The catheters in a family thereof in which each of the catheters has substantially the same configuration and adapted to perform the same function, but in which the catheters in the family differ from each other in at least one respect, are provided with radiographically distinguishable indicia by which each of the members of the family can be distinguished from the others by direct observation of its radiographic image.

Patent
   5944712
Priority
Mar 02 1992
Filed
Oct 31 1996
Issued
Aug 31 1999
Expiry
Mar 02 2012
Assg.orig
Entity
Large
97
20
EXPIRED
1. A family of radiographically distinguishable catheters comprising:
a plurality of catheters having substantially the same configuration,
the catheters in the family differing from each other in at least one respect;
a coded self-referencing pattern of radiographically distinguishable radiopaque indicia associated with each catheter in the family,
the indicia on each catheter in the family being different than the indicia on other catheters in the family,
the identity of an individual catheter in the family being unique and readily determinable by observing a radiographic image of that catheter.
26. A catheter that is one of a family of a plurality of catheters having substantially the same configuration, said individual catheter differing from the other catheters in the family in at least one respect, each of the catheters in the family having a pattern of radiographical distinguishable radiopaque indicia, said catheter comprising:
a pattern of radiographic indicia on said individual catheter being different than the radiographic indicia on the other catheters in the family, said difference in the indicia providing a coded self-referencing radiographically distinguishable pattern by which the identity of the individual catheter can be readily determined by observing a radiographic image of that individual catheter.
19. A system for identifying catheters comprising:
a family of catheters, the individual catheters in the family having substantially the same configuration, and differing from each other in at least one respect; and
a coding system comprising:
a coded self-referencing pattern of radiographically distinguishable radiopaque indicia disposed upon each individual catheter in the family;
the indicia disposed upon each individual catheter in the family being different than the indicia disposed upon other individual catheters in the family;
the indicia being indicative of the at least one differing respect of an individual catheter in the family;
the differing respect of an individual catheter in the family being unique and readily determinable by observing a radiographic image of that catheter.
14. In a family of catheters, the individual catheters in the family having substantially the same configuration, and differing from each other in at least one respect, a coding system for distinguishing among the individual catheters in the family comprising:
a coded self-referencing pattern of radiographically distinguishable radiopaque indicia disposed upon each individual catheter in the family;
the indicia disposed upon each individual catheter in the family being different than the indicia disposed upon other individual catheters in the family;
the indicia being indicative of the at least one differing respect of an individual catheter in the family;
the differing respect of an individual catheter in the family being unique and readily determinable by observing a radiographic image of that catheter.
2. The family of catheters as defined in claim 1 wherein said catheters include in their structure a braided tubular element formed from a plurality of helically arranged filaments extending along the length of the catheter, the family of catheters including catheters with different dimensions;
said radiographically distinguishable radiopaque indicia comprising at least one filament in each catheter in the family being formed from a highly radiopaque material that is radiographically visible, the catheters with different dimensions in the family of catheters having different numbers of said radiopaque filaments.
3. The family of radiographically distinguishable catheters as defined in claim 1 wherein the at least one respect is a size of a catheter.
4. The family of radiographically distinguishable catheters as defined in claim 1 wherein the identity of an individual catheter in the family of catheters may be readily determined by observation of a radiographic image of that catheter without reference to any dimension of the radiographic image.
5. The family of radiographically distinguishable catheters as defined in claim 1 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of any physical dimension of an individual catheter in the family of catheters.
6. The family of radiographically distinguishable catheters as defined in claim 1 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of a size of an individual catheter in the family of catheters.
7. The family of catheters of claim 1 whereby the respect in which the catheters in the family differs comprises at least one dimension of the catheter.
8. The family of catheters as defined in claim 1 in which the catheters differ dimensionally from each other and wherein said radiographically distinguishable radiopaque indicia comprises radiopaque bands carried by the catheters, dimensionally different of said catheters having radiographically distinguishable bands.
9. The family of catheters as defined in claim 8 wherein at least some of said radiopaque bands completely encircle the catheter shaft.
10. The family of catheters as defined in claim 8 wherein at least some of said radiopaque bands partly encircle a portion of the catheter.
11. The family of catheters as defined in claim 1 wherein said radiographically distinguishable indicia comprises stripes formed on a catheter, the stripes of different catheters in the family being of different lengths.
12. The family of catheters as defined in any one of claims 1, 2, 8-11 wherein the catheters in the family comprise guide catheters.
13. The family of catheters as defined in any one of claims 1, 2, 8-11 wherein the catheters in the family comprise balloon catheters.
15. In a family of catheters as defined in claim 14, wherein said catheters include in their structure a braided tubular element formed from a plurality of helically arranged filaments extending along the length of the catheter;
said self-referencing pattern of radiographically distinguishable radiopaque indicia comprising at least one filament in each catheter in the family being formed from a highly radiopaque material that is radiographically visible, the catheters in the family of different respects having different numbers of said radiopaque filaments.
16. The coding system as defined in claim 14 wherein the identity of an individual catheter in the family of catheters may be readily determined by observation of a radiographic image of that catheter without reference to any dimension of the radiographic image.
17. The coding system as defined in claim 14 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of any physical dimension of an individual catheter in the family of catheters.
18. The coding system as defined in claim 14 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of a size of an individual catheter in the family of catheters.
20. The system as defined in claim 19 wherein the catheters in the family comprise guiding catheters.
21. The system as defined in claim 19 wherein the catheters in the family comprise balloon catheters.
22. The system as defined in claim 19 wherein the at least one respect is a size of a catheter.
23. The system as defined in claim 19 wherein the identity of an individual catheter in the family of catheters may be readily determined by observation of a radiographic image of that catheter without reference to any dimension of the radiographic image.
24. The system as defined in claim 19 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of any physical dimension of an individual catheter in the family of catheters.
25. The system as defined in claim 19 wherein the size of the self-referencing pattern of radiographically distinguishable radiopaque indicia is independent of a size of an individual catheter in the family of catheters.
27. The coding system as defined in claim 16 wherein the respect in which an individual catheter differs from other catheters in the family comprises a dimensional characteristic of said individual catheter.

This application is a continuation in part of application Ser. No. 08/150,766, filed on Nov. 12, 1993 now abandoned, which is a continuation of application Ser. No. 07/844,151, filed on Mar. 2, 1992, now abandoned.

The invention relates to catheters adapted for use in medical procedures in which an x-ray image is made to record the catheterization procedure.

Many catheterization procedures are performed in conjunction with x-ray techniques in order to monitor the position of the catheter, to facilitate guiding of the catheter as it is navigated through the patient's vasculature to diagnose diseases of the cardiovascular and vascular system and to observe the procedure as it progresses. A wide variety of catheters are used by cardiologists and interventional radiologists in procedures that are observed fluoroscopically and recorded on x-ray film. Such catheters typically come in various sizes, commonly denominated as "French" sizes, so that the physician can select the correct size of catheter for the patient. One "French" size corresponds to a dimension of approximately 0.013 inches in diameter.

The selection of the correct size of catheter for the patient and the procedure at hand is important. For example, in a catheter intended to be engaged with the ostium of a coronary artery (such as an angiographic catheter or an angioplasty guiding catheter) the correct selection of catheter diameter affects the manner in which the tip of the catheter will seat in the coronary ostium.

In heart catheterization procedures it is a common preliminary practice to conduct an angiographic study of the coronary anatomy. Typically that involves placement of an angiographic catheter in the heart with the tip of the catheter in engagement with one of the two coronary ostia leading to the coronary arteries. Radiopaque liquid then is injected into the coronary arteries and an cineangiogram is made to record that image. The angiogram so made then can be studied by the cardiologist or surgeon in order to determine a suitable therapeutic approach. Often the therapeutic approach may involve a subsequent catheterization procedure such as, for example, angioplasty.

In a typical angioplasty procedure a specially formed guide catheter is navigated from an insertion site in the groin, through the patient's arteries so that its tip is in engagement with the selected coronary ostium. A balloon dilatation catheter then is selected, in an appropriate size as determined by the physician, and is advanced through the guide catheter and into the coronary arteries. The balloon catheter typically will be associated with a guidewire which may be separate from or integral with the balloon catheter and which aids in navigation of the catheter through the coronary arteries. The catheter is manipulated to locate the balloon within the obstructing stenosis. The balloon then is inflated under high pressure to forcefully dilate the artery and open the lumen to increase blood flow through the artery.

Typically, the initial angiographic procedure is performed some time in advance of the angioplasty procedure and often may be performed by a different physician. Also of interest in connection with the present invention is the fact that in many instances it is necessary to perform a follow-up angioplasty procedure, for example, when restenosis develops. Restenosis develops in a substantial number of angioplasty patients and, when it does occur, it can occur from between several days to several months or longer after the initial angioplasty.

In follow-up angioplasty procedures as well as in the initial procedures it would be of significant benefit to the patient and the physician if the physician knew exactly what catheters had been used in the previous procedure whether diagnostic or therapeutic. Although an entry sometimes may be made in the patient's medical records, often such notes may not be made or, if made, may not be in sufficient detail to include the precise size of catheter that was used in the previous procedure. Although the physician will examine the patient's previous x-rays, if information concerning the details of the catheter that was used in the previous procedures is not readily available, such as in entries on the patient's record, the size of the catheter that was used cannot be determined accurately. The x-ray image is not sufficiently accurate to enable determination of the size of catheter used.

Knowledge by the physician as to the precise size of catheter used in the prior procedures would increase the probability of selection of the proper size catheter in the first instance. By selecting the proper size of catheter, the necessity for catheter exchanges may be avoided. Consequently, the total time of the procedure and extent of exposure of the patient to x-ray radiation may be maintained at a minimum.

It would be desirable, therefore, to provide a means by which a physician could determine readily from the patient's x-ray image, such as an angiogram, the size of catheter that was used in that x-ray procedure. It is among the general objects of the invention to provide such a system.

The invention relates to forming indicia on families of the same types of catheters such that different sizes of catheters in the family can be distinguished radiographically on the angiogram. Each of the catheters in the family is essentially identical, except for size, having the same functions as others in the family. Each catheter in the family is provided with a different radiopaque marker that will be clearly visible on the angiogram and which provides an indication of the size of the catheter. For example, a family of angiographic catheters, identical except for "French" size, can be provided with indicia indicative of the differences in size. Similarly, such indicia may be incorporated on a family of angioplasty catheters, such as angioplasty guide catheters or a family of angioplasty balloon catheters. In each instance, the radiopaque indicia provides an indication by which each of the catheters in the family can be distinguished from the other radiographically.

When using a catheter in the family constructed in accordance with the invention, the x-ray image on the angiogram will incorporate the radiopaque indicia thereby indicating the size of the catheter. Thus, when a physician (often a different physician) studies the x-ray in preparation for a subsequent or later follow-up procedure, it will be clear to the physician what catheter sizes were used. That enables the physician to better assess the size of catheter to be used in the follow-up procedure.

Various types of indicia can be used. One such arrangement may be used in connection with catheters having an internal braided layer. In such braided catheters different numbers of filaments that make up the braid can be formed from a highly radiopaque material so that different size catheters in such a family can be distinguished, one from the other, by the number of radiopaque filaments visible on the angiogram. Balloon catheters or other catheters that may not have a tubular braided layer may be provided with different numbers of radiopaque rings or bands on the catheter shaft to distinguish among various sizes of the same types of catheters that make up the family. Other radiopaque indicia may be used, such as various patterns of light and dark images, longitudinal stripes or embedded wires as well as combinations of such arrangements.

It is among the general objects of the invention to provide an improved system by which different size catheters in a family of catheters of the same type can be distinguished, one from the other under x-ray fluoroscopy.

Another object of the invention is to provide a system of the type described by which a physician can determine, from direct examination of an x-ray image, the size of catheter that was used.

A further object of the invention is to provide a system of the type described which enables the physician to better assess the size of catheter to use in a procedure.

The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings wherein:

FIG. 1A illustrates, somewhat diagrammatically, an angiographic catheter in position in the aorta with the distal tip in engagement with the left coronary artery and showing the pattern of highly radiopaque indicia incorporated into the device;

FIGS. 1B and 1C are diagrammatic illustrations of portions of catheters of the same type as that shown in FIG. 1A and illustrating the pattern of distinguishing radiopaque indicia;

FIG. 2A is a diagrammatic illustration of a balloon dilatation catheter in which ring-type of radiopaque indicia is used;

FIGS. 2B and 2C illustrate, diagrammatically, catheters in the same family as FIG. 2A that differ from each other only with respect to balloon size and illustrating the differentiating radiopaque indicia in the form of different numbers of radiopaque rings on the catheter shaft.

