A device that comprises a tubular-shaped body that is insertable into a body passageway or cavity, in particular the urethra, and that has an exterior surface having one or more anchors located thereon that aid in movement of the device with a minimum of trauma during placement and that aid in securing the device within the passageway or cavity during use. The device may be inserted into either the urethra, bladder neck, or bladder. The anchors can vary in height, length, number, compressiveness, axial placement, material characteristics, and helix angle. According to a further aspect, the one or more anchors are in the form of partial spiral helixes that function to move and secure the device within the human urethra. The partial spiral helixes have structures that allow for the longitudinal movement of the device during positioning procedures.
|
73. A device for placement in a urethra comprising:
a tubular body sized for placement in said urethra, said tubular body having a proximal portion adapted for placement toward a bladder end of said urethra and a distal portion opposite from said proximal portion, said tubular body having an exterior surface; and a plurality of anchors extending outward from said exterior surface wherein said anchors form an undulating pattern along said exterior surface.
47. A device for placement in a urethra comprising:
a tubular body sized for placement in said urethra, said tubular body having a proximal portion adapted for placement toward a bladder end of said urethra and a distal portion opposite from said proximal portion, said tubular body having an exterior surface; and a plurality of anchors extending outward from said exterior surface wherein said anchors form a sinusoidal protrusion along a side of the exterior surface.
1. A device for placement in a urethra comprising:
a tubular body sized for placement in said urethra, said tubular body having a proximal portion adapted for placement toward a bladder end of said urethra and a distal portion opposite from said proximal portion, said tubular body having an exterior surface; and a plurality of anchors extending outward from said exterior surface, wherein each of said plurality of anchors extends less than 360° around said exterior surface.
46. A device for placement in a urethra comprising:
a tubular body defining an interior passageway and having proximal and distal opening communicating therewith, wherein a proximal end of said tubular body is oriented toward the bladder when positioned in the urethra; and a non-continuous spiral ridge located on an exterior surface of said tubular body and extending outwardly therefrom, said non-continuous spiral ridge comprised of a plurality of continuous spiral sections wherein each of said continuous spiral sections extends less than 360° around said tubular body.
34. A tubular device for placement in a urethra to provide a passageway therein comprising:
a tubular body sized for placement in the urethra, said tubular body having a cylindrical-shaped wall having an exterior surface, said tubular body defining a lumen extending from a proximal portion to a distal portion thereby providing a passageway through said tubular body, said proximal portion adapted for placement toward a bladder end of the urethra; said tubular body having a proximal opening located in said proximal portion and communicating with said lumen and a distal opening located in said distal portion and communicating with said lumen; a plurality of anchoring ridges, wherein each of said plurality of anchoring ridges extends from said exterior surface and has a distally-facing surface, and wherein each of said plurality of anchoring ridges extends less than 360° around said exterior surface.
32. A device for placement in a urethra comprising:
a tubular body sized for placement in said urethra, said tubular body having a cylindrical-shaped wall having an exterior surface, said tubular body having a proximal portion adapted for placement toward a bladder end of said urethra and a distal portion opposite from said proximal portion; and a plurality of anchors located on said exterior surface, each of which is comprised of an elongate ridge having a height extending in a radial direction relative to an axis of said tubular body, a length extending in a direction generally around a circumference of said tubular body, and a width perpendicular to said length and parallel to said axis, and wherein said ridge has a middle portion along its length where its height defines a distally-oriented surface that engages a wall of said urethra to anchor said tubular body therein, wherein said middle portion extends less than 360° around said exterior surface of said tubular body.
40. A device for placement in a urethra to provide a passageway therein comprising:
an elongate tubular body sized for placement in the urethra, said tubular body having a cylindrical-shaped wall having an exterior surface, said tubular body defining a lumen extending from a proximal portion to a distal portion thereby providing said passageway, said proximal portion adapted for placement toward a bladder end of said urethra; said tubular body having a proximal opening located in said proximal portion and communicating with said lumen and a distal opening location in said distal portion and communicating with said lumen; a first anchor extending outward from said exterior surface and extending around said exterior surface through an angle of less than 360°; and at least one additional anchor extending outward from said exterior surface and extending around said exterior surface through an angle of less than 360°, said at least one additional anchor longitudinally displaced from said first anchor.
2. The invention of
3. The invention of
4. The invention of
5. The invention of
6. The invention of
7. The invention of
8. The invention of
12. The invention of
13. The invention of
14. The invention of
15. The invention of
16. The invention of
17. The invention of
18. The invention of
20. The invention of
21. The invention of
at least one sealer ring located on said proximal portion and extending around said tubular body.
22. The invention of
23. The invention of
at least one sealer ring located on said distal portion and extending around said body.
24. The invention of
a plurality of sealer rings located on said proximal portion and extending around said body.
25. The invention of claim I wherein said body is formed of silicone rubber.
26. The invention of
27. The invention of
29. The invention of
30. The invention of
31. The invention of
33. The invention of
35. The invention of
36. The invention of
37. The invention of
38. The invention of
39. The invention of
41. The invention of
42. The invention of
43. The invention of
44. The invention of
45. The invention of
a tapered leading edge associated with each of said anchors and extending from its associated anchor to a point of divergence with said exterior surface; and a tapered trailing edge associated with each of said anchors and extending from its associated anchor to a point of convergence with said exterior surface.
49. A device according to
50. A device according to
51. A device according to
52. The invention of
53. The invention of
54. The invention of
55. The invention of
59. The invention of
60. The invention of
61. The invention of
63. The invention of
64. The invention of
at least one sealer ring located on said proximal portion and extending around said tubular body.
65. The invention of
66. The invention of
at least one sealer ring located on said distal portion and extending around said body.
67. The invention of
a plurality of sealer rings located on said proximal portion and extending around said body.
69. The invention of
70. The invention of
72. The invention of
75. A device according to
76. A device according to
77. A device according to
78. A device according to
79. The invention of
83. The invention of
84. The invention of
85. The invention of
87. The invention of
88. The invention of
at least one sealer ring located on said proximal portion and extending around said tubular body.
89. The invention of
90. The invention of
at least one sealer ring located on said distal portion and extending around said body.
91. The invention of
a plurality of sealer rings located on said proximal portion and extending around said body.
93. The invention of
|
The present invention relates generally to urethral apparatuses and methods of use, and more particularly to a urethral apparatus that can be positioned in the urethra for short-term or long-term use, relatively comfortably but securely.
Urinary problems can have serious consequences, particularly when the problem is one of retention or ischuria. Urine flow problems include urine retention, incontinence, and difficult urination. Retention can result from any of a number of causes, including without limitation, spinal cord injury or tumors, coma, typhoid, peritonitis, prostatic enlargement, urethral stricture, urethritis, cystitis, bladder tumors, urethral calculus, Parkinson's disease, prostatitis, or multiple sclerosis. Patients suffering from these and other conditions often require some interventional means to periodically drain the bladder. Failure to do so can result in damage of the epithelium and detrusor muscles associated with the bladder, and an increased potential for bacterial invasion and urinary tract infection potentially leading to life-threatening kidney failure.
Another urine flow problem is that of incontinence, which is the inability to retain urine because of paralysis or relaxation of sphincters or contraction of longitudinal muscular layers of the bladder. Incontinence can also occur in coma, epileptic seizure, spinal cord injury or tumors associated with the spinal cord, spinal meningitis, or local irritation of the bladder. Incontinence is usually categorized as either stress incontinence, in which urine is expelled during stresses such as exercise, coughing, and laughing; urge incontinence, in which the patient in unable to control the urge to urinate in part due to uninhibited bladder contractions; or mixed incontinence, in which the patient experiences both stress and urge incontinence.
Difficult urination or dysuria can result from urethral strictures, enlarged prostates, atony and impairment of the bladder's muscular power, and inflammatory conditions involving the urethra, bladder, or lower ureter.
Devices have been developed to be positioned in the urethra and/or bladder to correct the problems of urine flow. Urinary drainage catheters and devices have a long history, and many approaches have been taken to keeping these devices in place. Many of these devices suffer from one or more problems. For example, some of these devices may have been difficult or uncomfortable to place into position or to retain in position after placement. Also, some of these devices may have tended to leak or become dislodged unintentionally. Further, some of these devices have led to infections.
Accordingly, it is an object to provide a device that is easily and atraumatically inserted and removed. It is another object to provide a device that can be positioned in the urethra with a minimum of stress to the urethra and with a minimum of bacterial migration. It is still a further object to provide a device that can remain in position in the urethra and withstand pressure impulses due to stresses such as coughing, laughing, or exercising.
To address the above concerns, the present invention provides a device that comprises a tubular-shaped body that in insertable into a body passageway or cavity, in particular the urethra, and that has an exterior surface having one or more anchors located thereon that aid in movement of the device with a minimum of trauma during placement and that aid in securing the device within the passageway or cavity during use. The device may be inserted into either the urethra, bladder neck, or bladder.
According to a further aspect, the one or more anchors on the device are in the form of partial spiral helixes that function to move and secure the device within the human urethra. The partial spiral helical anchors have structures that allow for the longitudinal movement of the device during positioning procedures. These anchors can vary in height, length, number, compressiveness, axial placement, material characteristics, and helix angle. In addition, leading and trailing edges associated with each of the anchors provide a tapered gradual increase up to a maximum height of each of the anchors to ease insertion and removal of the device and to prevent a shearing effect that could result from a blunt or aggressive leading edge.
FIG. 1 is an expanded elevational view of one present embodiment showing an indwelling urethral device positioned within the urethra.
FIG. 2 is a partial sectional elevational view of the urethral device of the embodiment of FIG. 1.
FIG. 3 is an elevational view of the urethral device of FIG. 1 coupled with an installation tool.
FIGS. 4 and 5 are partial sectional views illustrating the coupling apparatus at the interface of the installation tool and the urethral device shown in FIG. 3.
FIGS. 6a and 6b are expanded elevational views showing an alternate embodiment of the urethra device positioned within the urethra.
FIG. 7 is a sectional view of the distal portion of the embodiment of FIGS. 6a, and 6b.
FIG. 8 is a partial sectional elevational view of the embodiment of FIGS. 6a, 6b, and 7.
FIGS. 9-13 are elevational views of further alternate embodiments of the urethral device for human males.
FIGS. 14-16 are elevational views of further alternate embodiments of the urethral device for human females.
FIGS. 17 and 18 are views of further alternate embodiments of the urethral device showing sinusoidal surfaces.
FIG. 19 is a partial elevational sectional assembly view of an embodiment of the urethral device with a magnetically-actuated valve assembly.
FIG. 20 is a perspective view of the magnetic tumbler in the embodiment of FIG. 19.
FIG. 21 is an expanded perspective view of the distal support flange of FIG. 19.
FIG. 22 is an expanded perspective view of the proximal support flange of FIG. 19.
FIG. 23 is an expanded perspective view of the seat of FIG. 19.
FIG. 24 is an elevational view of another embodiment of an indwelling urethral device positioned within the urethra.
FIG. 24A is a cross sectional view of the embodiment of FIG. 24 taken along line 24A-24A'.
FIG. 25 is an elevational view of a further embodiment of an indwelling urethral device positioned within the urethra.
FIG. 25A is a cross sectional view of the embodiment of FIG. 25 taken along line 25A-25A'.
FIG. 26 is an elevational view of still another embodiment of an indwelling urethral device positioned within the urethra.
FIG. 26A is a cross sectional view of the embodiment of FIG. 26 taken along line 26A-26A'.
First Embodiment: FIGS. 1 and 2 show a first preferred embodiment of a device 10. The device 10 is positioned in a urethra 30 and extends partially into a bladder 60 of a patient. The patient may be either a male or female human, or alternatively, embodiments of device may be used in other mammals or even other animals, with suitable changes in dimensions. The device 10 has a body 16 having a proximal portion 11 terminating in a proximal end 12 and distal portion 13 terminating in a distal end 14. The body 16 has a generally tubular shape around axis 15. The cross sectional shape of the body may be generally round or may be flattened to conform to the anatomical shape of the urethra. The body 16 includes a wall 17 having an exterior surface 19. The proximal portion 11 of the body 16 has at least one port 18 which may be located at the proximal end 12 to allow for urine flow into and through the device. Alternately, the proximal end 12 could have an open through-lumen to allow for the device to be used as an introducer for fluids, stents, or other devices or to function as a temporary stent itself for diagnostic and therapeutic procedures in the lower or upper urinary tract. The distal portion 13 of the device 10 can extend outside the body, or it can be retained entirely within the body. Those embodiments that extend outside the body can, for example, be connected to a fluid collection or introducer system, and embodiments retained entirely within the body can have additional elements or capabilities, such as a fluid valving or drug delivery.
Located along the length of the body 16 and extending outward from it are a plurality of anchors 20, such as anchors 20A and 20B, that aid in the insertion, withdrawal, and securing of the device within the urinary tract. In the embodiment of FIGS. 1 and 2, each of these anchors takes the form of a partial helical protrusion or ridge. These anchors 20 can vary in height, length, number, compressiveness, axial placement, material characteristics, and helix angle from 0 to 300 degrees, and more preferably from 15 to 300 degrees. Each anchor includes a leading edge 22 and a trailing edge 23 which taper from a middle portion 21 of the anchor for atraumatic insertion and withdrawal of the device. The anchors 20 can have the same or different amplitudes along the body 16, so long as proper retention is achieved. The height or amplitude of each of the anchors 20 can vary between the points of divergence 24 and convergence 25 with the body 16 of the device and has a maximum amplitude occurring along the middle portion 21. The maximum amplitude may extend along the entire length of the middle portion 21 of the anchor, or may extend along only part of the middle portion. Further, the maximum amplitude may be located approximately midway between the points 24 and 25 or may be located toward either the leading or trailing edges. The maximum amplitude of each anchor may be up to 100% of the base diameter of body 16 in extreme cases where the urethra is relatively atonic. The height of each anchor 20 defines a proximal surface 27 and distal surface 29. In the present embodiment, the profile of each anchor along its length is in a shape comparable to a half sinusoid. In a present embodiment, the anchors 20 are composed of the same material as the body 16 and are formed as part of a molding process during which the body is also formed. Alternatively, the anchors may be attached to the body after formation by suitable means, such as fusing, adhesives, etc.
