for year 4)
Jul 20 20052 years to revive unintentionally abandoned end. (for year 4)
Jul 20 20068 years fee payment window open
Jan 20 20076 months grace period start (w surcharge)
Jul 20 2007patent expiry (for year 8)
Jul 20 20092 years to revive unintentionally abandoned end. (for year 8)
Jul 20 201012 years fee payment window open
Jan 20 20116 months grace period start (w surcharge)
Jul 20 2011patent expiry (for year 12)
Jul 20 20132 years to revive unintentionally abandoned end. (for year 12)