FIGS. 3A, 3B, and 3C illustrate diagrammatically, catheters in the same family that differ from each other only with respect to balloon size. FIGS. 3A, 3B, and 3C also illustrate the differentiating radiopaque indicia in the form of different length radiopaque stripes on the catheter shaft.

FIGS. 4A, 4B, and 4C illustrate diagrammatically, catheters in the same family that differ from each other only with respect to balloon size. FIGS. 4A, 4B, and 4C also illustrate the differentiating radiopaque indicia in the form of bands that partly encircle a portion of the catheter.

FIG. 1A illustrates, diagrammatically, a catheter, such as an angiographic catheter 10 adapted to delivery radiopaque contrast liquid to the region of the heart. As illustrated, the catheter 10 is in the form of a left coronary catheter adapted to engage the ostium 12 of the left coronary artery 14. As shown, the catheter 10 has a special curve formed at its distal end which is designed to facilitate engagement of the distal tip 18 of the catheter with the ostium when the device is advanced through the aorta 16 and over the aortic arch.

The angiographic catheter illustrated in FIG. 1A may embody a conventional well-known construction in which at least a substantial portion of the length of the catheter shaft is reinforced internally by a braid 20. The braid 20 may be formed from metallic or polymeric filaments. Illustrative of such type of braided catheter construction is U.S. Pat. No. 3,485,234.

In accordance with the invention, the catheter is provided with radiopaque indicia. In the embodiment illustrated in FIG. 1A, the indicia may take the form of a single helical stripe 22. The stripe 22 may be formed by selecting a highly radiopaque material, such as a gold alloy, for one of the filaments in the braid.

FIGS. 1B and 1C illustrate sections of an identical type of catheter (i.e., a catheter in the same "family") but with distinguishable radiopaque indicia. As illustrated in FIG. 1B a double stripe 22' is provided and in FIG. 1C, a triple stripe 22". In accordance with the invention the distinguishing indicia are used to distinguish the different sizes of the catheters. For example, in the illustrative embodiment, the number of stripes plus five may be used to indicate the "French" size of the catheter. Thus, the angiographic catheter illustrated in FIG. 1 may be a six "French" catheter, the indicia illustrated in FIG. 1B a seven "French" catheter and a catheter with the three-stripe indicia in FIG. 1C, an eight "French" catheter. In this manner, a physician can examine the previously taken x-ray and determine the size of the catheter that was used, thereby providing an indication of the size of the artery that may be expected.

Similar techniques may be employed in connection with other catheters, such as balloon dilatation catheters like portions of which are illustrated diagrammatically in FIGS. 2A-C. Among the principal distinguishing features of such balloon dilatation catheters is the size of the balloon 24. In accordance with the invention, catheters having different size balloons (e.g., 24, 24', 24") of the same type of catheter may be distinguished one from the other by different radiopaque indicia on the catheter. In the illustrative embodiment of FIGS. 2A, 2B and 2C, catheters may be distinguished by highly radiopaque gold bands 26 attached to the catheter shaft 28. For example, in FIG. 2A, the single gold band 26 may signify a balloon catheter in which the balloon has a diameter of 1.5 millimeters. A balloon dilatation catheter having two bands 26 (FIG. 2B) may have a 2.0 millimeter diameter balloon 24'. The three-band (26") embodiment illustrated in FIG. 2C may signify a balloon 24" having a 2.5 millimeter diameter.

The foregoing are meant to be illustrative examples only. Other distinguishing indicia may be employed, such as differentiation in the degree of radiopacity so as to provide varying light and dark distinguishing indicia. Other indicia such as longitudinal stripes, 30, 30', and 30" (FIGS. 3A, 3B, 3C) and split radiopaque bands, 32, 32' and 32" (FIGS. 4A, 4B and 4C) that partly encircle a portion of the catheter as well as various combinations thereof, may be employed.

Thus, it will be appreciated that the invention provides a means by which a physician can determine directly from an examination of the patient's x-ray certain characteristics of a catheter used in a previous procedure. That information enables the physician to better assess the specific catheter selected for the procedure at hand.

It should be understood that the foregoing description of the invention is intended merely to be illustrative thereof and that other embodiments, modifications and equivalents may be apparent to those skilled in the art without departing from its spirit.

Crittenden, James F., Frassica, James J.

Patent Priority Assignee Title
10016585, Apr 27 2005 Bard Peripheral Vascular, Inc Assemblies for identifying a power injectable access port
10034787, Jun 15 2012 Endologix LLC Endovascular delivery system with an improved radiopaque marker scheme
10052470, Apr 27 2005 Bard Peripheral Vascular, Inc Assemblies for identifying a power injectable access port
10052471, Nov 13 2008 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
10086186, Nov 07 2007 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
10092725, Nov 08 2006 C. R. Bard, Inc. Resource information key for an insertable medical device
10155101, Nov 17 2009 Bard Peripheral Vascular, Inc. Overmolded access port including anchoring and identification features
10173029, Jan 26 2006 TELEFLEX LIFE SCIENCES LLC Deflection control catheters, support catheters and methods of use
10179230, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for radiographically identifying an access port
10183157, Apr 27 2005 Bard Peripheral Vascular, Inc. Assemblies for identifying a power injectable access port
10206652, Dec 30 2008 St Jude Medical, Atrial Fibrillation Division, Inc Intracardiac imaging system utilizing a multipurpose catheter
10232088, Jul 08 2014 Becton, Dickinson and Company Antimicrobial coating forming kink resistant feature on a vascular access device
10238850, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for radiographically identifying an access port
10265512, Mar 04 2005 Bard Peripheral Vascular, Inc Implantable access port including a sandwiched radiopaque insert
10307581, Apr 27 2005 C R BARD, INC Reinforced septum for an implantable medical device
10556090, Nov 08 2006 C. R. Bard, Inc. Resource information key for an insertable medical device
10589063, Apr 23 2014 Becton, Dickinson and Company Antimicrobial obturator for use with vascular access devices
10625065, Apr 27 2005 Bard Peripheral Vascular, Inc. Assemblies for identifying a power injectable access port
10639465, Jul 19 2007 Innovative Medical Devices, LLC Venous access port assembly with X-ray discernable indicia
10661068, Apr 27 2005 Bard Peripheral Vascular, Inc. Assemblies for identifying a power injectable access port
10675401, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
10773066, Nov 13 2008 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
10780257, Apr 27 2005 Bard Peripheral Vascular, Inc. Assemblies for identifying a power injectable access port
10792485, Nov 07 2007 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
10857340, Mar 04 2005 Bard Peripheral Vascular, Inc. Systems and methods for radiographically identifying an access port
10874842, Jul 19 2007 Medical Components, Inc. Venous access port assembly with X-ray discernable indicia
10905868, Mar 04 2005 Bard Peripheral Vascular, Inc. Systems and methods for radiographically identifying an access port
10912935, Nov 17 2009 Bard Peripheral Vascular, Inc. Method for manufacturing a power-injectable access port
10952687, Mar 06 2015 University of Rochester Catheter detection, tracking and virtual image reconstruction
11013626, Jun 15 2012 Endologix LLC Endovascular delivery system with an improved radiopaque marker scheme
11077291, Mar 04 2005 Bard Peripheral Vascular, Inc. Implantable access port including a sandwiched radiopaque insert
11090463, Dec 13 2018 Cook Medical Technologies LLC Device with medusa wire group
11219705, Jul 08 2014 Becton, Dickinson and Company Antimicrobial coating forming kink resistant feature on a vascular access device
11357965, Apr 23 2014 Becton, Dickinson and Company Antimicrobial caps for medical connectors
11406808, Jun 20 2007 Medical Components, Inc. Venous access port with molded and/or radiopaque indicia
11478622, Jun 20 2007 Medical Components, Inc. Venous access port with molded and/or radiopaque indicia
11547843, Jul 19 2007 Innovative Medical Devices, LLC Venous access port assembly with x-ray discernable indicia
11638810, Nov 07 2007 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
11759615, Nov 17 2009 Bard Peripheral Vascular, Inc. Overmolded access port including anchoring and identification features
11878137, Oct 18 2006 MEDICAL COMPONENTS, INC Venous access port assembly with X-ray discernable indicia
11890443, Nov 13 2008 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
11904114, Oct 28 2015 Becton, Dickinson and Company Extension tubing strain relief
6221059, Jun 21 1996 Medtronic Ave, Inc Flow-directed catheter system and method of use
6623504, Dec 08 2000 Boston Scientific Scimed, Inc Balloon catheter with radiopaque distal tip
6796976, Mar 06 1998 Boston Scientific Scimed, Inc Establishing access to the body
7632241, May 19 2000 CONMED ENDOSCOPIC TECHNOLOGIES, INC ; CONMED ENDOECOPIC TECHNOLOGIES, INC Multi-lumen biliary catheter with angled guidewire exit
7678100, Mar 06 1998 Boston Scientific Scimed, Inc Apparatus for establishing access to the body
7744574, Dec 16 2004 Boston Scientific Scimed, Inc Catheter tip to reduce wire lock
7785302, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
7947022, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
7959615, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
8021324, Jul 19 2007 MEDICAL COMPONENTS, INC Venous access port assembly with X-ray discernable indicia
8025639, Apr 27 2005 Bard Peripheral Vascular, Inc Methods of power injecting a fluid through an access port
8029482, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for radiographically identifying an access port
8177762, Dec 07 1998 Bard Peripheral Vascular, Inc Septum including at least one identifiable feature, access ports including same, and related methods
8202259, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for identifying an access port
8257325, Jun 20 2007 MEDICAL COMPONENTS, INC Venous access port with molded and/or radiopaque indicia
8382723, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
8382724, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for radiographically identifying an access port
8475417, Apr 27 2005 Bard Peripheral Vascular, Inc Assemblies for identifying a power injectable access port
8545460, Apr 27 2005 Bard Peripheral Vascular, Inc Infusion apparatuses and related methods
8585663, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
8603052, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
8608713, Dec 07 1998 Bard Peripheral Vascular, Inc Septum feature for identification of an access port
8641676, Apr 27 2005 C. R. Bard, Inc. Infusion apparatuses and methods of use
8641688, Apr 27 2005 Bard Peripheral Vascular, Inc Assemblies for identifying a power injectable access port
8715244, Jul 07 2009 C R BARD, INC Extensible internal bolster for a medical device
8805478, Apr 27 2005 Bard Peripheral Vascular, Inc Methods of performing a power injection procedure including identifying features of a subcutaneously implanted access port for delivery of contrast media
8852160, Jun 20 2007 MEDICAL COMPONENTS, INC Venous access port with molded and/or radiopaque indicia
8900150, Dec 30 2008 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Intracardiac imaging system utilizing a multipurpose catheter
8932271, Nov 13 2008 C R BARD, INC Implantable medical devices including septum-based indicators
8939947, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for radiographically identifying an access port
8948476, Dec 20 2010 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics
8998860, Mar 04 2005 Bard Peripheral Vascular, Inc Systems and methods for identifying an access port
9079004, Nov 17 2009 Bard Peripheral Vascular, Inc Overmolded access port including anchoring and identification features
9233015, Jun 15 2012 Endologix LLC Endovascular delivery system with an improved radiopaque marker scheme
9248268, Nov 17 2009 Bard Peripheral Vascular, Inc Overmolded access port including anchoring and identification features
9265912, Nov 08 2006 C R BARD, INC Indicia informative of characteristics of insertable medical devices
9393079, Jul 21 2005 Koninklijke Philips Electronics N V Processing of images of interventional instruments with markers
9421352, Apr 27 2005 C. R. Bard, Inc. Infusion apparatuses and methods of use
9474888, Mar 04 2005 Bard Peripheral Vascular, Inc Implantable access port including a sandwiched radiopaque insert
9517329, Jul 19 2007 MEDICAL COMPONENTS, INC Venous access port assembly with X-ray discernable indicia
9533133, Jun 20 2007 MEDICAL COMPONENTS, INC Venous access port with molded and/or radiopaque indicia
9579496, Nov 07 2007 C R BARD, INC Radiopaque and septum-based indicators for a multi-lumen implantable port
9586024, Apr 18 2011 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Guide catheter with radiopaque filaments for locating an ostium
9592100, Dec 31 2007 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Method and apparatus for encoding catheters with markers for identifying with imaging systems
9603992, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
9603993, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
9610118, Dec 31 2008 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Method and apparatus for the cancellation of motion artifacts in medical interventional navigation
9610432, Jul 19 2007 Innovative Medical Devices, LLC Venous access port assembly with X-ray discernable indicia
9642986, Nov 08 2006 C. R. Bard, Inc.; C R BARD, INC Resource information key for an insertable medical device
9682186, Mar 04 2005 Bard Peripheral Vascular, Inc Access port identification systems and methods
9717895, Nov 17 2009 Bard Peripheral Vascular, Inc Overmolded access port including anchoring and identification features
9937337, Apr 27 2005 Bard Peripheral Vascular, Inc Assemblies for identifying a power injectable access port
9956379, Apr 23 2014 Becton, Dickinson and Company Catheter tubing with extraluminal antimicrobial coating
D676955, Dec 30 2010 Bard Peripheral Vascular, Inc Implantable access port
D682416, Dec 30 2010 Bard Peripheral Vascular, Inc Implantable access port
Patent Priority Assignee Title
2857915,
3529633,
3605750,
3608555,
3645955,
3749134,
4202349, Apr 24 1978 Radiopaque vessel markers
4323071, Apr 24 1978 ADVANCED CARDIOVASCULAR SYSTEMS, INC , Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
4581390, Jun 29 1984 BECTON, DICKINSON AND COMPANY, A NJ CORP Catheters comprising radiopaque polyurethane-silicone network resin compositions
4584990, Oct 02 1984 Habley Medical Technology Corporation Prosthetic sphincter having a diametric occlusion geometry
4834726, Mar 11 1987 Ballard Medical Products Medical ventilating and aspirating apparatus and methods
5000484, Aug 30 1989 Identification and monitoring system for surgical specimens
5044955, May 09 1989 Radiographically readable information carrier and method of using same
5045071, Dec 17 1985 MBO LABORATORIES, INC , A CORP OF MA Double wall catheter with internal printing and embedded marker
5154179, Jul 02 1987 RATNER, ADAM V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
5195122, Feb 13 1991 Marker for exposure side of medical radiograph included with patient identification data
5203777, Mar 19 1992 Radiopaque marker system for a tubular device
5289831, Mar 09 1989 Cook Medical Technologies LLC Surface-treated stent, catheter, cannula, and the like
5320100, Sep 16 1991 ATRIUM MEDICAL CORPORATION Implantable prosthetic device having integral patency diagnostic indicia
5437290, Sep 06 1991 BOARD OF TRUSTEES OF THE LELAND STANFORD JR UNIVERSITY System and method for monitoring intraluminal device position
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 31 1996Medtronic AVE, Inc.(assignment on the face of the patent)
Aug 31 1998C R BARD, INC ARTERIAL VASCULAR ENGINEERING, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0097780398 pdf
Jan 28 1999MAV MERGER CORPORATIONMedtronic Ave, IncMERGER SEE DOCUMENT FOR DETAILS 0098340176 pdf
Jan 28 1999ARTERIAL VASCULAR ENGINEERING, INC Medtronic Ave, IncMERGER SEE DOCUMENT FOR DETAILS 0098340176 pdf
Date Maintenance Fee Events
Mar 19 2003REM: Maintenance Fee Reminder Mailed.
Sep 02 2003EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 31 20024 years fee payment window open
Mar 03 20036 months grace period start (w surcharge)
Aug 31 2003patent expiry (for year 4)
Aug 31 20052 years to revive unintentionally abandoned end. (for year 4)
Aug 31 20068 years fee payment window open
Mar 03 20076 months grace period start (w surcharge)
Aug 31 2007patent expiry (for year 8)
Aug 31 20092 years to revive unintentionally abandoned end. (for year 8)
Aug 31 201012 years fee payment window open
Mar 03 20116 months grace period start (w surcharge)
Aug 31 2011patent expiry (for year 12)
Aug 31 20132 years to revive unintentionally abandoned end. (for year 12)