Each anchor has a length that extends in a direction around the surface of the tubular body 16. In a present embodiment, each anchor extends only part way, i.e. less than 360°, around the circumference of the tubular body 16, and more preferably each anchor has a length such that it extends less than 180° around the circumference of the body. In some embodiments, each anchor may extend less than 90° around the circumference of the body. In an alternative embodiment, the middle portion 21 of the anchor extends only part way, i.e. less than 360° or more preferably less than 180°, around the circumference of the tubular body 16; however, the leading and trailing edges 22 and 23 associated with the anchor may extend the overall length of the anchor and edges such that the points of convergence and divergence 25 and 24 may be greater than 360° apart from each other.
To minimize trauma to the urethra 30, the anchors 20 are preferably few in number (2-16, and more preferably 2-6) and are located in a random or non-uniform pattern along the length of body 16 as shown in FIGS. 1 and 2 so that the anchors 20 have a non-repeated pathway or point of contact with the urethral wall 32 as device 10 progresses along the urethra 30. Optionally, the anchors can have repeated pathways. In one embodiment, the plurality of anchors form a non-continuous helical ridge composed of individual helical sections each of which is less than a complete turn around the tubular body. The anchors 20 and their locations overcome a deficiency in the prior art that relies upon a complete or continuous helical surface to advance and seal a device in the urethra. A complete or continuous helical surface provides a perpetual, or time-prolonged, shunt pathway for urine. By not providing a continuous pathway, as shown in FIG. 1, the urethral wall is allowed to seal against the flat surfaces of the body thereby providing improved retention.
In the one preferred embodiment, the device 10 does not extend outside the body but resides entirely within the urinary tract, preferably primarily within the urethra, except to the extent to which the proximal end 12 extends partially or completely into either the bladder 60 or the bladder neck 50. Although the device 10 may be as long or longer than the urethra, in one preferred embodiment it is preferably less than 10 cm in versions for male users and 5 cm in versions for female users. There are, however, certain applications, including certain short-term applications, that would benefit from having an alternate embodiment of the device (not shown) wherein the device has a length such that a distal end 14 extends outside the body while still having the proximal end 12 positioned within the bladder or the bladder neck. The device 10 has a preferred size from approximately 10 French to 34 French to accommodate the range of urethral sizes from infants to adults, although sizes larger and smaller may be used if suitable, including sizes as small as 6 French. In one presently preferred embodiment, the outside surface of the device 10 is constructed of either molded silicone or latex. Alternative materials include molded polyurethane, polyethylene, polycarbonate, or other biocompatible materials.
Along the proximal portion 11 of the device 10 are one or more sealer rings 26, such as sealer rings 26A, 26B, and 26C. These sealer rings 26 assist in preventing the flow of urine around the outside of the device. These sealer rings are optional. These sealer rings 26 extend around the full circumference of the tubular body 16 and can vary in height, length, number, compressiveness, axial placement, material characteristics, and helix angle. Because the proximal-most sealer ring or rings may be located in the bladder neck 50 or bladder 60, which has a larger diameter than the urethra 30, these proximal-most sealer rings 26 may have a greater height than any sealer rings which are located more distally. The sealer rings 26 and the pressure of the urethra 30 against the flat surfaces (i.e., portions without anchors) of the tubular body 16 of the device 10 prevent the leakage of urine around the outside of the tubular body 16. Although the sealer rings 26 may be located only at the proximal portion 11 to prevent urine leakage to escape distally, additional sealer rings 26 may also be located at the distal portion 13 or elsewhere along the length of the tubular body 16. Optionally, the function of the sealer rings 26 can be replaced with surface coatings, by selecting the size of the tubular body 16 to have more intimate contact with the urethra 30, or by changing the material composition or characteristics of the device 10.
A preferred characteristic of the sealer rings 26 is pliability. As the device 10 is advanced through the urethra 30, such as during placement, the sealer rings 26 are oriented downwardly (i.e., distally). After the device 10 is fully inserted, a slight reverse movement of the device causes the sealer rings 26 to flip to an upward position (proximally). In this position, the downward pressure of urine against the sealer rings 26 causes them to depress downward (but not flip downward) and seal tightly against the urethra 30, thus preventing leakage of urine around the exterior of the device 10. In one embodiment the device 10 is produced using a composite construction of a base tube and cast external features. A base tube is constructed as a braid reinforced silicone tube using a stainless steel wire braid and Shore A 60 durometer silicone compound as the tube polymer (tubing produced by New England Electric Wire Corp. Lisbon, N.H.). The internal diameter of the base tube is 0.160 inches using a braid core diameter of 0.180 inches. The external diameter of the base tube is 0.210 inches. Anchor features are then cast onto the outer circumference using a Shore A 30 Durometer silicone rubber compound. The specific compounds used for casting the anchoring and sealing features are RTV 430 silicone rubber resin and Beta 11-D1 silicone catalyst solution, both manufactured by GE Silicones of Waterford, N.Y. Alternate embodiments of the device can be made by allowing the external features' hardness to vary using compounds with Shore A Durometers ranging from 10 to 80.
Referring to FIG. 2, there is shown a partial, sectional view of the device 10. The body 16 defines a passageway or lumen 31 that extends through the length of the body 16 from the proximal port 18 to a distal opening 33. A marker 34 (which may be metallic or other suitable material) is located near the proximal end 12 of device 10 and functions to help locate or position the device using ultrasound, x-ray, or other technology. The first partial view of the distal end 14 shows an inner recess 42 in the lumen 31 immediately proximal of the distal opening 33. The inner recess 42 is shaped to receive a proximal end of an insertion tool 100 (shown in FIG. 3 and described in detail in copending application Ser. No. 60/036,944, filed Feb. 7, 1997, the entire disclosure of which is incorporated herein by reference). The second partial view further shows a braid 44 which is embedded in or located inside the tubular body 16 and which provides for radial size stability and torsional stability while the device 10 is being inserted and removed. A preferred material for the braid is 316L Hard Stainless Steel wire of 0.002 inch diameter (wire gage 44). The braid's preferred construction is 2 ends per carrier with 16 carriers. The braid's preferred pitch is approximately 14 picks per inch. This braid construction generates a braid angle of 45.3 degrees for adequate torsional stiffness and 15.1% coverage which allow adequate bond areas for subsequent polymer attachment. Alternately, the braid 44 may be a round wire in sizes from 0.001 to 0.010 inch in diameter or larger, or flat wire ranging in sizes from 0.0005×0.0025 to 0.006×0.015.
Placement of the Urethral Device: Referring to FIGS. 3 through 5, the insertion tool 100 can be used to couple with the device 10 to aid insertion, or the insertion tool 100 and device 10 may each optionally be provided with various electrical, optical, fluid, or mechanical circuits, channels, or linkages that cooperate together to provide feedback signals that indicate the location of the device and/or that the device is properly located with respect to anatomical features.
The insertion tool 100 has a handle 102 and a linkage 104 that passes through a shaft 106 thereof. The linkage 104 is connected to an actuating mechanism in the handle 102, such as a plunger 108. Actuating the plunger 108 changes the shape and/or diameter of a deformable coupling 110 located at a proximal end of the insertion tool so that the deformable coupling 10 has a smaller first profile prior to coupling with the distal end 14 of device 10 (FIG. 4) and a second larger profile when coupled to device 10 (FIG. 5).
To use the insertion tool to position the device 10, the insertion tool 100 and the device are coupled together as shown in FIG. 3. The device is inserted into the urethra. The device may be inserted with a combined rotational and forward (proximal) movement, or alternatively, the device may be inserted with forward movement only. Upon appropriate positioning of the device, which can be facilitated by suitable indicating means, such as ultrasound, x-ray, or any of the indicating means disclosed in the copending application Ser. No. 60/036,944, the insertion tool is decoupled from the device and removed. The device is now positioned for short- or long-term use.
As known in the art, anchoring of the device can be enhanced by the use of adhesives or adhesive-like compounds along all or a portion of the device. In addition, the exterior portion of the embodiment of the device that extends outside the body can further have a meatal flange or flared portion to prevent unwanted migration into the bladder, to contribute to anchoring the device, to further seal against leakage, and to absorb unwanted urine leakage. The meatal flange can be shaped to cooperate with the user's anatomy.
First Alternate Embodiment. FIGS. 6a through 8 illustrate an alternate embodiment 200 of the urethral device. In this embodiment, a urethral device is provided with foldable or highly bendable anchors 220 that allow for a dynamic response to the increased pressure placed on the device by either the urethra, bladder neck, bladder, or the fluids in the urethra or bladder. Each of the anchors 220 has an angulated recess 221 that is flexible in response to either urethral stresses or dynamic forces working on the device. The foldable characteristic still allows for rotational movement of the device within the urethra, while simultaneously allowing for a relatively non-traumatic anchoring when positioned.
Referring to FIGS. 6a through 8, some of the components are the same or similar to the components in the previously described embodiment and like components are labeled with the same numbers. In this embodiment, the anchors 220 are thinner, more flexible, and more responsive to pressure impulses incumbent upon the device 200. In a preferred embodiment, these anchors 220A and 220B are formed of partial helical ridges or protrusions. Because of their shape, angle, material characteristics, and dynamic nature, the anchors 220 may engage the urethral wall 32 somewhat more definitively than in the previous embodiment. FIG. 6a illustrates the device 200 in a relatively unstrained position, and FIG. 6b illustrates the device 200 in a relatively more engaged position. To be most effective, a distal surface 241 of each of these anchors 220 forms an acute angle (shown at 246) of approximately 30degrees or greater, and preferably approximately 45 degrees, with the exterior surface 19 of the tubular body 16 as shown in FIG. 7. The proximal surface 243 of each of these anchors 220 may form an obtuse angle with the exterior surface 19 of the tubular body 16. When the device 200 undergoes pressure from urine accumulation in the bladder or experiences pressure impulses from coughing, laughing, exercising, or other such stresses, the device 200 may have a slight tendency to be displaced distally. Overcoming these forces will be the action of the anchors 220 against the urethral wall 32. When pressure or impulses are placed upon the device 200 and when the device 200 experiences a slight distal displacement, the anchors 220 deflect radially and exert additional pressure against the urethral wall 32. In this manner, the anchors 220 serve not only to secure the device in place, but also to dampen pressure impulses incumbent upon it. Because the profile of the anchors 220 is foldable or highly flexible, the device 200 may be installed either with rotational motion or by moving from a distal position to a proximal position by a non-rotating, longitudinal motion only. Although the device 200 may be installed without rotation, non-traumatic removal may require rotational motion. FIG. 8 shows a partial sectional elevational view of the device 200, showing a distal inner recess 242 that is shaped to receive the proximal end of the insertion tool 100. Also shown using hidden lines is the length and position of the anchors 220. The height, length, number, axial placement, and helix angle of the anchors 220 may be similar to those described above in connection with the previous embodiment.
Additional Alternate Embodiments: In alternative embodiments, the optional sealer rings 26 may be located only at the proximal portion 11 or alternatively the sealer rings may be additionally located at the distal portion 13 of the device 10 (or the device 200). It is envisioned that the sealer rings 26 and anchors 20 (or 220) can be intermixed in any of a number of sequences, as shown in FIG. 9 through FIG. 13 which illustrate male versions of the device, and in FIG. 14 through FIG. 16 which illustrate female versions of the device. FIG. 9 shows an embodiment in which the sealer rings 26 and the anchors alternate along the length of the body. FIG. 10 shows an embodiment in which the sealer rings are located only at the proximal portion of the tubular body and wherein a relatively greater number of anchors are located along the length of the body in an irregular pattern. FIG. 11 shows an embodiment with relatively fewer anchors compared to the embodiment of FIG. 10 and in which the sealer rings are located only at the proximal portion. FIG. 12 shows an embodiment in which the anchors are formed of relatively wide undulations which spiral around the exterior surface of the tubular body and further which includes sealer rings located only at the proximal portion. FIG. 13 shows an embodiment in which the anchors are formed of relatively wide undulations which encircle (but do not necessarily spiral around) the exterior surface of the tubular body and further which includes sealer rings located only at the proximal portion. FIG. 14 shows a female version with proximal sealing rings and relatively few anchors which are formed of partial helical ridges. FIG. 15 shows a female version of the device in which sealer rings are located only at the proximal and distal portions and wherein the anchors are located along the middle portion of the body in an irregular pattern. FIG. 16 shows a female version of the device with sealer rings and anchors alternating along the length of the body. With respect to each of these various embodiments, portions of the exterior surface of the body that are free from both sealer rings and anchors can be used for the placement of elements that facilitate therapeutic or diagnostic procedures, such as ultrasound diagnosis, radio-frequency ablation, and drug delivery. The anchors or sealer rings can also be positioned to accommodate any of the various position sensing components described in the copending application Ser. No. 60/036,944.
FIGS. 17-18 show another embodiment 300 of the urethral device. In this embodiment, the anchors 320 are formed as offset sinusoidal protrusions along the body 16. These anchors 320 have relatively larger surface profiles that allow for more contact with the urethra 30 and that extend over a small portion of the exterior (FIG. 17) or over all of the exterior (FIG. 18).
Referring to FIGS. 24 and 24A, there is depicted another embodiment 500 of the urethral device. This device 500 is similar to the previously described devices and includes a tubular body 16. In this device the anchors 520 do not spiral around the tubular body 16 but instead encircle it, i.e., the point of divergence 524 is at the same axial position along the length of the tubular body 16 as the point of convergence 525. As in the other embodiments, each anchor 520 has a middle portion 521 having a greater height or amplitude, and leading and trailing end portions, 522 and 523, that taper from the middle portion 521 to the points of divergence and convergence 524 and 525. As described above, the maximum amplitude may extend along the middle 8 portion 521 or may be located toward one of the end portions.
Referring to FIGS. 25 and 25A, there is depicted another embodiment 600 of the urethral device. This device 600 is similar to the device depicted in FIGS. 24 and 24A, except that the device 600 has six anchors 620 instead of only two. As in the previously described embodiments, the anchors 620 are preferably located in a random or irregular pattern.
Referring to FIGS. 26 and 26A, there is depicted another embodiment 700 of the urethral device. This device 700 is similar to the devices depicted in FIGS. 24, 24A, 25 and 25A except that the device 700 has rectangular anchors 720 that extend generally longitudinally along the length of the body. These anchors 720 are parallel to the axis 15 of the tubular body 16 and serve to keep the device 10 positioned in place. These anchors 720 are preferably located in a random or irregular pattern.
Valved Embodiments: According to a further aspect, the device may include a valving mechanism to control the flow of fluid through the device. Any of the above described embodiments of devices for positioning in the urethra are compatible with the implementation of valves or other urine-control elements. Valved embodiments may require more or larger anchors than unvalved devices because of the additional forces incumbent upon the valve. Thus, surface and size modifications of the device can be purposefully made to produce an adequately anchored device.
FIG. 19 through FIG. 23 illustrate one such embodiment 400 of a valved urethral device. The tubular body portion 416 of the valved device 400 may be similar to any of the above described embodiments. The device 400 has a proximal end 412, a body 416, and a port 418. (The distal portion of the device 400 is not shown.) Within the body 416 is a magnetic assembly comprising a magnetic tumbler 480 (shown in elevational views in FIG. 20) that is held in place axially by a pin 482 and a journal 483 which cooperates with a shaft 484 of a stopper 486. The pin 482 is supported by a distal support flange 485 (shown in more detail in FIG. 21), and the shaft 484 is supported by the proximal support flange 487 (shown in more detail in FIG. 22).
The distal end 488 of the shaft 484 is cam-lobe shaped and fits in a latch insert 490 of the magnetic tumbler 480. In the closed position, the distal end 488 of the shaft 484 is in a non-aligning orientation with a keyway 492. When the magnetic tumbler 480 is caused to rotate by use of a magnet 470 located external of the body, the distal end 488 of the shaft 484 aligns with and moves distally along the keyway 492 of a latch insert 490, causing the stopper 486 to likewise move distally and open a fluid-flow channel 494 of a seat 496. The flow of fluid (in this case, urine) causes the stopper 486 to remain in a distal or open position.
This rotation and resulting alignment and cooperation of parts results in a magnetic latching system that is an improvement over prior systems. The magnetic torque required to rotate the magnetic tumbler 480 and thus activate the flow of fluid is much less in the disclosed system compared to a prior art system that requires magnetic torque to overcome a magnetic circuit between two parts. In the disclosed system, the magnetic tumbler 480 is not required to overcome a direct hydraulic force without mechanical advantage but rather is required to overcome only minimal frictional forces to "unlatch" the stopper 486. After the disclosed system is unlatched, the hydraulic pressure within the fluid provides the necessary work and force necessary to displace the proximal end 497 of the stopper 486 from the seat 496 and open the fluid-flow channel 494. Activation of this latching system requires a minimum force of magnetic field.
The magnetic tumbler 480 in the disclosed embodiment is preferably made of Neodynium or Symarium-Cobolt. The magnetic flux density of the magnetic tumbler 480 is preferably greater than 7500 Gauss. The external magnet 470 of the disclosed embodiment is constructed of the same material but has a greater physical dimension. The external magnet 470 is preferably cylindrical and poled axially with a diameter of 0.75 inches and a length of 3 inches. The latch insert 490 is preferably made of a low nonmagnetic material which has a low coefficient of friction such as PTFE.
When fluid flow has nearly or completely ceased, the combined force of springs 498a, 498b and 498c, which act upon the proximal end 497 of the stopper 486, has sufficient magnitude to displace the distal end 488 of the stopper 486 within the keyway 492 and then lightly compress the proximal end 497 of the stopper 486 against the seat 496, thus closing the fluid-flow channel 494. The springs 498a, 498b, and 498c are constructed of 304 high-tensile stainless steel and provide a maximum combined force of less than 0.3 grams when the stopper 486 is in the open position. The force of the springs 498a, 498b, and 498c is insufficient to overcome the hydraulic pressures that are incumbent upon the proximal end 497 of the stopper 486. The resultant axial displacement versus force profile is nonlinear.
When fluid flow ceases, the stopper 486 is returned proximally to a closed position by the springs 496a, b and c, which position the stopper 486 in a closed position. The proximal end 497 of the stopper 486 is slightly deformable to make a better seal with the seat 496. The proximal end 497 of the stopper 486 is preferably made of a low-durometer material with a durometer less than 100 Shore A. The magnetic tumbler 480 then rotates back to its initial position prior to initiation. The re-indexing occurs due to the light magnetic field coupled between the tumbler 480 and the metal index surface 493 on the body 416.
The magnetic tumbler 480, the seat 496, the proximal support flange 487, and the distal support flange 485 are all shaped with through-holes or passages to allow for the maximum fluid flow volume. Urine flows in through the port 418, through the magnet assembly, through the inner lumen 499, and out the distal end of the device 400.
As a safety feature, the proximal end 497 of the stopper 486 deflects in the event that pressurization of the fluid exceeds approximately 40 cm of water for a time period of several seconds without intermittence. This feature allows for the relieving of a bladder that is excessively pressurized in order to prevent reflux into the kidneys.
Advantages of the Disclosed Embodiments: The disclosed embodiments provide several advantages over prior devices intended for urethral placement. The disclosed embodiments provide for some or all of the following advantages relative to prior devices: (1) ease of insertion, (2) secure retention in the urethra, (3) a mechanical advantage that permits a device with a larger effective diameter to be inserted in the urethra with the effect of inserting a smaller device, (4) minimal trauma and irritation to the urethra, and (5) improved sealing of the device with the urethra to prevent leakage of urine around the perimeter of the device.
1. Ease of Insertion. Insertion and removal of some of the disclosed devices may be facilitated by the rotational movement of the device. The rotation provides for the advancement or retraction due to the interaction of the relatively short anchors, in particular in the embodiments in which the anchors have helical surfaces, with the surface of the urethra with which they are in contact. Additionally, each surface is provided with a varying height which is similar to an elongated sinusoidal profile to further reduce abrasion during the positioning of the device.
2. Secure Retention. Once in place, the urethra or bladder neck is better able to conform to the anchors and provide for secure retention. Minimizing the length and surface area of the individual anchors with the urethra allows for reduction of stress. Increasing the area of the flat, extended surfaces between the anchors and keeping to a minimum the area of the protrusions themselves aids in securing the device because the urethra will provide some friction with the flattened surface as well. An effective balance between the flat (non-anchors) and raised (anchors) areas of the device can be achieved to provide for secure retention while minimizing the areas of the urethra that are stressed due to contact with the anchors. Using the minimum number of anchors necessary to effectively secure the device allows a large portion of the urethra to be in a more relaxed, natural state. This is particularly important due to the vulnerability of the urinary tract to infections. Damage to the inner mucosal layer may be a major contributor to an individual's susceptibility to urinary tract infections. Some or all of the disclosed embodiments minimize the surface irritation during positioning and retention and further minimize the effect of restriction of intercapillary blood circulation which effectively perfuses the urethra and the surrounding tissues by limiting the continuous length of the stressed urethral surface.
3. Mechanical Advantage. Some or all of the disclosed embodiments permit a device with a larger effective diameter to be inserted in the urethra with the effect of inserting a smaller device. As the anchors engage the urethral wall while the device is being inserted, the device is advanced through the urethra.
4. Minimum of Trauma and Irritation. The anchors may be patterned in a non-uniform manner in order to minimize any abrasion of the intraurethral mucosa due to repeated contact of anchors with the urethra as the device is moved along the passageway. A uniform pattern might cause the same areas of the urethra to be contacted by succeeding anchors as the device is rotated.
5. Sealing. As described above, in the preferred embodiments the anchors are not used for sealing. Instead, sealing is accomplished by one or both of the following. The first means by which sealing is achieved is by the wall of the urethra bearing against and sealing against the relatively long, flat surfaces between the anchors of the device. The second means by which sealing is achieved is by the use of a secondary system of soft and pliable circumferential sealer rings designed specifically for restriction of fluid flow along the exterior of the device. These sealing rings are not designed to secure the device, but rather to restrict the flow in a non-traumatic manner.
It is to be understood, however, the even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of present invention, the sequence or order of the specific steps, or the actual compositions, environmental conditions, and the like experienced or sensed may vary somewhat. Furthermore, it will be appreciated that this disclosure is illustrative only and that changes may be made in detail, especially in matters of shape, size, arrangement of parts, or sequence of elements of the various aspects of the invention within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Patent | Priority | Assignee | Title |
10064714, | May 21 2004 | Coloplast A/S | Implantable device configured to treat pelvic organ prolapse |
10076394, | Oct 12 2000 | Coloplast A/S | Method of treating urinary incontinence |
10105132, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10130353, | Jun 29 2012 | TELEFLEX LIFE SCIENCES LLC | Flexible system for delivering an anchor |
10143461, | May 20 2005 | Teleflex Life Sciences Limited | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
10195014, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10258285, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system and method for automated creation of ablation lesions |
10265061, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Latching anchor device |
10292801, | Mar 29 2012 | TELEFLEX LIFE SCIENCES LLC | System for delivering anchors for treating incontinence |
10299780, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
10349932, | Mar 15 2013 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
10390928, | May 14 2007 | Boston Scientific Scimed, Inc.; Boston Scientific Scimed, Inc | Open lumen stent |
10426509, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe destruction apparatus and method |
10441396, | Aug 22 2017 | LIFE360 INNOVATIONS LLC | Urethral plug and system for addressing urinary incontinence |
10449025, | Oct 12 2000 | Coloplast A/S | Surgical device implantable to treat female urinary incontinence |
10485644, | Aug 22 2017 | LIFE360 INNOVATIONS LLC | Inserter for urethral plug |
10492792, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10575844, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10639138, | Feb 28 2008 | Coloplast A/S | Method for providing support to a urethra in treating urinary incontinence |
10682213, | Mar 30 2001 | Coloplast A/S | Surgical implant consisting of non-absorbable material |
10772755, | Sep 09 2003 | CONVATEC TECHNOLOGIES INC. | Fecal management appliance and method and apparatus for introducing same |
10863945, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system with contact sensing feature |
10912637, | Mar 14 2013 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10925587, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
10945719, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
11090036, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11129608, | Mar 15 2013 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
11298115, | Aug 03 2020 | TELEFLEX LIFE SCIENCES LLC | Handle and cartridge system for medical interventions |
11331093, | Jun 29 2012 | TELEFLEX LIFE SCIENCES LLC | Flexible system for delivering an anchor |
11471148, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11504149, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe destruction apparatus and method |
11672520, | Dec 23 2017 | TELEFLEX LIFE SCIENCES LLC | Expandable tissue engagement apparatus and method |
11801041, | Aug 03 2020 | TELEFLEX LIFE SCIENCES LLC | Handle and cartridge system for medical interventions |
11850140, | Mar 14 2013 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11865270, | Jan 16 2020 | STARLING MEDICAL, INC | Bodily fluid management system |
6221060, | Aug 19 1997 | AbbeyMoor Medical, Inc. | Urethral device with anchoring system |
6258060, | Feb 07 1997 | AbbeyMoon Medical, Inc. | Urethral apparatus with position indicator and methods of use thereof |
6527702, | Feb 01 2000 | SRS Medical Systems, LLC | Urinary flow control device and method |
6576008, | Feb 19 1993 | SciMed Life Systems, INC | Methods and device for inserting and withdrawing a two piece stent across a constricting anatomic structure |
6673104, | Mar 15 2001 | Boston Scientific Scimed, Inc | Magnetic stent |
6764519, | May 26 2000 | Boston Scientific Scimed, Inc | Ureteral stent |
6908447, | Apr 18 2002 | Boston Scientific Scimed, Inc | Anti-reflux ureteral stents and methods |
6913625, | Mar 07 2002 | Boston Scientific Scimed, Inc | Ureteral stent |
6926665, | Dec 09 1998 | Feelsure Health Corporation | Valve for bladder control device |
6991596, | Oct 18 2001 | SRS Medical Systems, LLC | Endourethral device and method |
7001327, | Feb 01 2000 | SRS Medical Systems, LLC | Urinary flow control device and method |
7008372, | Nov 30 2002 | CHAUSSY, CHRISTIAN | Artificial endosphincter |
7041139, | Dec 11 2001 | Boston Scientific Scimed, Inc | Ureteral stents and related methods |
7048698, | Jun 22 2001 | SRS Medical Systems, LLC | Urethral profiling device and methodology |
7087009, | Dec 09 1998 | Feelsure Health Corporation | Valve for bladder control device |
7092764, | Apr 26 2000 | Medtronic, Inc | Helix rotation by traction |
7108655, | Jan 23 2001 | SRS Medical Systems, LLC | Endourethral device and method |
7141038, | Aug 07 2000 | SRS Medical Systems, LLC | Endourethral device and method |
7182745, | Mar 25 2003 | Boston Scientific Scimed, Inc | Retaining stent |
7306586, | Dec 30 2003 | LIBERATOR MEDICAL SUPPLY, INC | Continuous drainage adaptor |
7316663, | May 26 2000 | Boston Scientific Scimed, Inc | Ureteral stent |
7347866, | Mar 10 2003 | Boston Scientific Scimed, Inc | Medical stent and related methods |
7371245, | Aug 02 2002 | C R Bard, Inc | Transobturator introducer system for sling suspension system |
7390324, | Dec 01 1999 | SRS Medical Systems, LLC | Magnetic retrieval device and method of use |
7396366, | May 11 2005 | Boston Scientific Scimed, Inc. | Ureteral stent with conforming retention structure |
7502859, | Sep 19 2003 | Panasonic Corporation | Dynamic resource management for distributed retrieval system for security |
7547291, | Oct 15 1998 | Boston Scientific Scimed, Inc. | Treating urinary retention |
7632265, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Radio frequency ablation servo catheter and method |
7662145, | Sep 17 2003 | ProstaLund AB | Partial-length indwelling urinary catheter and method permitting selective urine discharge |
7722583, | Aug 21 2002 | Hollister Incorporated | Bowel management system and waste collection bag therefor |
7722677, | May 11 2005 | Boston Scientific Scimed, Inc. | Ureteral stent with conforming retention structure |
7766899, | Sep 17 2003 | ProstaLund AB | Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots |
7974674, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system and method for surface modeling |
7985214, | Jan 20 1999 | Boston Scientific Scimed, Inc. | Intravascular catheter with composite reinforcement |
7996976, | Mar 25 2003 | Boston Scientific Scimed, Inc. | Retaining stent |
8007458, | Oct 15 1998 | Boston Scientific Scimed, Inc. | Treating urinary retention |
8016816, | Sep 09 2003 | CONVATEC TECHNOLOGIES INC | Fecal management appliance and method and apparatus for introducing same |
8021434, | Mar 07 2002 | Boston Scientific Scimed, Inc. | Ureteral stent |
8088170, | May 26 2000 | Boston Scientific Scimed, Inc. | Ureteral stent |
8097007, | Aug 02 2002 | C R BARD, INC | Self-anchoring sling and introducer system |
8123732, | Aug 21 2002 | Hollister Incorporated | Bowel management system |
8142386, | Apr 18 2002 | Boston Scientific Scimed, Inc. | Anti-reflux ureteral stents and methods |
8155910, | May 27 2005 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotically controlled catheter and method of its calibration |
8167790, | Jan 29 2004 | PSIP2 LLC | Atraumatic arthroscopic instrument sheath |
8235942, | May 04 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8252065, | May 11 2005 | Boston Scientific Scimed, Inc. | Ureteral stent with conforming retention structure |
8317678, | May 04 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8323255, | Aug 21 2002 | Hollister Incorporated | Bowel management system |
8328877, | Mar 19 2002 | Boston Scientific Scimed, Inc | Stent retention element and related methods |
8343040, | May 04 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8366674, | May 04 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8377041, | Feb 28 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8407023, | May 27 2005 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotically controlled catheter and method of its calibration |
8414477, | May 04 2005 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8435229, | Feb 28 2006 | SPIRUS MEDICAL, INC | Rotate-to-advance catheterization system |
8480559, | Sep 13 2006 | C R BARD, INC | Urethral support system |
8506647, | Feb 14 2002 | Boston Scientific Scimed, Inc | System for maintaining body canal patency |
8528565, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system and method for automated therapy delivery |
8551084, | May 28 2004 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Radio frequency ablation servo catheter and method |
8574149, | Nov 13 2007 | C. R. Bard, Inc. | Adjustable tissue support member |
8574220, | Feb 28 2006 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8747300, | May 04 2005 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
8755864, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system and method for diagnostic data mapping |
8764631, | Feb 10 1997 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate to advance catheterization system |
8777841, | May 18 2007 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
8801683, | Aug 21 2002 | Hollister Incorporated | Bowel management system |
8814780, | Jan 29 2004 | PSIP2 LLC | Atraumatic arthroscopic instrument sheath |
8827970, | Sep 09 2003 | Convatec Inc. | Fecal management appliance and method and apparatus for introducing same |
8828091, | Mar 23 2006 | Boston Scientific Scimed, Inc. | Movable stent reinforcement |
8845512, | Nov 14 2005 | C. R. Bard, Inc. | Sling anchor system |
8870755, | May 18 2007 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
8956419, | May 14 2007 | Boston Scientific Scimed, Inc. | Open lumen stent |
9005222, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9204935, | May 28 2004 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for diagnostic data mapping |
9220395, | Sep 27 1999 | OLYMPUS ENDO TECHNOLOGY AMERICA INC | Rotate-to-advance catheterization system |
9237930, | May 27 2005 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotically controlled catheter and method of its calibration |
9364204, | Jan 29 2004 | PSIP2 LLC | Atraumatic arthroscopic instrument sheath |
9504461, | May 20 2005 | Teleflex Life Sciences Limited | Anchor delivery system |
9532861, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9532862, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9555168, | Mar 27 2003 | Coloplast A/S | System for delivery of medication in treatment of disorders of the pelvis |
9566119, | May 28 2004 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
9707065, | Jul 29 2009 | LIFE360 INNOVATIONS LLC | Urinary incontinence device |
9717443, | Jun 12 2014 | Coloplast A/S | Surgical tool and method for identifying an incision site |
9717578, | Jun 12 2014 | Coloplast A/S | Surgical tool adapted for identifying an incision site |
9750574, | May 28 2014 | Coloplast A/S | Surgical system for and a method of identifying an incision site |
9782130, | May 28 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Robotic surgical system |
9872750, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9918817, | Feb 28 2008 | Coloplast A/S | Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman |
9968430, | Oct 12 2000 | Coloplast A/S | Surgical device implantable to treat female urinary incontinence |
9993327, | Nov 03 2010 | Coloplast A/S | Urological device having a bladder retainer and a valve |
D835273, | Jul 25 2017 | LIFE360 INNOVATIONS INC | Urethral plug inserter |
D835784, | Jul 25 2017 | LIFE360 INNOVATIONS INC | Urethral plug |
Patent | Priority | Assignee | Title |
1045326, | |||
1589056, | |||
1644919, | |||
1688795, | |||
1714741, | |||
2078686, | |||
207932, | |||
2450217, | |||
3136316, | |||
3331371, | |||
3419008, | |||
3428046, | |||
3498286, | |||
3503400, | |||
3630206, | |||
3642004, | |||
3731670, | |||
3742958, | |||
3768102, | |||
3788327, | |||
3797478, | |||
3799172, | |||
3812841, | |||
3815608, | |||
3831588, | |||
3863622, | |||
3876234, | |||
3902501, | |||
3924631, | |||
3939821, | Nov 14 1973 | HESS-ROTH UROLOGICAL FOUNDATION | Magnetically actuated tube compressing valve |
3946724, | Apr 09 1973 | Thomson Medical-Telco | Device for measuring pressure |
4024855, | Dec 30 1974 | Magnetic filamentary structure and method for using the same | |
4249536, | May 14 1979 | Urological catheter | |
4266815, | Jul 02 1979 | Smiths Industries Limited | Connectors |
4269192, | Dec 02 1977 | Olympus Optical Co., Ltd. | Stabbing apparatus for diagnosis of living body |
4344435, | Dec 15 1978 | Method and surgically implantable apparatus for providing fluid communication with the interior of the body | |
4350161, | May 09 1980 | Urocath Corporation | Indwelling urethral catheter and method |
4432757, | May 09 1980 | Urocath Corporation | Indwelling urethral catheter |
4501580, | Dec 12 1980 | Indwelling catheters | |
4553533, | Nov 08 1983 | United States of America as represented by the Secretary of the Department of Health and Human Services | Intra-urethral prosthetic sphincter valve |
4579554, | Jan 30 1984 | Indwelling urinary catheter | |
4670008, | Jul 01 1985 | High flux threaded needle | |
4679546, | Oct 17 1984 | Applied Medical Technics B.V. | Implantable shut-off device |
4711249, | Jul 23 1986 | AMBROOK MEDICAL CONCEPTS, INC , A CA CORP | Circumferential membrane, fluid coupled catheter |
4760847, | Aug 18 1986 | Depth measuring device | |
4795439, | Jun 06 1986 | HENLEY OPERATING COMPANY A CORP OF TEXAS | Spiral multi-lumen catheter |
4801293, | Oct 09 1985 | Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto | |
4809709, | Jun 12 1987 | RUBIN, SOL | Pressure-sensing catheter system with compensation for atmospheric and configuration variations |
4815472, | Jun 01 1987 | REGENTS OF THE UNIVERSITY OF MICHIGAN, THE | Multipoint pressure-sensing catheter system |
4820288, | Jun 23 1981 | Terumo Kabushiki Kaisha | Connector for therapeutic tubing and medical solution bag device using the connector |
4822333, | Sep 02 1987 | Urethral endoprosthesis | |
4909785, | Mar 25 1986 | AMS Research Corporation | Method for valving body fluids |
4919653, | Jul 28 1987 | Device for locating the epidural space | |
4934999, | Jul 28 1987 | Closure for a male urethra | |
4946449, | Dec 18 1986 | Urocath Corporation | Indwelling urethral catheter system and method |
4955858, | Nov 02 1988 | Uromed Kurt Drews GmbH | Ureter drain catheter releasably clamped to an advancing tube |
4969896, | Feb 01 1989 | Biomet Biologics, LLC | Vascular graft prosthesis and method of making the same |
5004454, | Feb 15 1989 | AMS Research Corporation | Auxiliary intra-urethral magnetic valve for persons suffering from urinary incontinence |
5018529, | Jun 25 1986 | Radi Medical Systems AB | Miniaturized sensor for physiological pressure measurements |
5030199, | Dec 11 1989 | Urocath Corporation | Female incontinence control device with magnetically operable valve and method |
5030227, | Jun 02 1988 | Boston Scientific Scimed, Inc | Balloon dilation catheter |
5041092, | Aug 29 1989 | Urocath Corporation | Urethral indwelling catheter with magnetically controlled drainage valve and method |
5087252, | Jul 18 1990 | Urinary catheter for human males | |
5088980, | May 31 1990 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, | Intra-urethral valve with integral spring |
5129910, | Jul 26 1991 | CYSTOMEDIX, INC | Stone expulsion stent |
5140999, | Sep 30 1991 | Primed International Corp.; PRIMED INTERANTIONAL CORP A CORPORATION OF MN | Urinary incontinence valve device |
5239982, | Jun 07 1991 | Advanced Cardiovascular Systems, INC | Catheter depth gauge and method of use |
5246445, | Apr 19 1990 | EV3 PERIPHERAL, INC | Device for the treatment of constricted ducts in human bodies |
5271735, | Oct 15 1985 | , | Exterior antimigration refinements for self-cleaning indwelling therapeutic articles |
5275169, | Jan 15 1992 | INNOVATION ASSOCIATES CATHETER COMPANY, LLC | Apparatus and method for determining physiologic characteristics of body lumens |
5279567, | Jul 02 1992 | Conmed Corporation | Trocar and tube with pressure signal |
5312430, | Sep 09 1986 | Boston Scientific Scimed, Inc | Balloon dilation catheter |
5334185, | Jun 28 1991 | Giesy Consultants, Inc. | End-to-end instrument placement apparatus |
5366506, | Apr 05 1993 | INGENION | Proximity intraurethral valve using permanent magnet check |
5380268, | Jun 07 1993 | Body fluid flow control valve and method | |
5383866, | Sep 15 1993 | Occlusion ureteral catheter for retrograde pyelography | |
5389077, | Mar 03 1993 | Uresil Corporation | Minimally invasive body cavity penetrating instruments |
5423809, | Jan 21 1992 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical control for a trocar |
5425382, | Sep 14 1993 | University of Washington | Apparatus and method for locating a medical tube in the body of a patient |
5427114, | Aug 19 1993 | C R BARD, INC | Dual pressure sensing catheter |
5437290, | Sep 06 1991 | BOARD OF TRUSTEES OF THE LELAND STANFORD JR UNIVERSITY | System and method for monitoring intraluminal device position |
5437604, | Dec 23 1993 | Feelsure Health Corporation | Nonsurgical intraurethral bladder control device |
5445144, | Dec 16 1993 | Purdue Research Foundation | Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body |
5470350, | Apr 02 1993 | Siemens Aktiengesellschaft | System for the treatment of pathological tissue having a catheter with a pressure sensor |
547047, | |||
5472405, | Apr 02 1993 | Siemens Aktiengesellschaft | Therapy apparatus for the treatment of pathological tissue with a catheter |
5483832, | Mar 09 1992 | Device for monitoring the contractability of the pelvic floor muscles | |
5486191, | Feb 02 1994 | John Hopkins University | Winged biliary stent |
5492131, | Sep 06 1994 | Boston Scientific Scimed, Inc | Servo-catheter |
5507731, | May 17 1994 | Cordis Corporation | Rapid exchange segmented catheter |
5509888, | Jul 26 1994 | MILLER, PAUL LEONARD | Controller valve device and method |
5512032, | Dec 23 1993 | Feelsure Health Corporation | Nonsurgical intraurethral bladder control device |
5514178, | Jun 24 1993 | COLOPLAST A S | Prosthesis for bodily canal |
5520650, | Aug 25 1994 | Self-arresting overpenetration-proof cannula device for body cavities | |
5520665, | Sep 07 1992 | Bespak PLC | Connecting apparatus for medical conduits |
5527336, | Dec 09 1986 | Boston Scientific Scimed, Inc | Flow obstruction treatment method |
5549577, | Dec 29 1993 | CAREFUSION 303, INC | Needleless connector |
5558091, | Oct 06 1993 | Biosense, Inc | Magnetic determination of position and orientation |
5601537, | Jun 05 1995 | SPIRUS MEDICAL, INC | Catheter system |
5618257, | Aug 16 1995 | Feelsure Health Corporation | Bladder control insertion apparatus and method |
5701916, | Aug 16 1995 | Feelsure Health Corporation | Intraurethral bladder control device with retainer apparatus |
5711314, | Nov 08 1996 | CYSTOMEDIX, INC | Urinary incontinence valve with distal and proximal anchoring means |
5713877, | Jun 05 1996 | Urocath Corporation | Indwelling magnetically-actuated urinary catheter, and method of its construction |
5718686, | Jul 02 1996 | Urocath Corporation | Anchoring system and method for indwelling urethral catheter |
5722932, | Dec 23 1993 | Feelsure Health Corporation | Nonsurgical intraurethral bladder control device |
707775, | |||
EP753289A1, | |||
FR564832, | |||
GB2219941, | |||
GB2219943, | |||
WO9517862, | |||
WO9706758, | |||
WO9725090, | |||
WO9806354, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 19 1997 | AbbeyMoor Medical, Inc. | (assignment on the face of the patent) | / | |||
Feb 13 1998 | WILLARD, LLOYD K | ABBEYMOOR MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008999 | /0881 | |
Oct 26 2010 | ABBEYMOOR MEDICAL, INC | RAIN SOURCE MANAGEMENT, LLC | SECURITY AGREEMENT | 025761 | /0973 | |
Jun 10 2011 | ABBEYMOOR MEDICAL, INC | MAYER, THOMAS J , ESQ , MR | AMENDED AND RESTATED SECURITY AGREEMENT NAMING THOMAS J MAYER AS COLLATERAL AGENT | 026501 | /0970 | |
Oct 30 2012 | MAYER, THOMAS J , ESQ , MR | ABBEYMOOR MEDICAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 029233 | /0585 |
Date | Maintenance Fee Events |
Nov 04 2002 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 25 2002 | ASPN: Payor Number Assigned. |
Apr 02 2007 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
May 30 2011 | REM: Maintenance Fee Reminder Mailed. |
Aug 29 2011 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Aug 29 2011 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Oct 26 2002 | 4 years fee payment window open |
Apr 26 2003 | 6 months grace period start (w surcharge) |
Oct 26 2003 | patent expiry (for year 4) |
Oct 26 2005 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 26 2006 | 8 years fee payment window open |
Apr 26 2007 | 6 months grace period start (w surcharge) |
Oct 26 2007 | patent expiry (for year 8) |
Oct 26 2009 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 26 2010 | 12 years fee payment window open |
Apr 26 2011 | 6 months grace period start (w surcharge) |
Oct 26 2011 | patent expiry (for year 12) |
Oct 26 2013 | 2 years to revive unintentionally abandoned end. (for year 12) |