This invention relates to an electrical machine that functions both as an electrical motor as well as a generator concurrently. This motor or generator consist of three major members i.e. an outer stationary member called the stator (10) and two inner rotating member called rotor A (20) and rotor B also known as the armature (30), both of which is mounted within each other on the same rotating axis. rotor A (20) is mounted inside the stator (10) and is made of plurality of permanent magnets arranged in such a way that there are a plurality of alternating poles is available on both the outer and inner surface. It is the plurality of alternating poles on the outer surface that is used to interact with the magnetic field from the stator windings. The inner alternating poles is used to interact with the alternating magnetic field from the coil windings on rotor B (30) or the armature (30). Both rotor A and rotor B are mounted on the same rotating axis and are controlled by one way bearings or cam clutch so that they can only rotate in one direction. By reversing the polarity of the DC current flowing through the armature, will cause a push and pull effect interacting on both rotor A and rotor B. Controlling the timing of the alternating DC current will cause both rotor A and rotor B to move only in one direction either clockwise or anticlockwise with the aid of one-way bearings (80) mounted on both rotor A and rotor B. This timing is achieved with feedback signals from an emitter disc mounted on the rotors and an electronic control circuit to alternately switch the current applied to the armature coil windings (15)
|
2. An electrical machine capable of functioning both as a motor and a generator at the same time, the electrical machine comprising:
an outer stationary member comprising a plurality of stator windings formed therein, the stator windings configured to generate an electrical current when the electrical machine is functioning as a generator, wherein each stator winding is wound to form an alternating pole adjacent to each other; a first inner rotor housed inside the outer stationary member, wherein the first inner rotor includes inner and outer surfaces formed by one of either a first plurality of coil windings or a first plurality of permanent magnets with alternating poles; a second inner rotor housed inside the first inner rotor and configured to rotate coaxially with the first inner rotor and formed by one of either a second plurality of coil windings or a second plurality of permanent magnets with alternating poles; and an armature shaft positioned inside the second inner rotor configured to provide a mechanical output.
1. An electrical machine capable of functioning both as a motor and a generator at the same time, the electrical machine comprising:
an outer stationary member comprising a plurality of stator windings formed therein, the stator windings configured to generate an electrical current when the electrical machine is functioning as a generator, wherein each stator winding is wound to form an alternating pole adjacent to each other; a first inner rotor housed inside the outer stationary member, wherein the first inner rotor includes inner and outer surfaces formed by one of either a first plurality of coil windings or a first plurality of permanent magnets with alternating poles; a second inner rotor housed inside the first inner rotor and configured to rotate coaxially with the first inner rotor and formed by one of either a second plurality of coil windings or a second plurality of permanent magnets with alternating poles; and an armature shaft positioned inside the second inner rotor configured to provide a mechanical output, wherein the first and second inner rotors are mounted on one way bearings in order to allow movement in a single direction.
3. The electrical machine according to
4. The electrical machine according to
5. The electrical machine according to
6. The electrical machine according to
7. The electrical machine according to
a pair of sensors for sensing the alternating gaps on the second disc; a bi-directional "H" bridge sequence power switching circuit for changing the polarity of the second plurality of coil windings depending on feedback signals from the sensors; and at least one transistor used as switching means.
8. The electrical machine according to
9. The electrical machine according to
10. The electrical machine according to
11. The electrical machine according to
12. The electrical machine according to
|
The present invention relates to an electrical machine that converts mechanical energy into electrical energy and or electrical energy into mechanical energy as in electric generator and motor respectively. In general electrical machines consist of an outer stationary member and an inner rotating member. The stationary and rotating member consist of iron cores; and an air-gap separates the stationary and rotating members. A magnetic flux is produced in the magnetic circuit by current flowing through the windings situated on the two said members.
Presently, there are many types of motor/generator available. The most common are:
i. DC motors or generators with or without permanent magnets
ii . Synchronous motors or generators
iii . Asynchronous motors or generators
iv . Induction motors
More specifically, the present invention relates to electric motors and generators having an inverted stator/rotor configuration wherein the lamination core or cores and the coils wrapped thereabouts are fixed, with wires extending from coils extending axially from the frame, and rotors carry either permanent magnets or an array of self-exciting DC field poles having alternating polarities. Even more specifically, the present invention relates to electric motors or generators having the above mentioned stator/rotor configuration and having an integral heat sink, either air or liquid cooled, mounted proximate to the fixed coils and lamination cores.
Conventional DC motors or generators wherein the armature coils are wound on the rotor and the permanent magnets or field poles are mounted on the stator require brush type commutators. These brush type motors are gradually being replaced with more advanced brushless DC motors, AC synchronous motors or induction motors with variable frequency controls.
Whether acting as a generator or motor, these magnetic machines function because of relative motion between electrical conductors on a rotor or armature and a magnetic field. The magnetic field may be stationary and the electrical conductors revolve through it, or the electrical conductors may be stationary and the electrical field structure may revolve. It is also possible for both the conductors and the magnetic field to be in motion while the magnetic machine is functioning. When a generator is in function, the relative motion between the electrical conductors and the magnetic field produces an induced electromotive force, sometimes called an "EMF" or voltage, and an associated current in the active conductors. Generally, the EMF and current that are produced are alternating in direction and sometimes a "commutator" is used to make the electric current unidirectional in the external circuit of the magnetic machine. At any moment in time, these magnetic machines can only function as an electrical generator or an electrical motor.
It is the object of the present invention to provide a method of constructing an electrical machine that can function both as an electrical motor as well as a generator concurrently. This new construction consist of three members i.e. an outer stationary member and two inner rotating members which is known as Rotor A and Rotor B respectively. The outer stationary member can function both as an excitation field winding also known as a stator when it is in an electrical motor arrangement or as a coil winding to generate EMF or voltage when it is in a generator arrangement. The winding on this stator is wound in such a way that there are plurality of alternating poles adjacent to each other. All the N poles and the S poles are connected in parallel either individually or in predetermined, number of coils(N) connected in a group. The core of this stator is made of laminated iron thereby providing greater magnetic flux density, thus creating more torque and heat dissipation. The second member is the first inner rotor (Rotor A) mounted inside the external stator with an air gap between the said stator and rotor. This rotor can consist of excitation coil windings or permanent magnets with a plurality of alternating poles on the outer surface as well as the inner surface. This rotor is mounted with a flange on both sides. The flange may also serve as flywheel to improve the running torque of this Rotor A. Therefore the size of the flange can be varied accordingly to suit the application of this machine. This assembly is then mounted with one-way bearing or cam clutch on both ends. If electrical excitation is required then the leads from coils will be connected via a slip ring and carbon brush configuration. The third member of the motor is the second inner rotor (Rotor B) mounted inside Rotor A. This Rotor B can be termed as the armature of the motor, either wound with excitation coils or with permanent magnets with plurality of alternating poles adjacent to each other. This Rotor B rotates on the same axis as Rotor A with an air gap that separates them and is also mounted on one-way bearing or cam clutch on both ends.
If electrical excitation of the armature winding is chosen then the wiring leads from the armature will be connected via a slip ring carbon brush configuration.
From the previous description, it is noted that there are three major components to the construction of this motor i.e. the external stationary stator, and two rotating member, Rotor A and Rotor B. Both the Rotor A and Rotor B are mounted on one way bearings or cam clutch. Since both Rotor A and Rotor B are only permitted to rotate in one direction, these two members will form the major moving parts of the motor with the output shaft on the armature i.e. Rotor B. An emitter disc is mounted on the side of Rotor A with the LED sensors mounted on Rotor B or vice versa. The output of the emitter will provide feedback to the electronic control circuit to alternate the current flowing through the armature coils in Rotor B. In this arrangement, the polarity of the poles in Rotor A need not change state. Therefore permanent magnets can be used to provide the magnetic flux required to react with the alternating magnetic flux created by current flowing through the armature thereby causing both,Rotor A and Rotor B to move in one direction.
FIG. 1 is a cross sectional view of the generator and motor in accordance with the present invention showing the arrangement of the three major members i.e. (10) the stationary stator, (20) Rotor A with permanent magnets, and (30) Rotor B (or the armature) with the excitation coil windings.
FIG. 2A is a cross sectional view of generators and motor with alternating poles on two rotating rotors and disc 1 on armature.
FIG. 2B shows the circuit diagram of the electronic circuit to control the reversal of the armature coils polarity when the LED sensors sense a slot opening on the disc.
FIG. 3A shows the disc with plurality of alternating slot openings on the upper and lower area placed inbetween the lighting source and the light sensor.
FIG. 3B is the cross sectional view (lengthwise) showing detailed arrangement of the various components assembled for this invention.
FIGS. 3C-3E shows component arrangements of the generator-and-motor machine of this invention.
A preferred embodiment shown in FIG. 3B having a stationary stator (10) of cylindrical structure, first inner rotor (20) of permanent magnets and second inner rotor or armature (30) with coil windings. All of these members are mounted on the same axis with the mechanical output on the armature shaft (38). The stationary stator (10) is made of laminated iron sheets or other materials having a high magnetic permeability as well as a high degree of thermal conductivity. There are slots in the stator running lengthwise that will house the insulated coil windings (15). The number of slots in the stator will correspond to the number of poles available on the outer surface of Rotor A (20). The number of ampere-turns per coil are limited by the size and depth of the slots.
When Rotor A (20) rotates it will provide a rotating magnetic field derived from the permanent magnets (25) on Rotor A (20) that will cut the stator coil windings (15) thereby generating EMF or voltage according to Faraday's induction law. Alternatively, DC current can be applied to the stator coil winding (15) that will drive the Rotor A (20) as in a motor arrangement. The timing to reverse the polarity of the flow of DC current is controlled by sensor mechanism 2 consisting a pair of light emitting source (55a, 55b), two LED sensors (56a, 56b) and a disc 2 (50) with plurality of slot openings rotating inbetween the LED source and sensor on the said disc there are slot openings on the upper and lower portion of the disc. Therefore, each strip of the slot openings is placed inbetween an LED and a sensor respectively. In this motor arrangement, the speed and torque available on the armature output shaft will be increased due to the summation of the rotational speed of Rotor A (20) as well as the armature (30).
Rotor A (20) is mounted inside the stationary stator (10) with an air gap (18) between the stationary stator (10) and Rotor A (20). Rotor A (20) rotates unidirectional governed by two one-way bearings (80) housed in the external motor flange (100). Rotor A (20) is an assembly of a plurality of permanent magnets (25) arranged with alternating poles as shown in FIG. 1. These magnets (25) are then bolted (26) with flanges (22) (23) on both ends that will house the one-way bearings (80) with the external flange (100) of the motor. The size of these flanges (22) (23) can be varied in size to produce the flywheel effect of this rotor, thereby also increasing the torque as well.
On one of the flanges (22) is the disc 2 (50) mounted on the outer surface that will provide appropriate signals to the sensors (56a, 56b) to synchronize the driving current to the stator coil winding (15) in relation with the magnetic poles on Rotor A (20). (NB. This portion of the circuitry is used only when we want to use the stator coil windings (15) as in a motor arrangement. Else sensor mechanism 2 does not function in a generator arrangement).
LED transmitters (45a, 45b) and sensor (46a, 46b) are mounted on the inner surface of this steel flange (22) and are electrically connected to four copper rings (24) on the outer surface i.e.
i . one ring for DC power supply to the LEDs and the LED sensors.
ii . one ring for DC return from the LED and the LEDs sensors.
iii. one ring for each sensor output of the LED sensors respectively.
These electrical connections are then connected via carbon brushes (60) on the rings. The disc 1 (40) that provides timing signals to alternate the polarity of the armature coils is mounted on Rotor B (30) that functions as an armature. The actual timing of the sensor mechanism 1 is dependent on the pole pitch of the relevant members i.e. the stator (10) Rotor A (20) and Rotor B (30). The whole Rotor A (20) assembly must be well balanced in order to withstand mechanical vibration at rotation speeds.
Rotor B (30) rotates unidirectional governed by two one-way bearings (90) housed in the external flange (100) and rotates in the same direction as Rotor A (20). Depending on the type of one-way bearing (90) being used, an oil seal may be required in order to pack the one-way bearings (90) with grease or oil. The air gap (28) between Rotor B (30) and Rotor A (20) separates both.
The construction of Rotor B (30) is such that the coil windings (35) can be wire wound or multiple conductors laid across Rotor B (30) lengthwise with the ends shorted together with copper rings (36) at both ends that also serves as the slip ring for the carbon brushes (70). The number of turns per coil, the size and depth of the slots, and the type or kind of electrical insulation used would be pre-determined by the design parameters of the machine. The number of ampere turns per coil are limited by the size and depth of the slots. The core of Rotor B (30) is made from laminated iron sheets with slots to house the coil windings (35).
The number of slots in Rotor B (30) correspond to the number of poles on Rotor A (20) that will provide the repellent or attraction force to the armature coil windings (35). The coil windings (35) are electrically connected to the exterior via the carbon brushes (70) on the copper rings (36). The whole armature assembly must be well balanced in order to withstand mechanical vibration from rotation speed.
FIG. 2B is a schematic diagram showing the sensor mechanism control circuitry that controls the switching or reversing of the DC power supply to the coil windings (either the stator coils or armature coils (35)) via the bi-directional "H" current switching bridge (110). The actual timing distant between the gaps of the slot openings on the upper and lower slot openings is dependent on the pole pitch of the relevant member as mentioned earlier.
The following gives a detailed explanation of how the invention works.
To start with, Rotor A (20) and Rotor B (30) are constructed with the same number of magnetic poles. At the beginning, the supply power is applied, all the N poles and s poles on Rotor A are directly opposite the N poles and S poles on the armature. The LED sensor on Rotor A senses for an upper slot opening on the disc 1 (40) mounted on Rotor B (armature). Upon sensing a slot, it will give a signal to the electronic control circuit to allow current to the armature coils (35) that will provide the opposing polarity to the poles on Rotor A thereby causing Rotor A (20) and Rotor B (30) to repel each other.
Since Rotor A and Rotor B are mounted either to a cam-clutch or a one way bearing in order to allow rotation for both the Rotors in the same direction, all the repellent force generated will force Rotor B to move clockwise (assuming the one-way bearing on the armature only permits it to turn clockwise only).
The adjacent pole on Rotor A is the S pole, it will provide additional attraction force to the moving N poles on the armature. At the same time said disc 1 (40) will also move along in the clockwise direction.
The armature will continue to move in a clockwise direction until all the N poles and S poles in the armature are aligned with the opposite poles on Rotor A. As mentioned, said disc 1 (40) would continue moving until the LED sensors(45a, 45b) sense a slot opening on the lower portion of the said disc. This will give signal to the electronic control circuit to reverse the current flowing through the armature coils. When the current is reversed the polarity of the poles on the armature is also reversed. Therefore instead of aligning the poles of Rotor A to the poles of Rotor B, it will now provide a repellent force between Rotor A and Rotor B. Hence the timing to reverse the current in the armature coil is critical. The reversal time has to occur before the armature completely aligns itself with the opposite poles of Rotor A. Therefore the repellent force between the poles on Rotor A and the poles on the armature will cause the armature to stop moving momentarily since it cannot turn anti-clockwise.
Thus all the resultant repellent force will cause Rotor A to move clockwise. The adjacent poles on Rotor A will also provide additional attraction force to move the said Rotor in the clockwise direction. At the same time the LED sensors (45a, 45b) mounted on Rotor A would have moved in the clockwise direction while the disc 1 on the armature is stopped momentarily.
Rotor A will continue to move in the clockwise direction until all the N and S poles in Rotor A are aligned with the opposite poles on the armature. As the sensor 1(45a, 45b) mounted to Rotor A moves in the clockwise direction to this new position, said sensor will sense a slot opening on the upper portion of the disc 1(40). This will give signal to the electronic control circuit to reverse the current flow through the armature coils (35), thereby causing a repellant force between Rotors A (20) and B (30). Since Rotor A cannot move in the anti-clockwise direction, the armature moves clockwise again. From the above, it is noted that both Rotor A and the Rotor B are moving in the clockwise direction alternatingly.
The speed and the torque of this two rotating members will be dependant on the number, of coil windings and the amount of current flowing through and the useful magnetic flux available from the permanent magnets on Rotor A.
The running torque of these rotating members can be further improved by mounting a flywheel on Rotor A. This also helps to reduce the load stress on the one-way bearings on Rotor A when it is rotating.
As mentioned earlier the second member is the first inner rotor i.e. Rotor A. said Rotor is mounted with permanent magnets arranged in such a way that there are alternating poles adjacent to each other on both the outer and inner surface. The poles on the inner surface are used to interact with the poles on the armature.
From the explanation above, both Rotor A and the armature move in the clockwise direction. Thus we have a rotating magnetic flux available on the outer surface of Rotor A. This rotating magnetic flux will cut the coil windings on the stationary stator thereby generating EMF or voltage and current in the stator coils. The voltage or current generated can then be rectified and used to charge externally connected load.
Alternatively, we can apply current to the stator coils thus providing additional driving force to Rotor A, thereby increasing the speed and the torque available on the armature output shaft (38). To synchronize the current flowing through the stator (10) with the rotating magnetic flux on Rotor A, we will need another pair of LED transmitters (55a, 55b) and sensors (56a, 56b) mounted on the stator and an disc 2 (50) on Rotor A. Said LED sensors upon sensing light from LEDs through the holes on the disc 2, a pulse is generated to provide the timing or feedback to alternate the current flow through the stator coils in relation with the rotating magnetic poles on the outer surface of Rotor A.
The operation of the electronic control circuit (FIG. 2b) is such that LED sensor (46a) upon sensing light from LED through the disc 1 (40) upper slot opening, a high pulse is generated in the circuit. This will turn on transistor Q3 (130). Said transistor conducts and the SCR 1 (140) is now triggered. When the SCR 1 (140) conducts, the voltage at node 1 (150) drops. This change of voltage will allow the current to flow in the armature coils in a single direction. When the SCR 1 is triggered, the transistor Q2 (160) will be in `off` condition due to the current flowing to its base through capacitor 1 (170). At this point Rotor B rotates.
This condition continues until LED sensor (46b) senses a hole on the lower portion of the said disc 1 (40). When this happens, transistor Q4 (180) will be turned `on` by the high voltage pulse from the LED sensor (46b). The SCR 2 (190) will then be conductive. When said SCR is conductive, the current flows through capacitor 2 (195) to the base of transistor Q1 (135) which will off it. This will drop the voltage at node 2 (200) thus changing the direction of the flow of current through the armature coils due to the function of the bi-directional "H" circuit (110). This reversal causes opposition between the two Rotors which will force Rotor A to move. This process repeats where the two inner rotors moves alternately.
Patent | Priority | Assignee | Title |
10024370, | Jan 13 2017 | Ford Global Technologies, LLC | Hybrid transmission having electro-magnetically actuated pawl clutch |
10374499, | Apr 19 2011 | T. K LEVERAGE CO., LTD. | Power generator |
10574123, | Dec 17 2015 | Hamilton Sundstrand Corporation | Concentric dual rotor electric machine |
10724582, | May 14 2018 | Ford Global Technologies, LLC | Hybrid transmission having electro-magnetically actuated pawl clutch |
10804779, | Jun 18 2015 | GAM SHINE TECHNOLOGY CO , LIMITED | Multi-rotor permanent magnet synchronous motor |
11046404, | Jul 31 2019 | ABB Schweiz AG | Dual propeller drive system for a ship |
11181107, | Dec 02 2016 | U.S. Well Services, LLC; U S WELL SERVICES, LLC | Constant voltage power distribution system for use with an electric hydraulic fracturing system |
11181879, | Nov 16 2012 | U S WELL SERVICES HOLDINGS, LLC | Monitoring and control of proppant storage from a datavan |
11203924, | Oct 13 2017 | U.S. Well Services, LLC | Automated fracturing system and method |
11208878, | Oct 09 2018 | U S WELL SERVICES, LLC | Modular switchgear system and power distribution for electric oilfield equipment |
11211801, | Jun 15 2018 | U S WELL SERVICES, LLC | Integrated mobile power unit for hydraulic fracturing |
11424653, | Dec 13 2018 | DC motor-dynamo for bidirectional energy conversion between mechanical and electrical energy | |
11434737, | Dec 05 2017 | U.S. Well Services, LLC | High horsepower pumping configuration for an electric hydraulic fracturing system |
11449018, | Oct 14 2014 | U.S. Well Services, LLC | System and method for parallel power and blackout protection for electric powered hydraulic fracturing |
11451016, | Nov 16 2012 | U.S. Well Services, LLC | Switchgear load sharing for oil field equipment |
11454079, | Sep 14 2018 | U.S. WELL SERVICES LLC | Riser assist for wellsites |
11454170, | Nov 16 2012 | U.S. Well Services, LLC | Turbine chilling for oil field power generation |
11459863, | Oct 03 2019 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump |
11476781, | Nov 16 2012 | U S WELL SERVICES, LLC | Wireline power supply during electric powered fracturing operations |
11492886, | Dec 31 2019 | U S WELL SERVICES, LLC | Self-regulating FRAC pump suction stabilizer/dampener |
11506126, | Jun 10 2019 | U.S. Well Services, LLC | Integrated fuel gas heater for mobile fuel conditioning equipment |
11542786, | Aug 01 2019 | U S WELL SERVICES, LLC | High capacity power storage system for electric hydraulic fracturing |
11549346, | Nov 16 2012 | U.S. Well Services, LLC | Torsional coupling for electric hydraulic fracturing fluid pumps |
11560887, | Dec 31 2019 | U S WELL SERVICES, LLC | Segmented fluid end plunger pump |
11578577, | Mar 20 2019 | U S WELL SERVICES LLC | Oversized switchgear trailer for electric hydraulic fracturing |
11578580, | Oct 09 2018 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform |
11668420, | Dec 27 2019 | U.S. Well Services, LLC | System and method for integrated flow supply line |
11674352, | Jul 24 2015 | U.S. Well Services, LLC | Slide out pump stand for hydraulic fracturing equipment |
11674484, | Nov 16 2012 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
11674868, | Oct 05 2017 | U.S. Well Services, LLC | Instrumented fracturing slurry flow system and method |
11680473, | Nov 16 2012 | U.S. Well Services, LLC | Cable management of electric powered hydraulic fracturing pump unit |
11713661, | Nov 16 2012 | U.S. Well Services, LLC | Electric powered pump down |
11728709, | May 13 2019 | U S WELL SERVICES, LLC | Encoderless vector control for VFD in hydraulic fracturing applications |
11808125, | Oct 25 2017 | U.S. Well Services, LLC | Smart fracturing system and method |
11814938, | Apr 16 2018 | U.S. Well Services, LLC | Hybrid hydraulic fracturing fleet |
11846167, | Dec 30 2019 | U S WELL SERVICES, LLC | Blender tub overflow catch |
11850563, | Oct 14 2016 | U S WELL SERVICES HOLDINGS, LLC | Independent control of auger and hopper assembly in electric blender system |
11885206, | Dec 30 2019 | U S WELL SERVICES, LLC | Electric motor driven transportation mechanisms for fracturing blenders |
11905806, | Oct 03 2019 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump |
6501190, | Oct 28 1999 | Denso Corporation | Accessory device driving apparatus for vehicles |
6639337, | Sep 27 1999 | NISSAN MOTOR CO , LTD | Motor/generator with multiple rotors |
6703740, | Dec 14 1999 | BWI COMPANY LIMITED S A | Brushless motor with reduced rotor inertia |
6710492, | Jan 17 2000 | Nissan Motor Co., Ltd. | Concentrically arranged single stator dual rotor motor/generator |
7402929, | Nov 23 2005 | Magnetic motor with magnet assemblies | |
7548005, | May 24 2006 | Honda Motor Co.Ltd. | Electric motor having improved relative phase control |
7696876, | Dec 20 2001 | Varian Medical Systems, Inc | System for spatially adjustable excitation of leadless miniature marker |
7723886, | Nov 21 2003 | Gesellschaft fur Aufladetechnik und Spindelbau mbH | Continously controllable magnetodynamic gear |
7737595, | Oct 10 2007 | Honda Motor Co., Ltd. | Hybrid vehicle |
7750521, | Dec 07 2006 | General Electric Company | Double-sided starter/generator for aircrafts |
7791235, | Dec 22 2006 | General Electric Company | Variable magnetic coupling of rotating machinery |
7944107, | Dec 29 2006 | Synchronous permanent magnet machine | |
7973422, | Apr 27 2007 | SAFRAN AIRCRAFT ENGINES | Device for producing electrical power in a two-spool gas turbine engine |
7982351, | Apr 24 2006 | Magnomatics Limited | Electrical machines |
7999432, | Aug 17 2007 | Kura Laboratory Corporation | Field controllable rotating electric machine system with magnetic excitation part |
8403123, | May 25 2010 | Ford Global Technologies, LLC | Magnetically actuated one-way clutch |
8466592, | Apr 24 2006 | Magnomatics Limited | Electrical machines |
9234436, | Nov 22 2011 | Beijing Xiangtian Huachuang Aerodynamic Force Technology Research Institute Company Limited | Air-powered generator system with electromagnetic auxiliary power unit |
9479014, | Mar 28 2012 | ACME PRODUCT DEVELOPMENT, LTD | System and method for a programmable electric converter |
9570967, | Apr 19 2011 | T K LEVERAGE CO , LTD | Power generator |
Patent | Priority | Assignee | Title |
3898490, | |||
4296362, | May 18 1978 | RIPLEY MOTOR CORPORATION | Motor having electronically switched stator field current and integral torque control |
5035309, | May 08 1989 | THK CO , LTD | Rolling-contact bearing type clutch |
5065060, | Mar 06 1989 | MITSUBISHI DENKI KABUSHIKI KAISHA, 2-3, MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO-TO, 100 JAPAN A CORP OF JAPAN | Flywheel type energy storage apparatus |
5170108, | Jan 31 1991 | Daylighting, Inc.; DAYLIGHTING, INC , A CORP OF CO | Motion control method and apparatus for motorized window blinds and and the like |
5675203, | Mar 15 1994 | Volkswagen AG | Motor/generator arrangement having a movable common stator |
5744895, | Jan 31 1995 | Nippondenso Co., Ltd. | System for driving electric vehicles |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Apr 07 2004 | REM: Maintenance Fee Reminder Mailed. |
Sep 20 2004 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 19 2003 | 4 years fee payment window open |
Mar 19 2004 | 6 months grace period start (w surcharge) |
Sep 19 2004 | patent expiry (for year 4) |
Sep 19 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 19 2007 | 8 years fee payment window open |
Mar 19 2008 | 6 months grace period start (w surcharge) |
Sep 19 2008 | patent expiry (for year 8) |
Sep 19 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 19 2011 | 12 years fee payment window open |
Mar 19 2012 | 6 months grace period start (w surcharge) |
Sep 19 2012 | patent expiry (for year 12) |
Sep 19 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |