Disclosed is a completely implantable system that can detect the occurrence of a myocardial infarction, i.e., a heart attack, and automatically inject a thrombolytic and/or anti-thrombogenic agent into the bloodstream to promptly dissolve the thrombus that caused the myocardial infarction and prevent the formation of additional thrombi. It is well known that a myocardial infarction can be detected from a patient's electrocardiogram by noting an ST segment voltage deviation as compared to the voltage of the patient's TP or PQ segments. Upon detection of a myocardial infarction, an ST segment deviation electronic detection circuit within the implanted device can produce an output signal that can cause a thrombolytic and/or anti-thrombogenic agent contained within an implanted, pressurized reservoir to immediately and automatically release medications into the patient's bloodstream. A patient warning system is provided by an audio alarm or an electrical tickle within the human body indicating that a myocardial infarction has been detected. The implanted system can also send a radio message to an externally located receiver that automatically dials an emergency rescue team to take the patient to a hospital for continuing treatment of his myocardial infarction. An implantable defibrillator or pacemaker that includes the capability for informing the patient that myocardial infarction has been detected is also disclosed. Still further, this invention could also be used without a defibrillator or pacemaker but as an implanted system (without medications) whose only function would be the detection and warning of myocardial infarction at the earliest possible time.
|
38. A system for indicating to a human subject that he is having a myocardial infarction, the system comprising:
an implantable sensor for detecting the occurrence of a myocardial infarction; and an alarm means for informing the human subject that a myocardial infarction has been detected, the alarm means comprising an implanted radio transmitter that is adapted to send a radio signal that includes an alarm signal denoting the occurrence of a myocardial infarction to external receiving equipment, the external receiving equipment including an audio alarm to inform the patient that a myocardial infarction has been detected.
1. An automatic detection and responsive medication release system implanted within a human subject for the treatment of myocardial infarction, the system comprising:
a sensor having an output electrical signal, the sensor being adapted to detect a signal from within the human body that is indicative of the onset of myocardial infarction; and a medication release device that contains electrical circuitry means that is electrically connected to the sensor, the electrical circuit means being adapted to provide a triggering signal when the output electrical signal from the sensor indicates the occurrence of a myocardial infarction, the medication release device also having at least one medication reservoir for storing a medication and also having a medication releasing means for causing that medication to be released into the bloodstream of the human subject when the triggering signal from the electrical circuitry means indicates that a myocardial infarction is occurring.
2. The medication release system of
3. The medication release system of
4. The medication release system of
5. The medication release system of
6. The medication release system of
7. The medication release system of
8. The medication release system of
9. The medication release system of
12. The medication release system of
13. The medication release system of
14. The medication release system of
17. The medication release system of
19. The medication release system of
23. The medication release system of
24. The medication release system of
25. The medication release system of
26. The medication release system of
27. The medication release system of
28. The medication release system of
29. The medication release system of
30. The medication release system of
31. The medication release system of
32. The medication release system of
33. The medication release system of
34. The medication release system of
35. The medication release system of
36. The medication release system of
37. The medication release system of
40. The system of
41. The system of
42. The system of
43. The system of
44. The system of
45. The system of
46. The system of
47. The system of
48. The system of
49. The system of
50. The system of
|
This invention is in the field of devices implanted within a human body for the purpose of automatically detecting the onset of myocardial infarction, warning the patient that a myocardial infarction is occurring and promptly releasing medication into the bloodstream for the purpose of dissolving obstructive thrombus in a coronary artery thus ameliorating damage to the myocardial tissue which would otherwise occur.
Heart disease is the leading cause of death in the United States. The most prevalent fatal manifestation of coronary heart disease is myocardial infarction which is caused primarily by a thrombus that obstructs blood flow in one or more coronary arteries. The medical treatment of myocardial infarction involves intravenous delivery of a thrombolytic medication such as tissue plasminogen activator to help dissolve the thrombus in a coronary artery. The sooner thrombolytic medication is placed into the patient's bloodstream after the occurrence of a myocardial infarction, the sooner an obstructive thrombus will be dissolved and some perfusion of the myocardium can occur. The extent of permanent damage to the myocardium is highly dependent upon the length of time that occurs prior to restoration of blood flow to the heart muscle. However, at this time no implantable system exists that provides for early and automatic detection of myocardial infarction. Furthermore, no system exists that would provide automatic and immediate release of an anti-thrombogenic or thombolytic agent into the bloodstream to dissolve an obstructive blood clot at the earliest possible time.
One embodiment of the present invention is a completely implantable system that can detect the occurrence of a myocardial infarction, i.e., a heart attack, within less than a minute after it begins and then automatically inject a thrombolytic and/or anti-thrombogenic agent into the bloodstream to promptly dissolve the thrombus that caused the myocardial infarction and to prevent the formation of additional thrombi.
It is well known that a myocardial infarction can be detected from a patient's electrocardiogram by noting an ST segment deviation (i.e., voltage increase) as compared to the voltage of the patient's TP or PQ segments. Such an ST segment deviation can be even more clearly discerned with electrodes implanted within the body (especially within or in close proximity to the heart) as compared with detecting the deviated ST segment from chest or limb mounted electrodes. The signal from the heart using implanted electrodes is called an "electrogram". By means of an electrogram, early detection of a thrombus causing myocardial ischemia is clearly feasible.
Upon detection of a myocardial infarction, an ST segment deviation electronic detection circuit within the implanted device can produce an output signal that can cause a thrombolytic and/or anti-thrombogenic agent contained within an implanted, pressurized reservoir to immediately and automatically release medications into the patient's bloodstream. Thus, the thrombolytic agent is placed into the bloodstream for dissolving an obstructive thrombus at the earliest possible time. Therefore, both mortality and morbidity can be dramatically reduced. In fact, it is possible that such a system could significantly decrease the initial risk of a fatal ventricular arrhythmia as well as myocardial tissue necrosis that often results in congestive heart failure.
It is envisioned that additional embodiments of the present invention can include a patient warning system that informs the patient by either an audio alarm or by an electrical tickle within his body that a myocardial infarction has been detected and that a thrombolytic agent has been released. At the occurrence of such an alarm, the patient can be instructed to seek immediate medical care.
An additional embodiment of the present invention is for the implanted system to send a radio message to a receiver within the patient's home that automatically dials an emergency rescue team to take the patient to a hospital for continuing treatment of his myocardial infarction.
Still another embodiment of the invention includes either an implanted defibrillator or heart pacemaker that would be used in conjunction with the system for automatic release of a thrombolytic agent.
Still another embodiment of the invention does not include the release of a medication. This embodiment is an implantable defibrillator or pacemaker that includes the capability for informing the patient that a myocardial infarction has been detected. The patient could be so informed by a subcutaneous electrical tickle or an implantable audio alarm. Furthermore the implanted system could send a radio signal to a receiving system located in close proximity to the patient (e.g., in his home) that would cause an audio signal that can inform the patient that his implantable system has detected a myocardial infarction and he should immediately take certain actions. These actions could include taking an aspirin or heparin or be self-injected with a thrombolytic and/or anti-thrombogenic agent. Also these actions could include instructions to immediately leave for a medical facility, such as a hospital emergency room, where he can receive prompt medical care. Still further, the receiving system can be coupled to a modem and telephone system to automatically call an ambulance or a rescue service. It is envisioned that the rescue service could have immediate access to the patient's medical history as well as receiving his electrogram in real time. Thus, even without the automatic and immediate release of a thrombolytic agent, the patient would receive prompt treatment for a heart attack.
It should be understood that the system could also be used without a defibrillator or pacemaker but as an independent unit whose only function would be an early warning system for a patient to detect a myocardial infarction at the earliest possible time. Even without the release of medication, this system could be extremely valuable because many patients who have early symptoms of a myocardial infarction such as indigestion or left arm pain or even a chest discomfort very often tend to ignore these warning signs. If, for example, the patient experiences some indigestion that has an associated deviated ST segment that is indicative of a myocardial infarction, then promptly notifying the patient of this condition can significantly decrease the mortality and morbidity associated with acute myocardial infarction. In addition, it is estimated that as many as 20% of all myocardial infarctions are "silent" with virtually no symptom to warn the patient of this life threatening event. Thus, a stand alone system that informs such a patient that a myocardial infarction is starting could save the patient's life.
Thus it is an object of this invention to have an implanted system that automatically releases a thrombolytic and/or anti-thrombogenic agent into the bloodstream of a human body upon detection of a myocardial infarction.
Another object of this invention is to automatically inform the patient that a myocardial infarction has occurred by means of an alarm such as a subcutaneous electrical tickle or audio signal.
Still another object of this invention is to utilize the automatic myocardial infarction detection and medication release system in conjunction with an implantable defibrillator or pacemaker.
Still another object of this invention is to have an implanted defibrillator or pacemaker that includes sensors (such as electrodes) to sense a myocardial infarction and to trigger an internal alarm and an externally located alarm to inform the patient that he has the indication of an myocardial infarction. This system would not release any medication from within the patient's body, but could provide specific instructions for self-administration of medications.
Still another object of this invention is to have an implantable myocardial infarction detection system that sends a radio signal to a receiving system located in close proximity to the patient which then makes a telephone call to a rescue service that sends an ambulance to bring the patient to a hospital.
Still another object of this invention is to have an implantable myocardial infarction detection system that sends a radio signal to a receiving system in the patient's home that informs the patient that he may be undergoing a myocardial infarction and that an ambulance has been called to bring him to a hospital and that he should take certain actions such as taking an aspirin tablet.
Still another object of this invention is to provide a patient with a patient operated initiator which he could use to initiate the release of one or more medications that have been placed in a medication release device.
Still another object of this invention is to provide a means for informing the patient that he is having a myocardial infarction when he might otherwise ignore some particular symptom or he may not have perceived any symptom.
Still another object of this invention is to have an implantable system for the detection of a myocardial infarction that also has the capability for storing electrograms.
These and other objects and advantages of this invention will become obvious to a person of ordinary skill in this art upon reading of the detailed description of this invention including the associated drawings as presented herein.
FIG. 1 illustrates an implantable system for the detection of a myocardial infarction and for the injection into the bloodstream of one or more thrombolytic and/or anti-thrombogenic medications and/or nitroglycerin to cause arterial dilatation.
FIG. 2 illustrates a normal electrogram pattern and also shows an elevated ST segment deviation which would be indicative of a myocardial infarction.
FIG. 3 is a plan view of the medication release device which is part of the system for early detection of a myocardial infarction and for the release of one or more medications.
FIG. 4 is a cross section of the medication release device at section 4--4 of FIG. 3 showing three separate medication reservoirs.
FIG. 5 is a cross section of the medication release device at section 5--5 of FIG. 4.
FIG. 6 is a cross section of the medication release device at section 6--6 of FIG. 4.
FIG. 7 is a longitudinal cross section of a magnetic system to release medication into the bloodstream from an implantable reservoir of the medication release device.
FIG. 8 is a block diagram of that part of the electrical system of the medication release device whose function is to detect a myocardial infarction and release appropriate medication(s).
FIG. 9 is a system block diagram that illustrates the arrangement of equipment that can be implanted in the patient and other equipment that can be placed external to the patient.
FIG. 10 is a longitudinal cross section of a sealed chamber for storing a thrombolytic agent in powder form prior to that powder being released into the patient's bloodstream.
FIG. 1 illustrates the basic concept of the invention which is an automatic responsive myocardial infarction treatment system 10. The system 10 includes a medication release device 20 having a case 22 and as many as three medication reservoir entry ports 24, 26 and 28 and three catheters 11, 16 and 90. Each of the three catheters 11, 16 and 90 can be either an electrical lead or a medication delivery catheter or both. For example, the catheter 11 has a distal electrode 12, proximal bipolar electrodes 13 and 14, and a medication exit port 15. The catheter 16 has a single electrode 17 located near the catheter's distal end and a medication exit port 18 at the catheter's distal end. The catheter 90 has electrodes 92 and 94. The catheter 11 and/or the catheter 16 would be placed through the patient's venous system with each catheter's distal end being placed at or near the apex of the right ventricle, or in the right atrium, or in the superior vena cava as would be typical for a pacemaker or defibrillator lead. The catheter 90 would be placed under the skin with the electrodes 92 and 94 being situated in reasonably close proximity to the heart.
It should be understood that the system 10 could use only one catheter, e.g., the catheter 11 for all functions. All functions would include electrogram detection, application of a pacing pulse or defibrillation shock and injection of a medication such as a thrombolytic agent. The system 10 might also use two catheters such as the catheters 11 and 16. One catheter could be used for medication delivery and the other could be used for electrical functions. The system 10 could also use one electrode such as either electrode 12 or 92 as an active electrode and use the case 22 of the medication release device 20 as an indifferent or ground electrode.
FIG. 2 illustrates a typical electrogram signal from some pair of implanted electrodes such as the electrode 12 and the case 22 of FIG. 1. The various portions of the electrogram are shown as the Q,R,S, T and P waves. These are all shown as portions of a solid line in FIG. 2. The normal ST segment 40 is also shown in FIG. 2. When a myocardial infarction occurs, there is a deviation of the ST segment 44 as shown by the dotted lines in FIG. 2. It is this deviation of the ST segment 44 as compared to the not deviated segment 42 that is a clear indicator of a myocardial infarction. Furthermore, it should be understood that the ST segment deviation could be either positive or negative depending upon where the electrogram electrodes are located and where in the myocardium the infarction has occurred. Although a deviated ST segment 44 can be a good indicator of a myocardial infarction, other indicators such as heart rate, heart wall motion or blood pO2 could also be used as independent sensing means. These means could be used in addition to a deviated ST segment 44 to improve the reliability for detection of a myocardial infarction.
FIG. 3 is a plan view of the medication release device 20 having a metal conducting case 22 and three medication entry ports 24, 26 and 28 each of which has respectively self-sealing septums 25, 27 and 29. The medication release device 20 also has catheters 11, 16 and 90 which can serve as electrical leads and/or medication release catheters.
FIG. 4 is a cross section of the medication release device 20 at section 4--4 of FIG. 3. FIG. 4 shows three medication reservoirs 35, 37 and 39 which have respectively medication entry ports 24, 26 and 28, self-sealing septums 25, 27 and 29 and thin-walled metal bellows 34, 36 and 38 that form medication enclosures. It should be understood that the medication release device 20 could have as few as one or as many as three separate medication reservoirs for thrombolytic agents, or agents that prevent platelet aggregation, or agents (such as nitroglycerin) that produce vascular dilation. The thrombolytic agents could be tissue plasminogen activator (tPA), urokinase or streptokinase. Agents that are anti-thrombogenic could be the drug ReoPro, heparin or others. It is also conceived that an anti-arrhythmic medication could also be placed in one of the reservoirs 35, 37 or 39.
FIG. 4 also shows the metal case 22 having an interior chamber 33. All the metal parts shown in FIG. 4 would preferably be formed from titanium. The septums 25, 27 and 29 would preferably be formed from a low durometer elastomer such as neoprene rubber that is placed in compression by the entry ports 24, 26 and 28. The chamber 33 should contain a pressurized inert gas such as helium. Thus, even though the metal bellows can exert a pressure of several psi within the reservoirs 35, 37 and 39, by pressurizing the chamber 33 with between 5 and 50 psi, there is an enhanced pressure that can cause the medications to be quickly released when an outlet valve is opened. It may also be desirable to place a few drops of a liquid such as Freon 21 into the chamber 33 instead of an inert gas. This would have the effect of maintaining a constant pressure of approximately 39 psi in the chamber 33 irrespective of whether the bellows 34, 36 and 38 were fully extended or fully contracted.
FIG. 5 is a cross section of the medication release device 20 at section 5--5 of FIG. 4. FIG. 5 shows the bellows 34, 36 and 38 that enclose respectively the medication reservoirs 35, 37 and 39 all within the case 22. Also shown in FIG. 5 is a battery 31 that is connected to an electronic module 32 by the wire 41. The wires 42 and 43 connect the electronic module 32 to the wires 46 and 47 through the electrical feed-thrus 44 and 45 in the case 22. The wires 46 and 47 within the catheter 11 can be connected to the electrodes 12 and 14 as shown in FIG. 1.
FIG. 6 is cross section at section 6--6 of FIG. 4. FIG. 6 shows the entry ports 24, 26 and 28 having respectively septums 25, 27 and 29 and release valve assemblies 51, 52 and 53 each connected respectively to output tubes 54, 55 and 56. The medications from the release valve assemblies 51, 52 and 53 pass out into the patient's bloodstream via the lumen 57 in the catheter 16, or through a lumen 59 in the catheter 11 or through the lumen 58 in the catheter 90. The pressurized chamber 33 is also shown in FIG. 6.
FIG. 7 is a longitudinal cross section of the medication release assembly 51 that is fixedly attached to the entry port 24 into which the septum 25 has been placed. The medication release assembly 51 consists of a chargeable magnet 60 having an electrical charging coil 62 and a small diameter central lumen 64. By appropriately discharging a capacitor through the coil 62, the chargeable magnet 60 can have its polarity reversed at each end from north to south or from south to north. This operation is best explained with reference to FIG. 8. In FIG. 8 we see that when the switch 77 is placed at its terminal B, the battery 31 is electrically connected to the d-c to d-c converter 80. This causes the capacitor 79 to become fully charged over a certain period of time depending on the value of the resistor 78. Then, when the switch 76 is moved from its terminal A to terminal B, the capacitor 79 discharges through the charging coil 62 that is placed around the chargeable magnet 60 which causes the chargeable magnet 60 to become permanently magnetized with a specific polarity. If, let us say, this was accomplished with a positive voltage out of the d-c to d-c converter 80, then the direction of the winding of the coil 62 could be adjusted to make the right end of the chargeable magnet 60 (as seen in FIGS. 7 and 8) a north pole. If the command system 83 causes the output voltage of the d-c to d-c converter to be negative, then when the capacitor 79 is charged and then discharged through the charging coil 62, the chargeable magnet 60 will have the a south pole at its right end. Thus, the command system 83 from an external signal (as will be explained with the help of FIG. 9) can cause the chargeable magnet 60 to have either a north or south polarity at its right end. A permanent magnetic material having a comparatively low coercive force, such as Vicalloy, would be ideal for the chargeable magnet 60. A permanent magnet material having a high coercive force and a high energy product, such as Alnico V, would be ideal for the permanent magnet 61.
Returning now to a discussion of FIG. 7, when the chargeable magnet 60 has a north pole at its right end, it will repel the adjacent north pole of a permanent magnet 61 that is placed within the tube 66. Thus, a highly polished cylinder 63 will be pushed through the O-ring 67 which forms a pressure tight seal to prevent any medication that is within the bellows 34 from going into the exit tube 54. When the polarity of the chargeable magnet 60 is reversed (as has been explained with the assistance of FIG. 8), then the right end of the chargeable magnet 60 will be a south pole and it will attract the north pole at the left end of the permanent magnet 61. This will cause the cylinder 63 to be pulled out of the O-ring 67 which will cause the pressurized fluid from within the bellows 34 to be passed through the port 59, through the lumen 64 of the chargeable magnet 60 and then through the annular passageway that exists between the exterior surface of the permanent magnet 61 and the interior surface of the tube 66. The medication then will pass through the O-ring 67 and into the exit tube 54. It should be noted that a small protrusion 65 at the left end of the permanent magnet 61 allows a fluid passageway to be maintained between the right end of the chargeable magnet 60 and the left end of the permanent magnet 61.
Although FIG. 7 shows a means for promptly releasing medication into the bloodstream using a chargeable magnet system, it should be understood that other means such as the use of a solenoid valve operated either from a battery or a capacitor could also be used. Furthermore, the use of a conventional implantable drug pump such as taught in the U.S. Pat. No. 4,373,527 by R. E. Fischell, or any similar implantable drug pump could be used instead of the medication delivery system that is described herein.
After the medication (such as a thrombolytic agent) is sent out through the exit tube 54, the polarity of the chargeable magnet 60 can be reversed which would push the cylinder 63 back through the O-ring 67 thus resealing the medication release device. The bellows 34 could then be refilled with a medication by use of a syringe with a non-coring needle that would be placed through the septum 25. Therefore, after a patient has experienced a myocardial infarction that results in the discharge into his bloodstream of some medication, one or more of the medication reservoirs 35, 37 or 39 could be refilled for use during a subsequent myocardial infarction.
FIG. 8 is a block diagram of the medication delivery electronic circuitry 70 that would (for the most part) be contained within the electronics module 32 shown in FIG. 5. The circuitry 70 has the explicit function of detecting a myocardial infarction and responding with the delivery of one or more medications into the patient's bloodstream to dissolve the thrombus that caused the myocardial infarction. Specifically, the medication delivery electronic circuitry 70 uses an electrode 12 that is electrically connected to an amplifier 71 by means of a wire in the catheter 11. The amplified electrogram signal is sent over the line 72 to an ST segment deviation detector 73. When an elevated or depressed ST segment is detected (as shown in FIG. 2), the detector 73 has an output 75 that causes the switch 77 to move from terminal A to terminal B. As previously described, this causes the d-c to d-c converter 80 to turn on and charge the capacitor 79. When the capacitor 79 is charged, the ST deviation detector 73 then uses the output line 74 to move the switch 76 from terminal A to terminal B. This, as previously described, causes a pulse of electric current to flow through the coil 62 to magnetize the chargeable magnet 60 in a polarity to cause discharge of (typically) some thrombolytic agent into the patient's bloodstream. After this is accomplished, the command system 83 can receive a command from a physician's programmer (element 108 of FIG. 9) that results in a signal on line 84 to reset the switches 76 and 77 and to reset the d-c to d-c converter to have an opposite output polarity. As seen in FIG. 8, the electrode 12 would act as an active electrode and the case 22 would act as a ground or indifferent electrode. Of course it should be understood that the switches 76 and 77 would be in the form of transistor switches that are well known in the field of electrical circuit design.
FIG. 9 is a block diagram of a more elaborate embodiment of a system for the prompt and automatic treatment of myocardial infarction. The left side of FIG. 9 shows portions of the system that would be implanted in a patient who has a comparatively high probability for having a myocardial infarction. These would be patients who have already survived a first heart attack, or who have an implanted pacemaker or defibrillator or who have undergone angioplasty or bypass surgery. Patients with advanced forms of insulin dependent diabetes would also be good candidates for such a system. The right side of FIG. 9 illustrates equipment that would be situated externally to the patient. The catheter 11 can act by means of an electrical conductor within the catheter 11 as an antenna 11. This antenna 11 can have input radio signals 97 or 109 which are then fed into the command receiver 84 which is part of the command system 83. The radio signal 97 would emanate from the patient operated initiator 95 through its antenna 96. The patient operated initiator 95 can be used by the patient to trigger some event such as the release of medication or holding in memory a particular portion of a recorded electrogram signal that the patient believes might be relevant to his medical condition. The radio signal 109 would emanate from the physician's programmer 108 through its antenna 110. The radio signal 109 as received by the antenna 11 of the implanted portion of the equipment would be an input to the command receiver 84 which, by means of the command system 83, can produce a multiplicity of command functions 89. Examples of these command functions 89 are as follows: move the switch 76 between terminals A and B, (see FIG. 8), move the switch 77 between terminals A and B, change the output voltage polarity of the d-c to d-c converter 80 from plus to minus or from minus to plus, adjust the threshold voltage at which a deviated ST segment is deemed to indicate a myocardial infarction, select one or more medication reservoirs to inject a thrombolytic agent into the bloodstream when a myocardial infarction is detected, enable defibrillator circuitry 200, enable pacemaker circuitry 300, check operating features of the implanted system such as battery voltage, etc.
FIG. 9 also shows a terminal 94 which feeds an electrogram signal through a conducting wire in the catheter 90 into an amplifier 71 whose output is fed into the ST segment deviation detector 73. When the ST segment deviation qualifies as an indication of a myocardial infarction, the ST segment deviation detector 73 provides an output triggering signal into the medication release sub-system 88 that releases medication through the catheter 16 (see FIG. 1) and out of the opening 18 into the patient's bloodstream. When the start of a myocardial infarction is detected by the implantable equipment, a radio signal 98 is sent out of the transmitter 85 via the antenna 16 to the antenna 101 of the receiver 102 of the external equipment. When the signal 98 is received by the receiver 102, an alarm means 111 is triggered which informs the patient by audio (and possibly visible) means that: (1) his implanted equipment indicates that he may be having a heart attack; (2) he should take some previously agreed upon medication(s) such as aspirin, heparin, nitroglycerin or even be injected with a thrombolytic or anti-thrombogenic agent; (3) an emergency rescue service has been called; and (4) he should either immediately go to a hospital emergency room or he should wait for an ambulance with paramedics to arrive. Within the signal 98 is a patient identification code as well as the patient's real time and stored electrogram. The radio signal 98 that is fed into the receiver 102 would then be an input into the modem 103 that would cause the telephone 104 to send a telephone message 105 to the telephone 106 located at a rescue service 107 typically where an ambulance is located. The rescue service 107 would typically have from the patient's identification code all pertinent medical history of the patient as well as an indication that he has suffered a myocardial infarction. The real time and stored electrogram 87 would also be received by the rescue service 107. Upon reception of such a radio signal 98, the rescue service 107 would cause an ambulance to be sent to bring the patient to an emergency medical care facility. The external equipment consisting of the antenna 101, the receiver 102, the modem 103, the telephone 104 and the alarm means 111 would be typically located within 200 meters of where the patient would spend most of his time, typically this would be at his residence or possibly at a nursing home. The rescue service would be in reasonably close proximity to where the patient would spend most of his time. If the start of a myocardial infarction is indicated, the patient could be aroused by the alarm means 111, even from sleep, to prepare for an ambulance to come to his home to take him to an emergency care facility. It is also conceivable that a companion or spouse of the myocardial infarction victim could take the patient to an emergency facility for treatment without waiting for the ambulance to arrive. If this were done, some simple means to inform the rescue service to not send an ambulance could be accomplished by telephone or by other means within the external equipment. Within a nursing home or hospital, a central monitoring station could monitor several patients who have such implanted systems.
Returning now to other implanted equipment shown in FIG. 9, the timing circuits 89 would provide all timing signals required for the operation of the implanted equipment. Also, the alarm means 112 in the implanted portion of the equipment can use an audio or subcutaneous electrical tickle means to inform the patient that an event has occurred such as a myocardial infarction or an episode of ventricular fibrillation and therefore the patient should see his doctor. The electrical tickle could be provided by an electrode attached to the case 22 that is electrically insulated from the case 22. Audio and electrical tickle alarm means as well as electrogram storage means are described in some detail in U.S. Pat. No. 4,295,474 by R. E. Fischell.
It should also be understood that the implanted and external equipment shown in FIG. 9 could be used without the medication release sub-system 88 and without the patient operated initiator 95. Specifically, a valuable embodiment of the present invention would be to use an implanted defibrillator circuitry 200 that would have the conventional capability for shocking the heart when ventricular fibrillation is detected and would also have the capability to detect an ST segment deviation indicative of a myocardial infarction. Conventional defibrillators are described in U.S. Pat. No. 4,407,288 by A. A. Langer, et al plus many other U.S. patents. Still another valuable embodiment of the invention is to have an implanted cardiac pacemaker circuitry 300 which has the additional capability for detection of a heart attack. Conventional pacemakers are described in many U.S. patents including U.S. Pat. Nos. 3, 867,950 and 3,888,260 by R. E. Fischell. Either of these embodiments would also have the capability of informing the patient by either or both the implantable alarm means 112 or the external alarm means 111 that a myocardial infarction has been detected. When the patient recognizes that he has an indication of a myocardial infarction, he could take medication such as aspirin or heparin or he could possibly have medication injected into his body. Furthermore, the external alarm means 111 could act as an alarm to wake the patient from sleep and can also be used to inform a rescue service 107 using the external equipment shown in FIG. 9. It is of course possible to have both defibrillation and pacemaker capability to which the capability has been added for early detection of a myocardial infarction. Still further, omitting from FIG. 9 the medication release system 88 and the defibrillator circuitry 200 and the pacemaker circuitry 300 would still leave a valuable standalone system for detecting a heart attack and informing the patient that a heart attack has occurred.
FIG. 10 is a highly enlarged cross section of a particular embodiment of one portion of the present invention that allows the use of a thrombolytic agent in powder form to be used with the medication release device 20. Specifically, FIG. 10 shows a cartridge 120 consisting of a thin-walled metal cylinder 121 that seals a proximal diaphragm 123 against the tube 66 (see FIG. 7) and a distal diaphragm 124 against an extension tube 125 that is joined to the output tube 54. Within the cylinder 121 is a thrombolytic agent 122 (such as streptokinase) in powder form. The diaphragms 123 and 124 are sufficiently fragile so that they will fracture at a pressure at or above approximately 30 psi. To achieve this level of fragility, the diaphragms 123 and 124 could be made from a metal foil having thickness of less than 0.01 mm. In spite of being so thin, the foils would still provide a hermetic seal to preclude the exposure of the powder 122 to any moisture prior to the release of pressurized liquid from a reservoir (such as the reservoir 35). Upon the detection of a myocardial infarction, a liquid could be released under a very high pressure to fracture both diaphragms 123 and 124 and cause the powder 122 to be released into the patient's bloodstream. As many as three such capsules 120 containing a powdered thrombolytic agent might be placed within the implanted medication release device 20 to be released on three separate occasions when separate myocardial infarctions would be detected. The reservoir fluid to release the powder 122 could be distilled water, or a normal saline solution, or any other solution that would cause no ill effect when released into the bloodstream. It should also be understood that the diaphragms 123 and 124 could have one or more scoring marks on their surface to make them easier to fracture when a fluid pressure is applied.
It should be understood that various embodiments of this invention would have utility even without the release of medication when a myocardial infarction is detected. Specifically, a pacemaker or a defibrillator that is implanted within the body could include circuitry for early detection of a myocardial infarction. An implanted alarm means (such as the alarm means 111 of FIG. 9) could be used to inform the patient to immediately take an aspirin and or be injected with some thrombolytic agent. Furthermore, the patient could then immediately proceed to an emergency room of a hospital or call an ambulance. Still further, a radio signal (such as the signal 109 of FIG. 9) could be used to trigger an audio message to provide information to the patient and/or to call an ambulance. Thus, the invention described herein could be of assistance to a patient suffering a myocardial infarction even if no medication is automatically released into the patient's bloodstream.
Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention can be practiced otherwise than as specifically described herein.
Fischell, Tim A., Fischell, David R., Fischell, Robert E.
Patent | Priority | Assignee | Title |
10045701, | Aug 22 2008 | Pacesetter, Inc. | Implantable hemodynamic monitor and methods for use therewith |
10065039, | May 26 2005 | Boston Scientific Neuromodulation Corporation | Controlling charge flow in the electrical stimulation of tissue |
10076285, | Mar 15 2013 | Abbott Diabetes Care Inc | Sensor fault detection using analyte sensor data pattern comparison |
10078380, | Mar 10 2010 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
10089446, | Jan 29 2009 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
10092229, | Jun 29 2010 | Abbott Diabetes Care Inc | Calibration of analyte measurement system |
10117606, | Oct 30 2009 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
10143847, | Jul 20 2017 | Medtronic, Inc | Determining a position for an implantable medical device |
10188334, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
10188425, | Dec 13 2010 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
10188794, | Aug 31 2008 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
10194850, | Aug 31 2005 | Abbott Diabetes Care Inc. | Accuracy of continuous glucose sensors |
10194868, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
10213115, | Oct 31 2008 | Medtronic, Inc. | Method and apparatus to detect ischemia with a pressure sensor |
10238883, | Oct 14 2005 | Pacesetter Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
10433773, | Mar 15 2013 | Abbott Diabetes Care Inc | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
10555695, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10561354, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10610141, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10624568, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10682084, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10685749, | Dec 19 2007 | Abbott Diabetes Care Inc. | Insulin delivery apparatuses capable of bluetooth data transmission |
10722162, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10744332, | Aug 01 2012 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
10835162, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10842420, | Sep 26 2012 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
10874336, | Mar 15 2013 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
10878936, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
10903914, | Oct 26 2006 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
10980461, | Nov 07 2008 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
11000215, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11013439, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11020031, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11061491, | Mar 10 2010 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
11179568, | May 26 2005 | Boston Scientific Neuromodufation Corporation | Controlling charge flow in the electrical stimulation of tissue |
11202592, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11207005, | Oct 30 2009 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
11272890, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
11282603, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
11331022, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11350862, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11382540, | Oct 24 2017 | DEXCOM, INC | Pre-connected analyte sensors |
11406331, | Oct 31 2011 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
11464430, | Jan 29 2009 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
11464434, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11478173, | Jun 29 2010 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
11484234, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11627900, | Nov 07 2008 | DexCom, Inc. | Analyte sensor |
11678848, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
11679200, | Aug 31 2008 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
11706876, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11717225, | Mar 30 2014 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
11722229, | Oct 26 2006 | Abbott Diabetes Care Inc.; University of Virginia Patent Foundation | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
11759234, | Dec 13 2010 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
11786272, | Dec 13 2010 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
11890032, | Dec 13 2010 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
11896371, | Sep 26 2012 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
6272379, | Mar 17 1999 | ANGEL MEDICAL SYSTEMS, INC | Implantable electronic system with acute myocardial infarction detection and patient warning capabilities |
6468263, | May 21 2001 | ANGEL MEDICAL SYSTEMS, INC | Implantable responsive system for sensing and treating acute myocardial infarction and for treating stroke |
6500168, | Dec 22 1997 | Advanced Animal Technology Ltd. | Substance delivery device |
6501983, | Aug 07 1998 | Infinite Biomedical Technologies, LLC | Implantable myocardial ischemia detection, indication and action technology |
6609023, | Sep 20 2002 | ANGEL MEDICAL SYSTEMS, INC | System for the detection of cardiac events |
6820019, | Jul 31 1999 | Medtronic, Inc | Device and method for determining and communicating the remaining life of a battery in an implantable neurological tissue stimulating device |
6865420, | Jan 14 2002 | Pacesetter, Inc. | Cardiac stimulation device for optimizing cardiac output with myocardial ischemia protection |
6980112, | Jan 08 2002 | UNILOC 2017 LLC | Emergency call patient locating system for implanted automatic defibrillators |
6985771, | Jan 22 2002 | ANGEL MEDICAL SYSTEMS, INC | Rapid response system for the detection and treatment of cardiac events |
7001359, | Mar 16 2001 | Medtronic, Inc. | Implantable therapeutic substance infusion device with active longevity projection |
7039462, | Jun 14 2002 | Cardiac Pacemakers, Inc | Method and apparatus for detecting oscillations in cardiac rhythm |
7072708, | Dec 02 2002 | WELCH ALLYN INC | Differentiating acute myocardial infarction from other ECG abnormalities |
7072711, | Nov 12 2002 | Cardiac Pacemakers, Inc | Implantable device for delivering cardiac drug therapy |
7072725, | Mar 26 2001 | Medtronic, Inc | Implantable therapeutic substance infusion device configuration system |
7089055, | Jun 28 2002 | Cardiac Pacemakers, Inc | Method and apparatus for delivering pre-shock defibrillation therapy |
7107096, | Jan 28 2004 | Angel Medical Systems, Inc. | System for patient alerting associated with a cardiac event |
7115095, | Jan 11 2000 | Cedars-Sinai Medical Center | Systems and methods for detecting, diagnosing and treating congestive heart failure |
7127290, | Oct 01 1999 | Cardiac Pacemakers, Inc | Cardiac rhythm management systems and methods predicting congestive heart failure status |
7137953, | Jan 11 2000 | Cedars-Sinai Medical Center | Implantable system and method for measuring left atrial pressure to detect, diagnose and treating congestive heart failure |
7201733, | Oct 21 1999 | Cardiac Pacemakers, Inc. | Drug delivery system for implantable cardiac device |
7218960, | Jun 24 2003 | Pacesetter, Inc.; Pacesetter, Inc | System and method for detecting cardiac ischemia based on T-waves using an implantable medical device |
7225015, | Jun 24 2003 | Pacesetter, Inc.; Pacesetter, Inc | System and method for detecting cardiac ischemia based on T-waves using an implantable medical device |
7254440, | Jan 26 2004 | Pacesetter, Inc. | Implantable ischemia and myocardial infarction monitor and method |
7272436, | Jan 25 2005 | Pacesetter, Inc.; Pacesetter, Inc | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
7274959, | Jun 24 2003 | Pacesetter, Inc. | System and method for detecting cardiac ischemia using an implantable medical device |
7277745, | Aug 07 1998 | Infinite Biomedical Technologies, LLC | Implantable myocardial ischemia detection, indication and action technology |
7297114, | Jan 25 2005 | Pacesetter, Inc.; Pacesetter, Inc | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
7308303, | Nov 01 2001 | Boston Scientific Neuromodulation Corporation | Thrombolysis and chronic anticoagulation therapy |
7320675, | Aug 21 2003 | Cardiac Pacemakers, Inc | Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure |
7340303, | Sep 25 2001 | Cardiac Pacemakers, Inc | Evoked response sensing for ischemia detection |
7369890, | Nov 02 2000 | Cardiac Pacemakers, Inc. | Technique for discriminating between coordinated and uncoordinated cardiac rhythms |
7440804, | Dec 28 2004 | Pacesetter, Inc | System and method for measuring ventricular evoked response using an implantable medical device |
7481759, | Aug 03 2001 | Cardiac Pacemakers, Inc | Systems and methods for treatment of coronary artery disease |
7483743, | Jan 11 2000 | Cedars-Sinai Medical Center | System for detecting, diagnosing, and treating cardiovascular disease |
7502644, | Jan 25 2005 | Pacesetter, Inc.; Pacesetter, Inc | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
7512438, | Nov 26 2003 | Angel Medical Systems, Inc. | Implantable system for monitoring the condition of the heart |
7524287, | Jan 25 2005 | Pacesetter, Inc. | System and method for distinguishing between hypoglycemia and hyperglycemia using an implantable medical device |
7534241, | Sep 23 2002 | MICROCHIPS BIOTECH, INC | Micro-reservoir osmotic release systems and microtube array device |
7558623, | Sep 20 2002 | ANGEL MEDICAL SYSTEMS, INC | Means and method for the detection of cardiac events |
7567841, | Aug 20 2004 | Cardiac Pacemakers, Inc. | Method and apparatus for delivering combined electrical and drug therapies |
7590443, | Apr 27 2005 | Pacesetter, Inc | System and method for detecting hypoglycemia based on a paced depolarization integral using an implantable medical device |
7590449, | Jan 11 2000 | Cedars-Sinai Medical Center | Patient signaling method for treating cardiovascular disease |
7610086, | Mar 31 2006 | Pacesetter, Inc | System and method for detecting cardiac ischemia in real-time using a pattern classifier implemented within an implanted medical device |
7616991, | Dec 19 2003 | Pacesetter, Inc | Method for digital cardiac rhythm management |
7621905, | Dec 30 1997 | Remon Medical Technologies LTD | Devices for intrabody delivery of molecules and systems and methods utilizing same |
7627373, | Nov 30 2002 | Cardiac Pacemakers, Inc | Method and apparatus for cell and electrical therapy of living tissue |
7627383, | Mar 15 2005 | Boston Scientific Neuromodulation Corporation | Implantable stimulator |
7641619, | Oct 16 2000 | Remon Medical Technologies, Ltd. | Barometric pressure correction based on remote sources of information |
7643872, | Jun 24 2003 | Pacesetter, Inc. | System and method for detecting cardiac ischemia based on T-Waves using an implantable medical device |
7676259, | Feb 08 2002 | Cardiac Pacemakers, Inc. | Dynamically optimized multisite cardiac resynchronization device |
7706867, | Aug 04 2005 | Pacesetter, Inc. | Methods and systems to correlate arrhythmic and ischemic events |
7717854, | Jan 11 2000 | Cedars-Sinai Medical Center | System for detecting, diagnosing, and treating cardiovascular disease |
7729758, | Nov 30 2005 | Boston Scientific Neuromodulation Corporation | Magnetically coupled microstimulators |
7729761, | Jul 14 2004 | Cardiac Pacemakers, Inc | Method and apparatus for controlled gene or protein delivery |
7742815, | Sep 09 2005 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
7756572, | Jan 25 2005 | Pacesetter, Inc. | System and method for efficiently distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device and an external system |
7764995, | Jun 07 2004 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
7769436, | Jun 04 2007 | Pacesetter, Inc. | System and method for adaptively adjusting cardiac ischemia detection thresholds and other detection thresholds used by an implantable medical device |
7774057, | Sep 06 2005 | Cardiac Pacemakers, Inc | Method and apparatus for device controlled gene expression for cardiac protection |
7801596, | Sep 20 2002 | Angel Medical Systems, Inc. | Physician's programmer for implantable devices having cardiac diagnostic and patient alerting capabilities |
7801600, | May 26 2005 | Boston Scientific Neuromodulation Corporation | Controlling charge flow in the electrical stimulation of tissue |
7801602, | Apr 08 2005 | Boston Scientific Neuromodulation Corporation | Controlling stimulation parameters of implanted tissue stimulators |
7803148, | Jun 09 2006 | Otonomy, Inc | Flow-induced delivery from a drug mass |
7813808, | Nov 24 2004 | Remon Medical Technologies LTD | Implanted sensor system with optimized operational and sensing parameters |
7828711, | Aug 16 2004 | Cardiac Pacemakers, Inc | Method and apparatus for modulating cellular growth and regeneration using ventricular assist device |
7840263, | Feb 27 2004 | Cardiac Pacemakers, Inc | Method and apparatus for device controlled gene expression |
7844323, | May 26 2004 | Angel Medical Systems, Inc. | Means and method for the detection of cardiac events |
7860559, | May 26 2004 | Angel Medical Systems, Inc. | Means and method for the detection of cardiac events |
7865232, | Aug 07 2007 | Pacesetter, Inc.; Pacesetter, Inc | Method and system for automatically calibrating ischemia detection parameters |
7894884, | Jan 31 2007 | Medtronic, Inc | System and method for ischemia classification with implantable medical device |
7899532, | Dec 05 2001 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
7917208, | Oct 04 2002 | MICROCHIPS BIOTECH, INC | Medical device for controlled drug delivery and cardiac monitoring and/or stimulation |
7937148, | Oct 14 2005 | Pacesetter, Inc | Rate responsive leadless cardiac pacemaker |
7945333, | Oct 14 2005 | Pacesetter, Inc | Programmer for biostimulator system |
7948148, | Dec 30 1997 | Remon Medical Technologies Ltd. | Piezoelectric transducer |
7949388, | Mar 16 2007 | Pacesetter, Inc.; Pacesetter, Inc | Methods and systems to characterize ST segment variation over time |
7949394, | Sep 09 2005 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
7955268, | Jul 21 2006 | Cardiac Pacemakers, Inc. | Multiple sensor deployment |
7974697, | Jan 26 2006 | LivaNova USA, Inc | Medical imaging feedback for an implantable medical device |
7981065, | Dec 20 2004 | Cardiac Pacemakers, Inc | Lead electrode incorporating extracellular matrix |
7991460, | Sep 20 2002 | ANGEL MEDICAL SYSTEMS, INC | Methods and apparatus for detecting cardiac events based on heart rate sensitive parameters |
8000780, | Jun 27 2006 | Cardiac Pacemakers, Inc | Detection of myocardial ischemia from the time sequence of implanted sensor measurements |
8002701, | Mar 10 2006 | ANGEL MEDICAL SYSTEMS INC | Medical alarm and communication system and methods |
8010209, | Oct 14 2005 | Pacesetter, Inc | Delivery system for implantable biostimulator |
8016783, | Aug 21 2003 | Cardiac Pacemakers, Inc. | Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure |
8019410, | Aug 22 2007 | Pacesetter, Inc. | System and method for detecting hypoglycemia using an implantable medical device based on pre-symptomatic physiological responses |
8024028, | Nov 26 2003 | ANGEL MEDICAL SYSTEMS, INC | Cardiac event detection over varying time scale |
8038624, | Sep 20 2002 | ANGEL MEDICAL SYSTEMS, INC | System for the detection of cardiac events |
8046066, | Apr 27 2001 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
8060219, | Dec 20 2004 | Cardiac Pacemakers, Inc | Epicardial patch including isolated extracellular matrix with pacing electrodes |
8068907, | Jan 11 2000 | Cedars-Sinai Medical Center | Method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device |
8090435, | Jan 25 2005 | Pacesetter, Inc. | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
8090442, | Apr 06 2000 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
8108035, | Oct 18 2006 | Pacesetter, Inc. | Systems and methods for detecting and compensating for changes in posture during ischemia detection a using an implantable medical device |
8155731, | Oct 18 2006 | Pacesetter, Inc. | Systems and methods for detecting and compensating for changes in posture during ischemia detection using an implantable medical device |
8160702, | Dec 19 2003 | Pacesetter, Inc. | Method for digital cardiac rhythm management |
8170653, | Sep 20 2002 | ANGEL MEDICAL SYSTEMS, INC | Baseline processing for the detection of cardiac events |
8180441, | Jan 25 2005 | Pacesetter, Inc. | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
8185181, | Oct 30 2009 | Abbott Diabetes Care Inc | Method and apparatus for detecting false hypoglycemic conditions |
8204592, | Dec 03 2007 | Pacesetter, Inc.; Pacesetter, Inc | System and method for generating and using cardiac ischemia diagnostics based on arrhythmia precursors and arrhythmia episodes |
8216138, | Oct 23 2007 | ABBOTT DIABETES CARE, INC | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
8224430, | Sep 20 2002 | Angel Medical Systems, Inc. | Baseline processing for a cardiac event detection system |
8244338, | Nov 26 2003 | ANGEL MEDICAL SYSTEMS, INC | Cardiac event detection over varying time scale |
8265739, | Jan 19 2007 | Pacesetter, Inc | Systems and methods for distinguishing cardiac ischemia from systemic influences on IEGM morphology using an implantable medical device |
8265740, | Sep 20 2002 | Angel Medical Systems, Inc. | Means and method for the detection of cardiac events |
8269634, | Aug 27 2009 | Angel Medical Systems, Inc. | Systems and methods of alarm validation and backup in implanted medical devices |
8271093, | Sep 17 2004 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements using a backend computing system |
8275456, | Nov 12 2002 | Cardiac Pacemakers, Inc. | Implantable device for delivering cardiac drug therapy |
8275457, | Nov 24 2009 | Angel Medical Systems, Inc. | Cardiac monitoring system for paced patients having paced and non-paced ischemia detection thresholds |
8275463, | Feb 01 2007 | Pacesetter, Inc. | Recording a context for sensed biological data |
8295939, | Oct 14 2005 | Pacesetter, Inc | Programmer for biostimulator system |
8298150, | Jan 11 2000 | Cedars-Sinai Medical Center | Hemodynamic waveform-based diagnosis and treatment |
8298176, | Jun 09 2006 | Otonomy, Inc | Flow-induced delivery from a drug mass |
8301231, | Aug 27 2009 | Angel Medical, Inc. | Alarm testing and backup for implanted medical devices with vibration alerts |
8328728, | Aug 22 2008 | Pacesetter, Inc. | Implantable hemodynamic monitor and methods for use therewith |
8346356, | Jul 14 2004 | Cardiac Pacemakers, Inc. | Method for preparing an implantable controlled gene or protein delivery device |
8346482, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8352025, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker triggered by conductive communication |
8364411, | Aug 22 2003 | Integrated biosensor and stimulation system for diagnosis and therapy | |
8364413, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8369948, | Apr 27 2001 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
8369960, | Feb 12 2008 | Cardiac Pacemakers, Inc. | Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices |
8370068, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis therapy | |
8370070, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8370071, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8370072, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8370073, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8370078, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8374796, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8423298, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
8433397, | Aug 04 2005 | Pacesetter, Inc. | Methods and systems to correlate arrhythmic and ischemic events |
8452404, | Nov 24 2009 | Angel Medical Systems, Inc. | Ischemia detection systems for paced-patients having three different detection modes |
8457724, | Dec 11 2008 | PIXART IMAGING INC | System for heart performance characterization and abnormality detection |
8457725, | Aug 27 2009 | Angel Medical Systems, Inc. | Alarm testing and backup for implanted medical devices with vibration alerts |
8457742, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
8469897, | Oct 15 2007 | Pacesetter, Inc | Method and system for tracking quality of life in patients with angina |
8480594, | Jan 11 2000 | Cedars-Sinai Medical Center | System for detecting, diagnosing, and treating cardiovascular disease |
8483812, | Feb 04 2002 | Angel Medical Systems, Inc. | Cardiac event categorization system |
8512257, | Sep 20 2002 | Angel Medical Systems, Inc. | Implantable cardiac event detection device with an adaptive sleep state |
8521267, | Jun 29 2007 | Pacesetter, Inc | Methods and systems for trending ST segment changes over time |
8527068, | Feb 02 2009 | Pacesetter, Inc | Leadless cardiac pacemaker with secondary fixation capability |
8532935, | Jan 29 2009 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
8538520, | Sep 06 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression for cardiac protection |
8543205, | Oct 12 2010 | Pacesetter, Inc | Temperature sensor for a leadless cardiac pacemaker |
8560067, | Apr 06 2000 | Cardiac Pacemakers, Inc. | Apparatus for spatially and temporally distributing cardiac electrical stimulation |
8583205, | Mar 28 2008 | Abbott Diabetes Care Inc | Analyte sensor calibration management |
8591423, | Oct 10 2008 | Cardiac Pacemakers, Inc. | Systems and methods for determining cardiac output using pulmonary artery pressure measurements |
8600499, | Dec 05 2006 | Cardiac Pacemakers, Inc. | Method and device for cardiac vasoactive therapy |
8606526, | Oct 18 2002 | Pharmaco-genomic mutation labeling | |
8612001, | Dec 05 2001 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
8615310, | Dec 13 2010 | Pacesetter, Inc | Delivery catheter systems and methods |
8620416, | Jan 31 2007 | Medtronic, Inc. | System and method for ischemia classification with implantable medical device |
8630702, | Sep 30 2002 | Angel Medical Systems, Inc. | System for detection of different types of cardiac events |
8632470, | Nov 19 2008 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
8634913, | Apr 27 2001 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
8635046, | Jun 23 2010 | Abbott Diabetes Care Inc | Method and system for evaluating analyte sensor response characteristics |
8655434, | Nov 26 2003 | Angel Medical Systems, Inc. | Physician's programmer with ST-segment histogram display capability |
8660648, | Oct 24 2005 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
8672855, | Jul 08 2009 | Pacesetter, Inc. | Methods and systems that monitor for an impending myocardial infarction |
8676304, | Nov 24 2009 | Angel Medical Systems, Inc. | Ischemia monitoring system for patients having periods of left bundle branch block |
8684942, | May 25 2011 | PIXART IMAGING INC | System for cardiac impairment detection based on signal regularity |
8688189, | May 17 2005 | CARDIOVU, INC | Programmable ECG sensor patch |
8688200, | Oct 29 2010 | Medtronic, Inc; Medtronic, Inc. | Ischemia detection and classification |
8718958, | Oct 26 2006 | Abbott Diabetes Care Inc.; University of Virginia Patent Foundation | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
8725260, | Feb 11 2008 | Cardiac Pacemakers, Inc | Methods of monitoring hemodynamic status for rhythm discrimination within the heart |
8744547, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
8755870, | Aug 07 1998 | Infinite Biomedical Technologies, LLC | Implantable myocardial ischemia detection, indication and action technology |
8781566, | Mar 01 2006 | Angel Medical Systems, Inc. | System and methods for sliding-scale cardiac event detection |
8788035, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker triggered by conductive communication |
8788053, | Oct 14 2005 | Pacesetter, Inc | Programmer for biostimulator system |
8798723, | Jan 31 2007 | Medtronic, Inc | System and method for ischemia classification with implantable medical device |
8798745, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
8805492, | Aug 20 2004 | Cardiac Pacemakers, Inc. | Method and apparatus for delivering combined electrical and drug therapies |
8805498, | Nov 24 2009 | Angel Medical Systems, Inc. | Ischemia detection systems for paced-patients using beat-type dependent baseline datasets |
8818494, | Nov 29 2010 | PIXART IMAGING INC | System for ventricular function abnormality detection and characterization |
8838215, | Mar 01 2006 | Angel Medical Systems, Inc. | Systems and methods of medical monitoring according to patient state |
8852099, | Sep 17 2004 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements |
8855789, | Oct 14 2005 | Pacesetter, Inc | Implantable biostimulator delivery system |
8868168, | Nov 11 2010 | PIXART IMAGING INC | System for cardiac condition characterization using electrophysiological signal data |
8886305, | Apr 22 2008 | BIOTRONIK SE & CO KG | Ventricular heart stimulator |
8886318, | Oct 14 2005 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
8903480, | Apr 11 2012 | SIEMENS HEALTHINEERS AG | System for cardiac condition detection using heart waveform area associated analysis |
8903487, | Nov 24 2009 | Angel Medical Systems, Inc. | Pacemaker enabled ischemia detection with selective ischemia tests |
8934968, | Aug 03 2001 | Cardiac Pacemakers, Inc | Neurostimulation and coronary artery disease treatment |
8942818, | Dec 30 2009 | Medtronic, Inc. | Communication with an implantable medical device during implantation |
8965494, | Jun 22 2007 | ANGEL MEDICAL SYSTEMS, INC | Means and method for the detection of cardiac events |
8983619, | Dec 30 2009 | Medtronic, Inc. | Testing communication during implantation |
8989852, | Aug 10 2011 | Pacesetter, Inc. | Systems and methods for use by implantable medical devices for detecting and discriminating stroke and cardiac ischemia using electrocardiac signals |
9005130, | Nov 26 2003 | Angel Medical Systems, Inc. | Histogram based generation of cardiac state detection thresholds |
9020583, | Mar 13 2013 | PIXART IMAGING INC | Patient signal analysis and characterization |
9020611, | Oct 13 2010 | Pacesetter, Inc | Leadless cardiac pacemaker with anti-unscrewing feature |
9022945, | Jul 08 2009 | Pacesetter, Inc. | Methods and systems that monitor for an impending myocardial infarction |
9050041, | Oct 30 2009 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
9055917, | Jan 11 2000 | Cedars-Sinai Medical Center | Method for detecting, diagnosing, and treating cardiovascular disease |
9060692, | Oct 12 2010 | Pacesetter, Inc | Temperature sensor for a leadless cardiac pacemaker |
9072913, | Oct 14 2005 | Pacesetter, Inc | Rate responsive leadless cardiac pacemaker |
9101278, | Sep 20 2002 | Angel Medical Systems, Inc. | RR interval based beat rejection for a cardiac monitor |
9110836, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
9111026, | Aug 22 2003 | Integrated biosensor and simulation system for diagnosis and therapy | |
9113828, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
9126032, | Dec 13 2010 | Pacesetter, Inc | Pacemaker retrieval systems and methods |
9168383, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker with conducted communication |
9192774, | Oct 14 2005 | Pacesetter, Inc | Cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
9216298, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker system with conductive communication |
9227077, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker triggered by conductive communication |
9242102, | Dec 20 2010 | Pacesetter, Inc | Leadless pacemaker with radial fixation mechanism |
9272155, | Feb 02 2009 | Pacesetter, Inc | Leadless cardiac pacemaker with secondary fixation capability |
9282895, | Mar 30 2009 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
9326707, | Nov 10 2008 | Abbott Diabetes Care Inc | Alarm characterization for analyte monitoring devices and systems |
9326709, | Mar 10 2010 | Abbott Diabetes Care Inc | Systems, devices and methods for managing glucose levels |
9358400, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker |
9384323, | Oct 18 2002 | Pharmaco-genomic mutation labeling | |
9393421, | May 26 2005 | Boston Scientific Neuromodulation Corporation | Controlling charge flow in the electrical stimulation of tissue |
9409028, | Jun 20 2002 | Boston Scientific Neuromodulation Corporation | Implantable microstimulators with programmable multielectrode configuration and uses thereof |
9409033, | Oct 14 2005 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
9415228, | Nov 24 2009 | Angel Medical Systems, Inc. | System for ischemia detection based on adjustable paced beat analysis timing |
9454639, | Oct 18 2002 | Pharmaco-genomic mutation labeling | |
9474475, | Mar 15 2013 | Abbott Diabetes Care Inc | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
9511236, | Nov 04 2011 | Pacesetter, Inc | Leadless cardiac pacemaker with integral battery and redundant welds |
9582637, | Oct 18 2002 | Pharmaco-genomic mutation labeling | |
9622691, | Oct 31 2011 | Abbott Diabetes Care Inc | Model based variable risk false glucose threshold alarm prevention mechanism |
9662056, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
9675290, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
9687655, | May 23 2012 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
9687666, | Oct 14 2005 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
9719147, | Aug 22 2003 | Integrated biosensor and simulation systems for diagnosis and therapy | |
9730650, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
9740817, | Oct 18 2002 | Apparatus for biological sensing and alerting of pharmaco-genomic mutation | |
9801577, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
9802054, | Aug 01 2012 | Pacesetter, Inc | Biostimulator circuit with flying cell |
9814428, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
9867579, | Nov 29 2013 | EDAN INSTRUMENTS, INC | Method of assisting monitoring alarm and medical external equipment using the same |
9872999, | Oct 14 2005 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
9882660, | Oct 26 2006 | Abbott Diabetes Care Inc.; University of Virginia Patent Foundation | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
9907492, | Sep 26 2012 | Abbott Diabetes Care Inc | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
9913619, | Oct 31 2011 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
Patent | Priority | Assignee | Title |
3867950, | |||
3888260, | |||
4003379, | Apr 23 1974 | BIOMEDICAL SYSTEMS INSTITUTE, INC | Apparatus and method for implanted self-powered medication dispensing |
4223678, | May 03 1978 | MIROWSKI FAMILY VENTURES L L C | Arrhythmia recorder for use with an implantable defibrillator |
4295474, | Oct 02 1979 | VENTRITEX, INC A CORPORATION OF CALIFORNIA | Recorder with patient alarm and service request systems suitable for use with automatic implantable defibrillator |
4373527, | Apr 27 1979 | The Johns Hopkins University | Implantable, programmable medication infusion system |
4543955, | Aug 01 1983 | Pacesetter, Inc | System for controlling body implantable action device |
4658830, | Aug 08 1984 | MERIDAN MEDICAL TECHNOLOGIES, INC | Method and apparatus for initiating reperfusion treatment by an unattended individual undergoing heart attack symptoms |
4796641, | Jul 06 1987 | TRANSOMA MEDICAL, INC | Device and method for chronic in-vivo measurement of internal body pressure |
5042497, | Jan 30 1990 | Cardiac Pacemakers, Inc. | Arrhythmia prediction and prevention for implanted devices |
5135004, | Mar 12 1991 | Cardiac Pacemakers, Inc | Implantable myocardial ischemia monitor and related method |
5313953, | Jan 14 1992 | Cardiac Pacemakers, Inc | Implantable cardiac patient monitor |
5330505, | May 08 1992 | Medtronic, Inc | System for and method of treating a malfunctioning heart |
5409009, | Mar 18 1994 | Medtronic, Inc.; Medtronic, Inc | Methods for measurement of arterial blood flow |
5417717, | Nov 04 1991 | Cardiac Pacemakers, Inc. | Implantable cardiac function monitor and stimulator for diagnosis and therapy delivery |
5496351, | Oct 05 1993 | SORIN BIOMEDICA S P A | Device for determining myocardial function and corresponding procedure |
5730125, | Feb 22 1995 | Intermedics Inc | Implantable medical device with enclosed physiological parameter sensors or telemetry link |
5800498, | Apr 26 1996 | PH TARGET, LLC | Catheter for implantable rhythm control device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 22 1999 | Cathco, Inc. | (assignment on the face of the patent) | / | |||
Jun 26 2000 | FISCHELL, ROBERT E | CATHCO, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011017 | /0022 | |
Jun 26 2000 | FISHCHELL, DAVID R | CATHCO, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011017 | /0022 | |
Jun 26 2000 | FISCHELL, TIM A | CATHCO, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011017 | /0022 | |
Apr 14 2004 | CATHCO, INC | ANGEL MEDICAL SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015246 | /0497 |
Date | Maintenance Fee Events |
Mar 17 2004 | REM: Maintenance Fee Reminder Mailed. |
Apr 21 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 21 2004 | M1554: Surcharge for Late Payment, Large Entity. |
Apr 27 2004 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Apr 28 2004 | R2551: Refund - Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 28 2004 | R2554: Refund - Surcharge for late Payment, Small Entity. |
Dec 07 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 26 2007 | ASPN: Payor Number Assigned. |
Feb 28 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 29 2003 | 4 years fee payment window open |
Feb 29 2004 | 6 months grace period start (w surcharge) |
Aug 29 2004 | patent expiry (for year 4) |
Aug 29 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 29 2007 | 8 years fee payment window open |
Feb 29 2008 | 6 months grace period start (w surcharge) |
Aug 29 2008 | patent expiry (for year 8) |
Aug 29 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 29 2011 | 12 years fee payment window open |
Feb 29 2012 | 6 months grace period start (w surcharge) |
Aug 29 2012 | patent expiry (for year 12) |
Aug 29 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |