This invention relates to methods of making new and improved diamond, "diamond-like carbon" (a-C) and "diamond-like hydrocarbon" (a-C:H) coatings bonded to substrates by using intermediate bonding layers comprising amorphous "glassy" metals, engineered to reduce the residual stress in the diamond coatings, and to articles of manufacture made using such methods.
|
3. A process for creating on a substrate an amorphous layer over which a diamond coating layer is applied comprising:
a. selecting a substrate from the group consisting of metals, cermets and ceramics and having at least one exterior surface; b. converting a surface layer of said substrate from a crystalline structure into an amorphous structure by heating with laser radiation, and after said heating, rapidly cooling said substrate surface to maintain the amorphous structure created by the heating; and c. depositing over said amorphous layer an outer layer of a synthetic diamond coating.
1. A process for applying to a substrate an amorphous coating over which a diamond coating is applied comprising:
a. coating said substrate with an intermediate coating having a defined crystalline structure selected from the group consisting of at least one of Ti, Zr, Hf, Fe, Co, Ni, Cr, Mn, Mo, Ta, Nb, Cu, Au, Ag, B, Al and Si; b. converting said crystalline structure of said intermediate coating into an amorphous structure by heating with laser radiation, and after said heating, rapidly cooling said intermediate coating to maintain the amorphous structure created by the heating; and c. depositing over said intermediate coating an outer layer of a synthetic diamond coating by chemical vapor deposition.
2. The process of
4. The process of
|
This application is a continuation of application Ser. No. 08/689,771 filed on Aug. 12, 1996, now abandoned, which is a continuation of Ser. No. 08/482,086 filed on Jun. 7, 1995, now abandoned, which is a continuation-in-part of Ser. No. 07/487,940 filed on Mar. 5, 1990, now abandoned, which is a continuation-in-part of Ser. No. 07/032,352, filed Mar. 31, 1987, now U.S. Pat. No. 4,960,643. The disclosures of the foregoing applications are incorporated by reference herein.
1. Field of the Invention
This invention relates to methods of making new and improved diamond, "diamond-like carbon" (a-C) and "diamond-like hydrocarbon" (a-C:H) coatings bonded to substrates by using intermediate bonding layers comprising amorphous "glassy" metals, engineered to reduce the residual stress in the diamond coatings, and to articles of manufacture made using such methods.
2. Background of the Invention
Diamond, diamond-like carbon and diamond-like hydrocarbon coatings have been employed both to provide hard faces on engineered materials and as abrasive coatings on articles made from such materials. Typically such diamond films and/or particles are applied using some form of chemical vapor deposition (CVD) process. Such processes generally use thermal decomposition of a mixture of hydrogen and carbon compounds, preferably hydrocarbons, into diamond generating carbon atoms preferentially from the gas phase activated in such a way as to avoid substantially the deposition of graphitic carbon. The specific types of carbon compounds useful for CVD include C1-C4 saturated hydrocarbons such as methane, ethane, propane and butane; C1-C4 unsaturated hydrocarbons such as acetylene, ethylene, propylene and butylene; gases containing C and O such as carbon monoxide and carbon dioxide; aromatic compounds such as benzene, toluene, xylene, and the like; and organic compounds containing C, H. and at least one of oxygen and/or nitrogen such as methanol, ethanol, propanol, dimethyl ether, diethyl ether, methylamine, ethylamine, acetone, and similar materials (see U.S. Pat. No. 4,816,286). The concentration of carbon compounds in the hydrogen gas can vary from about 0.1% to about 5%, preferably from about 0.2% to 3%, and more preferably from about 0.5% to 2%. The resulting diamond film in such a deposition method is in the form of adherent individual crystallites or a layer-like agglomerates of crystallites substantially free from intercrystalline adhesion binder.
Such CVD processes are known to those skilled in the art, and ordinarily use some form of energy (for example, microwave radiation, as in U.S. Pat. No. 4,859,493 and in U.S. Pat. No. 4,434,188) to pyrolyze hydrocarbon gases such as methane at concentrations of about 1% to 2% in a low pressure (about 10 torr) hydrogen atmosphere, causing deposition of diamond or "diamond-like carbon" (a-C) or "diamond-like hydrocarbon" (a-C:H) particles or film on a nearby substrate. (Diamond and "diamond-like carbon" (a-C) coatings have an atomic hydrogen fraction of zero; for "diamond-like hydrocarbon" (a-C:H) coatings that fraction ranges from about 0.15 to about 0.6. Diamond coatings have atom number densities around 0.29 gram-atoms per cubic centimeter; "diamond-like carbon" (a-C) and "diamond-like hydrocarbon" (a-C:H) materials are characterized by atom number densities above 0.19 gram-atoms per cc.) It is also known to assist the CVD process using a variety of techniques including (1) pyrolysis by a hot tungsten filament intended to generate atomic hydrogen near the substrate (HFCVD); (2) supplying electrons by negatively biasing the filament as in electron-assisted chemical vapor deposition (EACVD); (3) creating a plasma using microwave energy or RF energy (PACVD; see U.S. Pat. Nos. 4,504,519 and 5,382,293); (4) using an argon ion beam to decompose the hydrocarbon feedstock, as in U.S. Pat. No. 4,490,229 and (5) using direct-current electrical discharge methods. See, generally, John C. Angus and Cliff C. Hayman, "Low-Pressure, Metastable Growth of Diamond and `Diamond-like` Phases," Science, Aug. 19, 1988, at p. 913. The disclosures of the U.S. patent references cited above are incorporated by reference herein.
The ion beam deposition method typically involves producing carbon ions by heating a filament and accelerating carbon ions to selected energies for deposit on a substrate in a high vacuum environment. Ion beam systems use differential pumping and mass separation techniques to reduce the level of impurities in the carbon ion flow to the growing film.
The chemical vapor deposition and plasma enhanced chemical vapor deposition methods are similar in operation. Both methods use the dissociation of organic vapors (such as CH3 OH, C2 H2, and CH3 OHCH3) to produce both carbon ions and neutral atoms of carbon for deposit on a substrate. Plasma enhanced methods are described in U.S. Pat. No. 5,382,293 and U.S. No. 5,403,399.
Non-hydrogenated diamond-like carbon (a-C) films can be applied using a variety of techniques, which include magnetron sputtering, electron beam physical vapor deposition (EBPVD), laser photo-ablation, mass-filtered carbon ion beam deposition and cathodic arc plasma deposition, as described in U.S. Pat. No. 5,401,543 (incorporated by reference herein).
Sputtering deposition usually includes two ion sources, one for sputtering carbon from a graphite source onto a substrate, and another ion source for breaking the unwanted graphite bonds in the growing film. In the typical sputtering method, an argon ion sputtering gun sputters pure carbon atoms off of a graphite target within a vacuum chamber, and the carbon atoms are condensed onto a substrate. Simultaneously, another argon ion source bombards the substrate to enhance the breakdown of the graphite bonding in favor of a diamond-like sp3 tetrahedral bond in the growing carbon film.
It is also known to apply polycrystalline diamond layers using sintering at simultaneous high pressures (50 kbar) and temperatures (1300°C) to create conditions under which the diamond phase is thermodynamically stable, as in U.S. Pat. No. 5,370,195. And liquid-phase diffusion metallizing techniques also have been suggested for bonding diamond to certain types of substrates, as in U.S. Pat. No. 5,392,982.
Synthetic diamond-coated articles have found a wide variety of uses. U.S. Pat. No. 4,960,643, for example, discloses articles coated with synthetic diamond particles of controlled size, to which an overlying film, for example of chromium, has been applied to help the diamond layer resist scratching and wear. Other patents disclose various diamond-coated articles of manufacture, including bearings (U.S. Pat. No. 5,284,394); fasteners (U.S. Pat. No. 5,096,352); engine parts (U.S. Pat. Nos. 5,132,587 and 4,974,498) and the like.
The usefulness of diamond-coated engineered materials, and especially those made by CVD techniques, has been limited, however, by the large residual stress which remains in the finished composite products after coating is complete and the coated article has cooled. The stress arises from the very large differences in coefficients of thermal expansion (CTE) between the diamond coating (which have very low CTE's) and the substrates to which it is desired to bond it (often a metal having a much higher CTE). The substrate contracts during cooling more than the diamond film, leaving the diamond film in a permanent state of compressive stress which promotes spalling and cracking. The effect is aggravated by the high elastic modulus (low compressibility) of diamond compared to that of the substrate.
Prior attempts to address the problem of fragility and crack propagation caused by residual stress have included providing soft, metallic braze layers, as in U.S. Pat. No. 4,968,326, sometimes molybdenum-based or carbide-based, as in U.S. Pat. No. 4,776,862. It has also been suggested to supply an intermediate braze layer in the form of multiple elements such as discs with dissimilar centers and edges between the metal and the diamond being bonded together. See U.S. Pat. No. 5,392,982. Such complex, multi-part intermediate layers are unsuited to situations in which uniform properties over a comparatively large coating area are desired and would also be difficult to adapt to CVD diamond film application techniques. Similarly, techniques that require drilling holes through the diamond layer to mechanically assist in bonding, as in U.S. Pat. No. 5,239,746, are excessively complex and costly for any high-volume applications.
Others have suggested simultaneously co-depositing a silicon carbide onto a molybdenum substrate, along with the diamond. See U.S. Pat. No. 5,190,823. Such a technique, however, requires weeks of deposition time and is impractical for commercial purposes. And, it fails to address the problem of ameliorating the differences in CTE between the diamond and the substrate: the SiC has a CTE much closer to that of diamond than to those of steel or aluminum alloys, as does Si3 N4, which has also been suggested as a base for sinter coating. See U.S. Pat. No. 5,137,398. Mixing SiC or Si3 N4 with diamond in a single, mixed coating does still leaves a likelihood of unacceptably high residual compressive stress. And, along with the low CTE, such materials lack the ductility and other desirable properties of metal substrates.
Still other investigators have suggested depositing multiple-layer polycrystalline diamond films by HFCVD, with cooling periods between layers of diamond film. See U.S. Pat. No. 5,124,179. This technique, however, also requires prolonged deposition times.
We find that the residual stress in diamond and diamond-like carbon thin film coatings applied to metal, cermet and ceramic substrates can be reduced to acceptably low levels by using an intermediate film coating of amorphous ("glassy") metal.
Accordingly, it is an object of this invention to provide composite engineered materials having diamond or "diamond-like carbon" (a-C) or "diamond-like hydrocarbon" (a-C:H) coatings applied by CVD techniques but lacking most of the undesirable residual compressive stress induced by such techniques.
It is still another object of this invention to provide articles having multi-layer coatings in which a metal, cermet or ceramic substrate has an overlying layer in a "glassy" (amorphous) phase to which a diamond film having reduced residual stress has been applied.
It is a further object of this invention to provide articles of manufacture having such intermediate "glassy" layers and overlying diamond, diamond-like carbon or diamond-like hydrocarbon coatings, such articles including but not limited to PC boards; fasteners; bearings; cutting tools; valve seats; gears; blades; drill bits; dies; dental tools, medical prostheses or implants intended for long-term use inside the human body.
Further objects of this invention will be apparent to those skilled in the arts to which it pertains from the following detailed description.
Intermediate-Layer Coatings
In its broadest embodiment, our invention comprises the provision of an intermediate layer of amorphous "glassy" metal between a metal, ceramic or cermet substrate and an overlying layer of diamond, diamond-like carbon or diamond-like hydrocarbon material. Substrates may be chosen from the group comprising metals, ceramics and cermets. Among substrate metals, we prefer to use aluminum castings in the 300 series; mild steel having 0.08% to 0.16% carbon; high carbon steel; or nickel-based superalloys. The aluminum alloy AlS380.0 (Al--8Si--3Cu--Fe) is most preferred. Suitable ceramics for the substrate are high strength carbides, nitrides, silicides, oxides and borides of such metals, while appropriate cermets include tungsten carbide with 4% to 15% cobalt or nickel.
The intermediate layer may be comprised of carbides or nitrides of aluminum, silicon, titanium, tungsten, boron, molybdenum, zirconium or tantalum. Sialons (Si--Al--O--N ceramics, specifically Si3 Al3 O3 N5) also may be used. So can commercially-available Ti--6Al--4V and Si--Al--V alloys. SiC is most preferred. Generally, the preferred thickness of the intermediate layer should be in the range of 10 to 50 micro-meters. The composition of the intermediate layer should be selected and its thickness predetermined to contract during cooling more slowly and to a lesser extent than the substrate, thereby decreasing the residual stress remaining in the diamond film when cooling is completed.
To manufacture diamond-coated articles using our invention, an article machined, cast or otherwise fabricated of the desired substrate is first coated with the selected intermediate layer. Such coating can be accomplished by a variety of techniques. One suitable method is metal vapor deposition (MVD), in which a layer of fine powdered intermediate metal (e.g. Ti) is applied to the surface of the substrate and then heated at pressures on the order of 10-6 torr to a temperature of 600°C to 700°C or higher (depending upon the vaporization temperature of the metal) for an hour or more, resulting in vaporization of the intermediate layer and condensation on the substrate. See, for example, U.S. Pat. No. 5,224,969, which describes an application of the technique. Alternately, electron beam physical vapor deposition (EBPVD) can be used. In that technique, the substrate article is placed in a high vacuum chamber in proximity to a sample of metal or ceramic desired to be used for the intermediate layer. The intermediate layer material is exposed to a focused electron beam which vaporizes it. The intermediate layer metal or ceramic material then condenses on the surface of the substrate. Other suitable techniques for applying the intermediate layer include sputtering, sintering of powder, electroplating, electroless deposition, diffusion coating and spray coating.
Following application or creation of the intermediate amorphous "glassy" layer, a diamond or diamond-like carbon coating is applied by CVD or by a modified CVD process, such as HFCVD. The total thickness of the diamond film is at least about 0.5 micrometers, and preferably at least 1 micro-meter.
The intermediate layer is either deposited in an amorphous (glassy) phase or is converted into such a state after deposition. It is known that many types of metals and ceramics including Ti, Zr, Hf, Fe, Co, Ni, Cr, Mn, Mo, Ta, Nb, Cu, Au, Ag, B, Al and Si can be solidified or converted into an amorphous, "glassy" state lacking a defined crystalline structure. See U.S. Pat. No. 4,837,089. Metals that are particularly suitable include iron, palladium and some aluminum-based alloys containing more than 80% aluminum. See, e.g., R. Lipkin, "New Glasses Arise From Liquid's Slow Flow," Science, Apr. 1, 1995, at p. 199. Lacking defined crystal structures, such amorphous or glassy metals may have superior ductility compared to ordinary, crystalline alloys. This makes them suitable as intermediate layers between diamond coatings and substrates, since their ductility reduces residual stress in the diamond coating layer.
We find that one way to create an amorphous or "glassy" metal intermediate layer is by laser heating of the surface of the substrate itself followed by very rapid cooling. In that instance, the "glassy" intermediate layer will have a chemical composition similar or identical to that of the substrate. Alternatively, an intermediate layer of a dissimilar metal, metal alloy or ceramic comprising one or a combination of the elements listed above can be applied to a substrate using one of the techniques disclosed above. That layer can then be converted to an amorphous or "glassy" state by laser, rf or induction heating followed by extremely rapid cooling. In either instance, an overlying diamond film then can be applied by CVD or other suitable techniques.
In still another alternative method, the pyrolysis reactions that form the synthetic diamond layer may be conducted simultaneously with the laser, rf or induction heating to form the amorphous "glassy" layer. Rapid cooling prevents formation of metal crystal structures in the combined glassy metal/diamond layer.
It will be apparent to those of ordinary skill in the art that many changes and modifications could be made while remaining within the scope of our invention. We intend to cover all such equivalent articles of manufacture and processing methods, and to limit our invention only as specifically delineated in the following claims.
Lemelson, Jerome H., Conley, James G.
Patent | Priority | Assignee | Title |
10182924, | Dec 28 2004 | DEPUY SYNTHES PRODUCTS, INC | Prosthetic joint with articulating surface layers comprising ADLC |
10273758, | Jul 07 2016 | BAKER HUGHES HOLDINGS LLC | Cutting elements comprising a low-carbon steel material, related earth-boring tools, and related methods |
6325385, | Oct 15 1998 | Teikoku Piston Ring Co., Ltd. | Piston ring |
6715693, | Feb 15 2000 | Caterpillar Inc | Thin film coating for fuel injector components |
6862919, | Jun 17 2003 | DELPHI TECHNOLOGIES IP LIMITED | Ethanol and volatility sensor and fabrication method |
6886403, | Jun 17 2003 | Delphi Technologies, Inc. | Sensor with amorphous electrode |
6935618, | Dec 18 2002 | DELTA FAUCET COMPANY | Valve component with multiple surface layers |
7021557, | Feb 15 2000 | Caterpillar Inc. | Thin film coatings for fuel injector components |
7105030, | May 14 1998 | CONSENSUS ORTHOPEDICS, INC | Implant with composite coating |
7134381, | Aug 21 2003 | NISSAN MOTOR CO , LTD | Refrigerant compressor and friction control process therefor |
7146956, | Aug 08 2003 | NISSAN MOTOR CO , LTD | Valve train for internal combustion engine |
7166371, | Mar 28 2002 | Hardide PLC | Self-sharpening cutting tool with hard coating |
7189262, | May 14 1998 | CONSENSUS ORTHOPEDICS, INC | Bimetal tibial component construct for knee joint prosthesis |
7216661, | Dec 18 2002 | DELTA FAUCET COMPANY | Method of forming a wear resistant component |
7228786, | Jun 06 2003 | Nissan Motor Co., Ltd. | Engine piston-pin sliding structure |
7255083, | Oct 10 2003 | Nissan Motor Co., Ltd. | Sliding structure for automotive engine |
7273655, | Apr 09 1999 | Shojiro, Miyake; Nissan Motor Co., Ltd. | Slidably movable member and method of producing same |
7284525, | Aug 13 2003 | NISSAN MOTOR CO , LTD | Structure for connecting piston to crankshaft |
7318514, | Aug 22 2003 | NISSAN MOTOR CO , LTD | Low-friction sliding member in transmission, and transmission oil therefor |
7322749, | Nov 06 2002 | Nissan Motor Co., Ltd.; Nippon Oil Corporation | Low-friction sliding mechanism |
7323219, | Mar 14 2002 | Teer Coatings Ltd | Apparatus and method for applying diamond-like carbon coatings |
7341765, | Jan 27 2004 | Battelle Energy Alliance, LLC | Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates |
7406940, | May 23 2003 | NISSAN MOTOR CO , LTD | Piston for internal combustion engine |
7427162, | May 27 2003 | Nissan Motor Co., Ltd. | Rolling element |
7445026, | Dec 18 2002 | DELTA FAUCET COMPANY | Valve component with improved wear resistance |
7445640, | May 14 1998 | SHALBY ADVANCED TECHNOLOGIES, INC | Implant with composite coating |
7458585, | Aug 08 2003 | NISSAN MOTOR CO , LTD | Sliding member and production process thereof |
7484672, | Sep 21 1998 | Caterpillar Inc. | Coatings for use in fuel injector components |
7500472, | Apr 15 2003 | NISSAN MOTOR CO , LTD | Fuel injection valve |
7513912, | May 14 1998 | SHALBY ADVANCED TECHNOLOGIES, INC | Bimetal tibial component construct for knee joint prosthesis |
7572200, | Aug 13 2003 | Nissan Motor Co., Ltd. | Chain drive system |
7650976, | Aug 22 2003 | Nissan Motor Co., Ltd. | Low-friction sliding member in transmission, and transmission oil therefor |
7771821, | Aug 21 2003 | NISSAN MOTOR CO , LTD ; NISSAN ARC, LTD ; MARTIN, JEAN MICHEL | Low-friction sliding member and low-friction sliding mechanism using same |
7785428, | Nov 09 2000 | Battelle Energy Alliance, LLC | Method of forming a hardened surface on a substrate |
7816011, | Dec 28 2007 | Industrial Technology Research Institute | Structural material of diamond like carbon composite layers |
7850738, | May 14 1998 | Bimetal acetabular component construct for hip joint prosthesis | |
7866342, | Dec 18 2002 | DELTA FAUCET COMPANY | Valve component for faucet |
7866343, | Dec 18 2002 | DELTA FAUCET COMPANY | Faucet |
7942343, | Sep 21 1998 | Caterpillar Inc. | Coatings for use in fuel injector components |
8096205, | Jul 31 2003 | Nissan Motor Co., Ltd. | Gear |
8097095, | Nov 09 2000 | Battelle Energy Alliance, LLC | Hardfacing material |
8118055, | Dec 18 2002 | DELTA FAUCET COMPANY | Valve component for faucet |
8123967, | Aug 01 2005 | Vapor Technologies Inc. | Method of producing an article having patterned decorative coating |
8152377, | Nov 06 2002 | Nissan Motor Co., Ltd.; Nippon Oil Corporation | Low-friction sliding mechanism |
8167954, | May 14 1998 | SHALBY ADVANCED TECHNOLOGIES, INC | Implant with composite coating |
8206035, | Aug 06 2003 | NISSAN MOTOR CO , LTD ; Nippon Oil Corporation; MARTIN, JEAN MICHEL | Low-friction sliding mechanism, low-friction agent composition and method of friction reduction |
8220489, | Dec 18 2002 | DELTA FAUCET COMPANY | Faucet with wear-resistant valve component |
8221823, | Mar 30 2004 | Toyo Advanced Technologies Co., Ltd. | Method for fabricating material |
8505414, | Jun 23 2008 | STANLEY BLACK & DECKER, INC | Method of manufacturing a blade |
8555921, | Dec 18 2002 | DELTA FAUCET COMPANY | Faucet component with coating |
8575076, | Aug 08 2003 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
8769833, | Sep 10 2010 | Stanley Black & Decker, Inc. | Utility knife blade |
9388910, | Dec 18 2002 | DELTA FAUCET COMPANY | Faucet component with coating |
9393984, | Sep 10 2010 | Stanley Black & Decker, Inc. | Utility knife blade |
9833870, | May 15 2013 | Adico Co, LTD | Superabrasive tool with metal mesh stress stabilizer between superabrasive and substrate layers |
9909677, | Dec 18 2002 | DELTA FAUCET COMPANY | Faucet component with coating |
Patent | Priority | Assignee | Title |
2411867, | |||
2793282, | |||
2861166, | |||
2947610, | |||
2968723, | |||
3141746, | |||
3207582, | |||
3346458, | |||
3702573, | |||
3714332, | |||
3769084, | |||
3913280, | |||
3916506, | |||
3929432, | |||
3959557, | Nov 04 1974 | Minnesota Mining and Manufacturing Company | Wear-resistant, nonabrading tic article and process for making |
4054426, | Dec 20 1972 | White Engineering Corporation | Thin film treated drilling bit cones |
4084942, | Aug 27 1975 | Ultrasharp diamond edges and points and method of making | |
4385880, | Jun 27 1957 | Syndia Corporation | Shock wave processing apparatus |
4434188, | Dec 17 1981 | National Institute for Researches in Inorganic Materials | Method for synthesizing diamond |
4490229, | Jul 09 1984 | The United States of America as represented by the Administrator of the | Deposition of diamondlike carbon films |
4504519, | Oct 21 1981 | RCA Corporation | Diamond-like film and process for producing same |
4554208, | Dec 27 1983 | General Motors Corporation | Metal bearing surface having an adherent score-resistant coating |
4594294, | Sep 23 1983 | BODYCOTE METALLURGICAL COATINGS, INC | Multilayer coating including disordered, wear resistant boron carbon external coating |
4621031, | Nov 16 1984 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
4663183, | Sep 10 1984 | OVONIC SYNTHETIC MATERIALS COMPANY, INC | Glow discharge method of applying a carbon coating onto a substrate |
4707384, | Jun 27 1984 | Santrade Limited | Method for making a composite body coated with one or more layers of inorganic materials including CVD diamond |
4725345, | Apr 22 1985 | Kabushiki Kaisha Kenwood | Method for forming a hard carbon thin film on article and applications thereof |
4734339, | Jun 27 1984 | Santrade Limited | Body with superhard coating |
4755237, | Jul 11 1980 | Methods for making cutting tools | |
4764434, | Jun 26 1987 | SANDVIK AKTIEBOLAG, S-811 81 SANDVIKEN, SWEDEN, A CORP OF SWEDEN | Diamond tools for rock drilling and machining |
4776862, | Dec 08 1987 | Brazing of diamond | |
4783368, | Nov 06 1985 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | High heat conductive insulated substrate and method of manufacturing the same |
4816286, | Nov 25 1985 | Showa Denko Kabushiki Kaisha | Process for synthesis of diamond by CVD |
4834806, | Sep 19 1986 | YKK Corporation | Corrosion-resistant structure comprising a metallic surface and an amorphous alloys surface bonded thereupon |
4837089, | Dec 19 1986 | Nippon Oil and Fats Company, Limited | High hardness composite sintered compact |
4849199, | Mar 30 1987 | ADVANCED REFRACTORY TECHNOLOGIES, INC | Method for suppressing growth of graphite and other non-diamond carbon species during formation of synthetic diamond |
4859493, | Mar 31 1987 | Syndia Corporation | Methods of forming synthetic diamond coatings on particles using microwaves |
4874596, | Oct 22 1965 | Syndia Corporation | Production of crystalline structures |
4882138, | Mar 30 1987 | ADVANCED REFRACTORY TECHNOLOGIES, INC | Method for preparation of diamond ceramics |
4904542, | Oct 11 1988 | Midwest Research Technologies, Inc. | Multi-layer wear resistant coatings |
4960643, | Mar 31 1987 | Syndia Corporation | Composite synthetic materials |
4968326, | Oct 10 1989 | Method of brazing of diamond to substrate | |
4974498, | Mar 31 1987 | Syndia Corporation | Internal combustion engines and engine components |
5009966, | Dec 31 1987 | Hard outer coatings deposited on titanium or titanium alloys | |
5021628, | Feb 06 1975 | Syndia Corporation | Apparatus and method for reacting on matter |
5040501, | Mar 31 1987 | Syndia Corporation | Valves and valve components |
5067826, | Mar 31 1987 | Syndia Corporation | Ball and roller bearings and bearing components |
5096352, | Mar 31 1987 | Syndia Corporation | Diamond coated fasteners |
5124179, | Sep 13 1990 | MORGAN CHEMICAL PRODUCTS, INC | Interrupted method for producing multilayered polycrystalline diamond films |
5131941, | Mar 05 1964 | Syndia Corporation | Reaction apparatus and method |
5132587, | Mar 31 1987 | Syndia Corporation | Spark plug electrodes |
5137398, | Apr 27 1990 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Drill bit having a diamond-coated sintered body |
5161728, | Nov 29 1988 | Ceramic-metal bonding | |
5190823, | Jul 31 1989 | DIAMOND INNOVATIONS, INC; GE SUPERABRASIVES, INC | Method for improving adhesion of synthetic diamond coatings to substrates |
5224969, | Jul 20 1990 | Norton Company | Diamond having multiple coatings and methods for their manufacture |
5239746, | Jun 07 1991 | Norton Company | Method of fabricating electronic circuits |
5284394, | Mar 07 1990 | Syndia Corporation | Ball and roller bearings and bearing components |
5366556, | Jan 14 1982 | Process and apparatus for production of diamond-like films | |
5370195, | Sep 20 1993 | Smith International, Inc. | Drill bit inserts enhanced with polycrystalline diamond |
5382293, | Aug 03 1990 | Fujitsu Limited | Plasma jet CVD apparatus for forming diamond films |
5391407, | Mar 18 1994 | Southwest Research Institute | Process for forming protective diamond-like carbon coatings on metallic surfaces |
5391409, | Apr 01 1991 | Sumitomo Electric Industries, Ltd. | Low temperature method for synthesizing diamond with high quality by vapor phase deposition |
5392982, | Sep 16 1988 | Ceramic bonding method | |
5401543, | Nov 09 1993 | Minnesota Mining and Manufacturing Company | Method for forming macroparticle-free DLC films by cathodic arc discharge |
5403399, | Apr 03 1987 | Fujitsu Limited | Method and apparatus for vapor deposition of diamond |
5456406, | Mar 31 1987 | Syndia Corporation | Fastening devices |
JP57106513, | |||
JP60195094, | |||
JP61106494, | |||
JP61124573, | |||
JP62196371, | |||
JP6272921, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 30 2001 | LEMELSON MEDICAL, EDUCATION & RESEARCH FOUNDATION | Syndia Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012322 | /0066 |
Date | Maintenance Fee Events |
Dec 22 2003 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 14 2008 | REM: Maintenance Fee Reminder Mailed. |
Jul 04 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 04 2003 | 4 years fee payment window open |
Jan 04 2004 | 6 months grace period start (w surcharge) |
Jul 04 2004 | patent expiry (for year 4) |
Jul 04 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 04 2007 | 8 years fee payment window open |
Jan 04 2008 | 6 months grace period start (w surcharge) |
Jul 04 2008 | patent expiry (for year 8) |
Jul 04 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 04 2011 | 12 years fee payment window open |
Jan 04 2012 | 6 months grace period start (w surcharge) |
Jul 04 2012 | patent expiry (for year 12) |
Jul 04 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |