A subcircuit including three bipolar transistors is substituted in place of a single bipolar transistor to achieve extrinsic base and emitter series resistance compensation in translinear circuits. The subcircuit substitution is applied to a Brokaw-type bandgap cell. The subcircuit substitution is applied to a current multiplier circuit, and the resulting circuit is rearranged for external control circuit efficiency. A low-voltage bandgap circuit uses an operational amplifier feedback circuit with bipolar transistors having differing emitter areas and a voltage divider to generate base voltages for a Brokaw-type bandgap cell. A proportional-to-absolute-temperature sensor circuit uses parallel two stacked bipolar transistor paths in which the bipolar transistors' emitter areas are selected to adhere to a relationship so as to provide extrinsic series base and emitter resistance compensation. A proportional-to-absolute-temperature sensor circuit and a bandgap reference circuit use parallel three stacked bipolar transistor paths in which the bipolar transistors' emitter areas are selected to adhere to a relationship so as to provide extrinsic series base and emitter resistance compensation and higher output voltage swings. A bandgap reference circuit has its output referenced to the positive supply voltage, and has stacked current branches in which all transistors have zero base-collector voltages, and are selected to adhere to a relationship so as to provide extrinsic series base and emitter resistance compensation.
|
8. A proportional-to-absolute-temperature voltage reference circuit, comprising:
a first bipolar transistor having a first collector, a first base, and a first emitter occupying a first emitter area; a second bipolar transistor having a second collector, a second base, and a second emitter occupying a second emitter area; a third bipolar transistor having a third collector, a third base, and a third emitter occupying a third emitter area; a fourth bipolar transistor having a fourth collector, a fourth base, and a fourth emitter occupying a fourth emitter area; an operational amplifier having a positive op amp input, a negative op amp input, and an op amp output; a first current source for supplying a first current; a second current source for supplying a second current; and a resistor having a high terminal and a low terminal; wherein the first current source is coupled to the negative op amp input and the first collector; wherein the second current source is coupled to the positive op amp input and the third collector; wherein the op amp output is coupled to the first base and the third base; wherein the first emitter is coupled to the second collector and the second base; wherein the third emitter is coupled to the fourth collector and the fourth base; and wherein the fourth emitter is coupled to the high terminal.
1. A low-voltage bandgap reference circuit, comprising:
a first bipolar transistor having a first collector, a first base, and a first emitter occupying a first emitter area; a second bipolar transistor having a second collector, a second base, and a second emitter occupying a second emitter area; a first resistor having a first high terminal and a first low terminal; a second resistor having a second high terminal and a second low terminal; a third resistor having a third high terminal and a third low terminal; a fourth resistor having a fourth high terminal and a fourth low terminal; a fifth resistor having a fifth high terminal and a fifth low terminal; a first operational amplifier having a positive first op amp input, a negative first op amp input, and a first op amp output; a first current source for supplying a first current; and a second current source for supplying a second current; wherein the first current source is coupled to the negative op amp input and the first collector; wherein the second current source is coupled to the positive op amp input and the second collector; wherein the first high terminal is coupled to the second emitter; wherein the first low terminal is coupled to the first emitter and the second high terminal; wherein the third high terminal is coupled to the first base; wherein the third low terminal is coupled to the fourth high terminal; wherein the fourth low terminal is coupled to the second base and the fifth high terminal; wherein the fifth low terminal is coupled to the first op amp output; wherein the first current and second current are equal in magnitude; and wherein the second emitter area is a predetermined multiple of the first emitter area.
12. A voltage reference circuit, comprising:
a first bipolar transistor having a first collector, a first base, and a first emitter occupying a first emitter area; a second bipolar transistor having a second collector, a second base, and a second emitter occupying a second emitter area; a third bipolar transistor having a third collector, a third base, and a third emitter occupying a third emitter area; a fourth bipolar transistor having a fourth collector, a fourth base, and a fourth emitter occupying a fourth emitter area; a fifth bipolar transistor having a fifth collector, a fifth base, and a fifth emitter occupying a fifth emitter area; a sixth bipolar transistor having a sixth collector, a sixth base, and a sixth emitter occupying a sixth emitter area; a first operational amplifier having a positive first op amp input, a negative first op amp input, and a first op amp output; a first current source for supplying a first current; a second current source for supplying a second current; and a first resistor having a first high terminal and a first low terminal; wherein the first current source is coupled to the negative first op amp input and the first collector; wherein the second current source is coupled to the positive first op amp input and the fourth collector; wherein the first op amp output is coupled to the first base and the fourth base; wherein the first emitter is coupled to the second collector and the second base; wherein the second emitter is coupled to the third collector and the third base; wherein the fourth emitter is coupled to the fifth collector and the fifth base; wherein the fifth emitter is coupled to the sixth collector and the sixth base; and wherein the sixth emitter is coupled to the first high terminal.
27. A bandgap reference circuit, comprising:
a left first bipolar transistor having a left first collector, a left first base, and a left first emitter occupying a left first emitter area; a left second bipolar transistor having a left second collector, a left second base, and a left second emitter occupying a left second emitter area; a left third bipolar transistor having a left third collector, a left third base, and a left third emitter occupying a left third emitter area; a right first bipolar transistor having a right first collector, a right first base, and a right first emitter occupying a right first emitter area; a right second bipolar transistor having a right second collector, a right second base, and a right second emitter occupying a right second emitter area; a right third bipolar transistor having a right third collector, a right third base, and a right third emitter occupying a right third emitter area; an operational amplifier having a positive op amp input, a negative op amp input, and a op amp output; a first current source for supplying a first current; a second current source for supplying a second current; a third current source for supplying a third current; a fourth current source for supplying a fourth current; and a first resistor having a first high terminal and a first low terminal; wherein the first current source is coupled to the left second collector and the negative op amp input; wherein the second current source is coupled to the left third collector, the left third base, and the left second base; wherein the third current source is coupled to the right third collector, the right third base, and the right second base; wherein the fourth current source is coupled to the right second collector and the positive op amp input; wherein the op amp output is coupled to the left third emitter and the right third emitter; wherein the left second emitter is coupled to the left first collector and the left first base; wherein the right second emitter is coupled to the right first collector and the right first base; and wherein the right first emitter is coupled to the first high terminal.
20. A voltage reference circuit, comprising:
a first bipolar transistor having a first collector, a first base, and a first emitter occupying a first emitter area; a second bipolar transistor having a second collector, a second base, and a second emitter occupying a second emitter area; a third bipolar transistor having a third collector, a third base, and a third emitter occupying a third emitter area; a fourth bipolar transistor having a fourth collector, a fourth base, and a fourth emitter occupying a fourth emitter area; a fifth bipolar transistor having a fifth collector, a fifth base, and a fifth emitter occupying a fifth emitter area; a sixth bipolar transistor having a sixth collector, a sixth base, and a sixth emitter occupying a sixth emitter area; a seventh bipolar transistor having a seventh collector, a seventh base, and a seventh emitter occupying a seventh emitter area; a first operational amplifier having a positive first op amp input, a negative first op amp input, and a first op amp output; a second operational amplifier having a positive second op amp input, a negative second op amp input, and a second op amp output; a first current source for supplying a first current; a second current source for supplying a second current; a third current source for sinking a third current; a first resistor having a first high terminal and a first low terminal; and a second resistor having a second high terminal and a second low terminal; wherein the first current source is coupled to the negative first op amp input and the first collector; wherein the first base is coupled to the positive first op amp input, the first low terminal, and the second high terminal; wherein the first emitter is coupled to the second collector and the second base; wherein the second emitter is coupled to the third collector and the third base; wherein the third emitter is coupled to the third current source and the fifth emitter; wherein the second low terminal is coupled to the fourth collector and the fourth base; wherein the fourth emitter is coupled to the fifth collector and the fifth base; wherein the fifth emitter is coupled to the sixth collector, the sixth base, and the seventh emitter; wherein the second current source is coupled to the positive second op amp input and the seventh collector; and wherein the seventh base is coupled to the negative second op amp input and the second op amp output.
2. A low-voltage bandgap circuit as in
a secondary circuit loop coupled to the third high terminal, the fourth high terminal, and the fifth low terminal.
3. A low-voltage bandgap circuit as in
a third bipolar transistor having a third collector, a third base, and a third emitter occupying a third emitter area; and a second operational amplifier having a positive second op amp input, a negative second op amp input, and a second op amp output; wherein the third collector is coupled to the third base, the fifth low terminal, and the first op amp output; wherein the positive second op amp input is coupled to the third low terminal and the fourth high terminal; and wherein the second op amp output is coupled to the third high terminal.
4. A low-voltage bandgap circuit as in
a fourth bipolar transistor having a fourth collector, a fourth base, and a fourth emitter occupying a fourth emitter area; and a third current source for sinking a third current; wherein the third emitter is coupled to the third current source and the fourth emitter.
5. A low-voltage bandgap circuit as in
a fifth bipolar transistor having a fifth collector, a fifth base, and a fifth emitter occupying a fifth emitter area; and a fourth current source for supplying a fourth current; wherein the fourth current source is coupled to the fourth collector, the fourth base, the fifth collector, and the fifth base.
6. A low-voltage bandgap circuit as in
a sixth bipolar transistor having a sixth collector, a sixth base, and a sixth emitter occupying a sixth emitter area; a fifth current source for sinking a fifth current; and a sixth current source for supplying a sixth current; wherein the fifth current source is coupled to the fifth emitter and the sixth emitter; wherein the sixth current source is coupled to the sixth collector and the negative second op amp input; and wherein the sixth base is coupled to the positive second op amp input, the third low terminal, and the fourth high terminal.
7. A low-voltage bandgap circuit as in
wherein the third current, the fourth current, and the fifth current are each equal in magnitude to twice the sixth current.
9. A proportional-to-absolute-temperature voltage reference circuit as in
wherein the first current and the second current are equal in magnitude.
10. A proportional-to-absolute-temperature voltage reference circuit as in
wherein the second emitter is coupled to a ground voltage; and wherein the low terminal is coupled to the ground voltage.
11. A proportional-to-absolute-temperature voltage reference circuit as in
wherein an inverse of the first emitter area plus an inverse of the second emitter area equals an inverse of the third emitter area plus an inverse of the fourth emitter area.
13. A voltage reference circuit as in
wherein the first current and the second current are equal in magnitude.
14. A voltage reference circuit as in
wherein the second emitter is coupled to a ground voltage; and wherein the first low terminal is coupled to the ground voltage .
15. A voltage reference circuit as in
wherein an inverse of the first emitter area plus an inverse of the second emitter area plus an inverse of the third emitter area equals an inverse of the fourth emitter area plus an inverse of the fifth emitter area plus an inverse of the sixth emitter area.
16. A voltage reference circuit as in
wherein the first emitter area and the second emitter area are each twice as large as the fourth emitter area; wherein the third emitter area is a predetermined multiple of the fourth emitter area; and wherein the fifth emitter area and the sixth emitter area are each twice as large as the third emitter area.
17. A voltage reference circuit as in
a second resistor having a second high terminal and a second low terminal; wherein the third emitter is coupled to the first low terminal and the second high terminal.
18. A voltage reference circuit as in
wherein the second low terminal is coupled to a ground voltage.
19. A voltage reference circuit as in
a seventh bipolar transistor having a seventh collector, a seventh base, and a seventh emitter occupying a seventh emitter area; a second operational amplifier having a positive second op amp input, a negative second op amp input, and a second op amp output; and a third current source for supplying a third current; wherein the current source is coupled to the seventh collector and the negative second op amp input; wherein the seventh base is coupled to the positive second op amp input, the fifth base, the fifth collector, and the fourth emitter; and wherein the seventh emitter is coupled to the second op amp output.
21. A voltage reference circuit as in
wherein the first current source further has a first current source control input; wherein the second current source further has a second current source control input; wherein the third current source further has a third current source control input; and wherein the first op amp output is coupled to the first current source control input, the second current source control input, and the third current source control input.
22. A voltage reference circuit as in
wherein the third current is three times as large as each of the first current and the second current.
23. A voltage reference circuit as in
wherein an inverse of the seventh emitter area is equal to an inverse of the fourth emitter area plus an inverse of the fifth emitter area.
24. A voltage reference circuit as in
wherein an inverse of the first emitter area plus an inverse of the second emitter area plus an inverse of the third emitter area is equal to an inverse of the sixth emitter area plus one-half of an inverse of a seventh emitter area.
25. A voltage reference circuit as in
wherein each of the first emitter area and the seventh emitter area is a predetermined multiple of each of the second emitter area, the third emitter area, and the sixth emitter area; and wherein each of the fourth emitter area and the fifth emitter area is two times each of the first emitter area and the seventh emitter area.
26. A voltage reference circuit as in
wherein the first current source further has a first current source supply input; wherein the second current source further has a second current source supply input; wherein the third current source further has a third current source supply input; wherein the a positive supply voltage is coupled to each of the first current source supply input and the second current source supply input; and wherein a ground supply voltage is coupled to the third current source supply input.
28. A bandgap reference circuit as in
a second resistor having a second high terminal and a second low terminal; wherein the left second emitter is coupled to the first low terminal and the second high terminal; and wherein the second low terminal is coupled to a ground voltage.
29. A bandgap reference circuit as in
wherein an inverse of the left first emitter area plus an inverse of the left second emitter area equals an inverse of the left third emitter area; and wherein an inverse of the right first emitter area plus an inverse of the right second emitter area equals an inverse of the right third emitter area.
30. A bandgap reference circuit as in
wherein the right third emitter area is a predetermined multiple of the left third emitter area.
31. A bandgap reference circuit as in
wherein the right first emitter area and the right second emitter area are equal; and wherein the left first emitter area and the left second emitter area are equal.
|
1. Field of the Invention
The present invention relates to the field of translinear circuits, including current multipliers, bandgap reference circuits, and proportional-to-absolute-temperature sensor circuits. Specifically, the present invention relates to compensation for extrinsic series base and emitter resistance inherent in bipolar transistors within the translinear circuits.
2. Discussion of the Related Art
Proportional-to-absolute-temperature (PTAT) temperature sensors and bandgap reference circuits determine their output values based upon the difference in the voltage drops on diode junctions having different current densities. The primary property exploited by these circuits is the exponential variation of the current density across a p-n junction barrier with the intrinsic voltage applied on that barrier. A larger class of such circuits are the translinear (TL) networks. All the translinear circuits are based on the logarithmic variation of the intrinsic base-emitter voltage of a bipolar transistor with its collector current. There are several sources of errors which limit the accuracy of these translinear circuits. The VBE mismatches in nominal identical pairs due to emitter area differences, process gradients, and mechanical stress, can be minimized by interdigitation and common centroid layouts. The influence of base width modulation by the base-collector voltage (the Early effect) on the collector current can also be minimized by cascode configurations or active biasing for constant VCB. Usually, larger errors are due to the finite current gain β and finite base current. These errors are usually minimized by using driver stages or base current cancellation techniques.
Often the limiting factor in the accuracy of translinear circuits comes from the extrinsic base resistance and the series emitter resistance. While their effect is negligible at very low current densities, such as in micropower applications, the errors introduced at even moderate current densities usually dominate the non-idealities in the system. Attempts to compensate the base resistance with other resistors have only a limited success due to the poor matching between the base resistance and the compensation resistor, which also have different temperature coefficients.
A classic example of a translinear circuit is the Brokaw bandgap circuit, shown in FIG. 1. The two bipolar transistors Q1 and Q2 have different emitter areas. Specifically, transistor Q2 is K times larger in emitter area than transistor Q1. The feedback loop including the operational amplifier A1 ensures that the same current I flows through both transistors Q1 and Q2.
Because transistor Q2 is larger in area than transistor Q1, the current densities in the junctions of transistor Q2 are less by a factor of K than the corresponding densities in transistor Q1 when the same total collector current I flows through both transistors. Thus, the voltage drop across the base to emitter p-n junction of transistor Q2 is smaller than the corresponding voltage drop for transistor Q1. The difference in the base-emitter voltage of the two transistors ΔVbe, occurs across the resistor R1. The equilibrium value for the bias current I is given by ##EQU1## and kT/q represents the thermal voltage, which is proportional to absolute temperature T measured in Kelvin degrees. Since Q1 and Q2 have emitter areas ratioed by a factor of K, Isat2 =K*Isat1, and eq. (2) reduces to the following ##EQU2## The output voltage VBG in FIG. 1, can be expressed as follows. ##EQU3##
For a certain ratio of the resistors R1 and R2,VBG becomes equal to the bandgap voltage, and it is essentially temperature independent. Importantly, the cancellation of the output voltage temperature dependence is obtained independently of the absolute value of the resistors R1 and R2, which is difficult to control.
Eq. (2) assumes an ideal behavior for the bipolar transistor and neglects the voltage drops on the emitter and base extrinsic series resistors. The extrinsic base-emitter voltage of a transistor can be expressed as follows. ##EQU4##
In the above equation, Re --is the emitter series resistance, Rb --is the base series resistance β--is the dc current gain, and I/(β+1) is the base current.
For many applications, such as temperature sensors and low-noise bandgap references, the current densities are large enough so the series resistance voltage drops (the last two terms in eq. (5)) become significant. The equilibrium bias current in this case can be calculated from ##EQU5##
In eq. (6), it is assumed that the series resistances Rb and Re are inversely proportional to the emitter area, such that ##EQU6##
In practice, the resistor R1 is technologically different from internal resistors Rb and Re, and they have different temperature coefficients. In particular, it is very hard to control the ratio of these internal resistances to the other resistors in the circuit R1 and R2. For a PTAT current source, even though R1 can be made with a zero temperature coefficient (zero TC), the errors due to the extra terms in eq. (6) introduce errors in the ideal PTAT variation. In particular, the ΔVbe voltage drop variation between the two junctions with different current densities is not PTAT any longer, but includes a term dependent on the ratio of resistors Rb, Re and R1. ##EQU7##
Conventional ways to circumvent this problem in PTAT temperature sensors have been proposed by using three different current densities and then to compensate for the IR drops using complicated computations, which are inherently undesirable due to their significant complexity.
Conventional circuits for extrinsic base and emitter series resistance compensation suffer from the flaw the compensation resistor has a different temperature coefficient than the extrinsic base and emitter resistances because of the different fabrication and structural composition of the compensation resistor and the extrinsic base and emitter resistances. Therefore, conventional circuits are unable to robustly compensate for the extrinsic resistances of the bipolar transistor over all operating conditions. An object of the present invention is to provide a general purpose extrinsic base and emitter series resistance compensation circuit effective in any translinear circuit. Another object of the present invention is to provide proportional-to-absolute-temperature sensor circuits and bandgap reference circuits which effectively compensate for the extrinsic base and emitter series resistances under all operating conditions.
According to an embodiment of the present invention, a bandgap reference circuit is constructed in which the bases of the two bipolar transistors coupled to the inputs of the operational amplifier which produces the bandgap output are driven by voltages which are elevated by amounts which perfectly compensate for the voltage drops across the extrinsic base and emitter series resistances of those transistors. A feedback loop driven by the bandgap output voltage forces a fixed current through a voltage divider. The ratio of the resistances of the resistors in the voltage divider are chosen as a function of the emitter area multiple of the two bipolar transistors coupled to the inputs of the operational amplifier which produces the bandgap output. Because this embodiment has relatively few elements between the positive supply and ground, this embodiment is suitable for low-voltage operation.
According to another embodiment of the present invention, a proportional-to-absolute-temperature sensor circuit is constructed in which two parallel current paths each contain two stacked series transistors. The emitter areas of the four transistors are chosen so that the extrinsic series resistances through the two parallel current paths are equal and therefore cancel each other. Preferred implementations of the embodiments described involve whole number multiples of the emitter areas using unit transistors so that correct area ratios can be precisely controlled. Because this embodiment has relatively few elements between the positive supply and ground, this embodiment is suitable for low-voltage operation.
According to yet another embodiment of the present invention, a proportional-to-absolute-temperature sensor circuit is constructed in which two parallel current paths each contain three stacked series transistors. The emitter areas of the six transistors are chosen so that the extrinsic series resistances through the two parallel current paths are equal and therefore cancel each other. The embodiments having more elements between the positive supply and ground require relatively higher supply voltages, but provide the capacity for larger output voltage dynamic swing.
According to still another embodiment of the present invention, a bandgap reference circuit is constructed in which two parallel current paths each contain three stacked series transistors. The emitter areas of the six transistors are chosen so that the extrinsic series resistances through the two parallel current paths are equal and therefore cancel each other. Extrinsic series resistance compensation is accomplished on a separate loop which produces the bandgap reference output by tapping the base voltage of one of the middle transistors in the three stack.
According to yet still another embodiment of the present invention, a bandgap reference circuit references its output voltage to the positive supply. One current path contains three stacked series transistors, while another parallel current path includes one transistor in series with two parallel sub-branches. One sub-branch includes two stacked series transistors, while the other sub-branch includes a single transistor and includes the bandgap reference output feedback loop. The emitter areas in the two sub-branches are chosen so that the extrinsic series resistances through the two sub-branches are equal. The emitter area of the single transistor in the parallel current path is chosen so that the total extrinsic series resistance through the parallel current path equals the total extrinsic series resistance through the current path containing three stacked series tranistors. Because all transistors in this embodiment have zero base-collector voltages, errors associated with base width modulation are also eliminated.
An aspect of the present invention includes an equivalent subcircuit which may be substituted in any translinear circuit for a single transistor to compensate for the extrinsic series base and emitter resistances inherent in the single transistor. Three transistors are connected so that the base to emitter voltages of two of the transistors add while the third transistor's base to emitter voltage subtracts when the three transistors are substituted for the single transistor. The emitter areas of the two transistors whose base to emitter voltages add are chosen so that their series extrinsic resistance is equal to the extrinsic resistance of the third transistor which subtracts. Thereby, the total voltage drop due to extrinsic series resistance of the three transistors is zero when equal collector currents are driven through each of the transistors.
According to a further embodiment of the present invention, the equivalent subcircuit is substituted in the conventional Brokaw bandgap reference circuit to produce a bandgap reference circuit having extrinsic series resistance compensation.
According to yet a further embodiment of the present invention, a current multiplier subcircuit is substituted in a conventional bandgap reference circuit to produce a bandgap reference circuit having extrinsic series resistance compensation.
According to yet still a further embodiment of the present invention, the current multiplier subcircuit of the yet a further embodiment is rearranged to minimize bias and control circuitry and yet still provide extrinsic series resistance compensation.
These and other features, aspects, and advantages of the present invention are thoroughly disclosed by the Figures as described in the Detailed Description of the Invention.
FIG. 1 illustrates a conventional bandgap reference circuit.
FIG. 2 illustrates a bandgap reference circuit suitable for low voltage use according to an embodiment of the present invention.
FIG. 3 illustrates a proportional-to-absolute-temperature sensor circuit suitable for low voltage according to another embodiment of the present invention.
FIG. 4 illustrates a proportional-to-absolute-temperature sensor circuit having increased output voltage range according to yet another embodiment of the present invention.
FIG. 5 illustrates a bandgap reference circuit having increased output voltage range according to still another embodiment of the present invention.
FIG. 6 illustrates a bandgap reference circuit having its output voltage referenced to the positive supply according to yet still another embodiment of the present invention.
FIG. 7 illustrates an equivalent subcircuit for substituting in place of a single transistor to achieve extrinsic base and emitter series resistance compensation in any translinear circuit according to a translinear equivalence aspect of the present invention.
FIG. 8 illustrates a bandgap reference circuit according to a further embodiment of the present invention using the translinear equivalence aspect of the present invention.
FIG. 9 illustrates a conventional current multiplier subcircuit.
FIG. 10 illustrates a current multiplier subcircuit according to yet a further embodiment of the present invention using the translinear equivalence aspect of the present invention.
FIG. 11 illustrates a current multiplier subcircuit according to yet still a further embodiment of the present invention.
The Figures are more thoroughly discussed in the Detailed Description of the Invention.
Conventional methods to provide extrinsic series base and emitter compensation are either inaccurate over differing operating conditions or involve complicated digital computations to provide adequate compensation. The present invention includes several circuit solutions which accurately provide extrinsic series base and emitter resistance compensation regardless of temperature.
The first proposed circuit solution is shown in FIG. 2. The circuit is a variant of the Brokaw circuit previously discussed. The major difference consists in the fact that the bases of bipolar transistors Q1 and Q2 are not connected together to the output (point B). A separate loop, consisting of bipolar transistors Q3 -Q5, the operational amplifier A2, and the current sources I and 2I (also servo-ed from the main bias current I) force a small voltage drop between the points B and C. Since this secondary loop forces equal bias currents I (equal to the main bias current I) through each of the transistors Q3 -Q6, with the emitter areas indicated, the equilibrium voltage drop between points C and B is as follows.
VCB =Vbe3 -Vbe4 +Vbe5 -Vbe6 (10)
Using eq. (5) with the appropriate area ratioed values for Isat, Rb and Re, eq. (10) becomes the following. ##EQU8##
The assumption used in eq. (11) was that the current gain β is the same for all bipolar devices, which is a very good approximation in practice since these devices operate at comparable current densities. The voltage drop VBC is actually obtained from a resistor divider R4 +R5, and R3 from the VAB voltage drop. By a proper ratio of these resistors, the voltage drops VAB and VDB are forced to be as follows. ##EQU9##
These values for VAB and VDB are exactly the extra IR drops in the extrinsic Vbe drop (eq. 5) for the two transistors Q1 and Q2. Therefore, the initial circuit with Q1, Q2, the current mirror I, and the op amp A1 behaves as if the bipolar devices Q1 and Q2 would have ideal base-emitter voltages Vbe. Therefore, the difference ΔVbe, shown in FIG. 2 is PTAT and the output voltage VBG is equal to the ideal bandgap (eq. 4), both independent of the series resistors Rb and Re.
It is noteworthy that the secondary loop works correctly if the IR drops are significantly higher than random VBE mismatches, and this is exactly the regime requiring IR voltage drops compensation. A simpler circuit to generate a PTAT (or current, with a zero TC resistor) is shown in FIG. 3. The IR voltage drops in the bipolar transistors Q1 -Q4 are cancelled if the following relation is satisfied (since all the IR drops are inversely proportional to emitter area). ##EQU10##
If the above relation holds, the ΔVbe, voltage is ideally PTAT, and the following relationship is true. ##EQU11##
An example of emitter areas satisfying (14) is K1,=4, K2=6, K3=12, K4=3. Other combinations are also possible.
Another variation of the present invention is the circuit in FIG. 4. The advantage of this circuit is that it can develop larger ΔVbe, voltages. A detailed analysis follows, using the emitter area ratios indicated. ##EQU12##
Substituting equations (17)-(20) into eq. (16) yields the following. ##EQU13##
Thus, the result is independent of the IR drops. Of course, other emitter ratios are also possible in order to obtain a perfect IR drop cancellation.
Because of the three stacked transistors, this circuit requires larger supply voltages, but also enables the IR drops cancellation on an additional loop, as shown in FIG. 5, to obtain an IR drop independent bandgap circuit. The extra bipolar transistor Q7 has the same collector current as the other two branches through the feedback loop with the op amp A2. A detailed analysis confirms a perfect IR drop cancellation in the output voltage as follows. ##EQU14##
Using eq. (18)-(20) the output voltage can be expressed as follows. ##EQU15##
Equation (23) is in the same form as equation (4). The bandgap voltage is independent of the IR voltage drops and its value and temperature coefficient are dependent only on the ratio of the resistors R1 and R2.
Another implementation of the circuit in FIG. 5 is the bandgap circuit in FIG. 6. The output voltage is referenced in this case to the supply rail. Similar analysis as above shows a perfect IR drop cancellation in the output voltage and the bias circuit I. Another advantage of this implementation is the fact that all the bipolar transistors Q1 -Q7 are biased with zero base-collector voltage, thus reducing the errors associated with the base width modulation (the Early effect).
The voltage drop on the emitter extrinsic series resistance is usually much lower than the term including the base resistance. The two terms can be actually lumped together as long as the current gain factor β remains constant by defining an equivalent series resistance. This is a fairly reasonable assumption for quality bipolar transistors that maintain a constant current gain for many decades in current density. This simplified analysis also neglects other second order effects, such as the lowering of the effective base resistance at high current densities due to emitter current crowding.
It is straightforward that the errors due to the series resistors in the translinear loops are eliminated if all the iR drops cancel on the loop. The compensation method according to the present invention uses additional devices on TL loops such that the original devices current densities are maintained while the series resistors voltage drops are canceled. A basic assumption is that the equivalent series resistance is inversely proportional to the transistor multiplicity factor. This assumption is based on the good practice of making integer multiplicity devices from matched transistors connected in parallel. Since the voltage drops on the series resistors are cancelled, the equivalent base-emitter voltage has no error terms.
The same technique can be applied to any translinear circuit. FIG. 7 presents a general equivalence. The transistor Q1 is replaced by the combination Q11 -Q13 and auxiliary circuitry that ensures the same collector current for all these transistors. In this case the equivalent base-emitter voltage is given by the following.
Vbe1 =Vbe11 +Vbe12 -Vbe13 (24)
Assuming series resistances inversely proportional to the emitter area, this equivalent base-emitter voltage is independent of IR voltage drops. ##EQU16##
The application of this technique to a bandgap reference circuit is shown in FIG. 8. In this case, the transistors Q1 and Q2 in the circuit in FIG. 1 were replaced by the Q11 -Q13 and Q21 -Q23 groups. Otherwise, the functionality of this circuit is the same as for the circuit in FIG. 1. However, for the circuit in FIG. 8, all the IR voltage drops due to the extrinsic series base and emitter resistors are cancelled.
As yet another example, the multiplier cell in FIG. 9 was considered. The base-emitter voltages on the loop satisfy the following relation.
Vbe1 +Vbe2 =Vbe3 +Vbe4 (26)
If all the IR drops are ignored and Q1 -Q4 are matched devices at the same temperature, eq. (26) implies
I1 ·I2 =I3 ·I4 (27)
Errors will result if the more precise expression (5) is used for the Vbe. Those errors are cancelled in the multiplier circuits proposed in FIG. 10 and 11. Both these configurations are based on the equivalence presented in FIG. 7, and the series resistance compensation is achieved by increasing the circuit's complexity and the auxiliary circuitry to maintain the indicated current through all the branches.
For certain applications, such as PTAT temperature sensors and low noise bandgap reference circuits, conventionally the IR voltage drops on the series resistance in the emitter and the base of the reference transistors can lead to important non-linearities (temperature sensors) and process dependent temperature coefficient (bandgap circuits). The present invention discloses circuit techniques for perfect cancellation of the IR voltage drops. By using these techniques, a PTAT voltage (current) can be used in a temperature sensor without any trimming. Several circuit topologies for bandgap circuits are also disclosed. The technique according to the present invention can be generalized to any translinear circuit, such as a precision multiplier.
While the present invention has been described in conjunction with several alternative embodiments, these embodiments are offered by way of illustration rather than by way of limitation. Those skilled in the art will be enabled by this disclosure to make various modifications and alterations to the embodiments described without departing from the spirit and scope of the present invention. Accordingly, these modifications and alterations are deemed to lie within the spirit and scope of the present invention as specified by the appended claims.
Patent | Priority | Assignee | Title |
10712210, | Dec 29 2017 | NXP USA, INC | Self-referenced, high-accuracy temperature sensors |
11720137, | Mar 12 2021 | Kabushiki Kaisha Toshiba; Toshiba Electronic Devices & Storage Corporation | Bandgap type reference voltage generation circuit |
6281743, | Sep 10 1997 | Intel Corporation | Low supply voltage sub-bandgap reference circuit |
6344770, | Sep 02 1999 | SHENZHEN STS MICROELECTRONICS CO LTD | Bandgap reference circuit with a pre-regulator |
6407638, | Nov 15 1999 | STMicroelectronics S.A. | Low temperature-corrected voltage generator device |
6614209, | Apr 29 2002 | Semiconductor Components Industries, LLC | Multi stage circuits for providing a bandgap voltage reference less dependent on or independent of a resistor ratio |
6642777, | Jul 05 2001 | Texas Instruments Incorporated | Voltage reference circuit with increased intrinsic accuracy |
6657480, | Jul 21 2000 | Littelfuse, Inc | CMOS compatible band gap reference |
6876249, | Aug 13 2002 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Circuit and method for a programmable reference voltage |
6937098, | Sep 09 2003 | Dialog Semiconductor GmbH | Translinear amplifier |
7009830, | Jun 08 2001 | Rohm Co., Ltd. | Semiconductor integrated circuit device |
7119528, | Apr 26 2005 | International Business Machines Corporation | Low voltage bandgap reference with power supply rejection |
7211993, | Jan 13 2004 | Analog Devices, Inc. | Low offset bandgap voltage reference |
7309157, | Sep 28 2004 | National Semiconductor Corporation | Apparatus and method for calibration of a temperature sensor |
7372244, | Jan 13 2004 | Analog Devices, Inc. | Temperature reference circuit |
7461974, | Jun 09 2004 | National Semiconductor Corporation | Beta variation cancellation in temperature sensors |
7471074, | Oct 29 2004 | Silicon Laboratories Inc.; Silicon Laboratories | Re-referencing a reference voltage |
7857510, | Nov 08 2003 | THINKLOGIX, LLC | Temperature sensing circuit |
8063676, | Oct 18 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Band-gap reference voltage detection circuit |
8786358, | Mar 19 2010 | MUFG UNION BANK, N A | Reference voltage circuit and semiconductor integrated circuit |
9568928, | Sep 24 2013 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Compensated voltage reference generation circuit and method |
9810584, | Feb 27 2013 | OPTIS CIRCUIT TECHNOLOGY, LLC | Temperature sensor with layered architecture |
Patent | Priority | Assignee | Title |
4443753, | Aug 24 1981 | Advanced Micro Devices, Inc. | Second order temperature compensated band cap voltage reference |
4447784, | Mar 21 1978 | National Semiconductor Corporation | Temperature compensated bandgap voltage reference circuit |
4593208, | Mar 28 1984 | National Semiconductor Corporation | CMOS voltage and current reference circuit |
4622512, | Feb 11 1985 | Analog Devices, Inc. | Band-gap reference circuit for use with CMOS IC chips |
4633165, | Aug 15 1984 | ANALOG DEVICES, INC , A CORP OF MA | Temperature compensated voltage reference |
5081410, | May 29 1990 | Intersil Corporation | Band-gap reference |
5195827, | Feb 04 1992 | Analog Devices, Inc. | Multiple sequential excitation temperature sensing method and apparatus |
5352973, | Jan 13 1993 | GOODMAN MANUFACTURING COMPANY, L P | Temperature compensation bandgap voltage reference and method |
5847556, | Dec 18 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Precision current source |
5910726, | Aug 15 1997 | Freescale Semiconductor, Inc | Reference circuit and method |
5973550, | Jan 17 1996 | Analog Devices, Inc. | Junction field effect voltage reference |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 30 1998 | Ion E., Opris | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 04 2004 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jan 29 2008 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 30 2012 | REM: Maintenance Fee Reminder Mailed. |
Sep 19 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 19 2003 | 4 years fee payment window open |
Mar 19 2004 | 6 months grace period start (w surcharge) |
Sep 19 2004 | patent expiry (for year 4) |
Sep 19 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 19 2007 | 8 years fee payment window open |
Mar 19 2008 | 6 months grace period start (w surcharge) |
Sep 19 2008 | patent expiry (for year 8) |
Sep 19 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 19 2011 | 12 years fee payment window open |
Mar 19 2012 | 6 months grace period start (w surcharge) |
Sep 19 2012 | patent expiry (for year 12) |
Sep 19 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |