A class ab CMOS output stage for an operational amplifier with a rail-to-rail output swing includes a pair of complementary control transistors connected in opposing phase to each other. Connection of the complementary control transistors is made between driving nodes of a pair of complementary output transistors driven by a differential signal. The differential signal is provided by a pair of differential signal input lines connected to an input stage of the operational amplifier. biasing of the pair of complementary control transistors is by the differential signal.
|
19. A method for biasing an output stage of an operational amplifier, the method comprising the steps of:
connecting a pair of complementary output transistors; providing differential signal currents via a pair of differential signal lines, the differential signal currents being in opposing phase to each other; connecting respective conduction terminals of a pair of complementary control transistors in parallel between driving nodes of the pair of complementary output transistors; and biasing the pair of complementary control transistors with the differential signal currents.
5. An output stage for an operational amplifier comprising:
a pair of complementary output transistors; a pair of differential signal lines for providing differential signal currents being in opposing phase to each other; a pair of complementary control transistors having respective conduction terminals connected in parallel between driving nodes of said pair of complementary output transistors, a control terminal of a respective transistor of said pair of complementary control transistors connected to a respective differential signal line of said pair of differential signal lines; and a biasing circuit for biasing said pair of complementary control transistors.
12. An operational amplifier comprising:
an input stage; a pair of differential signal lines connected to said input stage for providing differential signal currents being in opposing phase to each other; and an output stage connected to said pair of differential signal lines, said output stage comprising a pair of complementary output transistors, a pair of complementary control transistors having respective conduction terminals connected in parallel between driving nodes of said pair of complementary output transistors, a control terminal of a respective transistor of said pair of complementary control transistors connected to a respective differential signal line of said pair of differential signal lines, and a biasing circuit for biasing said pair of complementary control transistors.
1. A class ab CMOS output stage for an operational amplifier having a rail-to-rail output voltage swing, the output stage comprising:
a pair of complementary output transistors; a pair of differential signal lines for providing differential signal currents being in opposing phase to each other; a pair of complementary control transistors connected in opposing phase to each other between driving nodes of said pair of complementary output transistors, a gate of a respective transistor of said pair of complementary control transistors connected to a respective differential signal line of said pair of differential signal lines; and biasing means for biasing said pair of complementary control transistors, said biasing means comprising a pair of first and second diodes connected in series between a respective supply line and a respective differential signal line of the pair of differential signal lines, and a first transistor connected to the first diode of a respective pair of diodes forming a current mirror for mirroring a differential signal current for the respective transistor of said pair of complementary control transistors, and to a terminal of the second diode of said pair of diodes. 2. A class ab CMOS output stage according to
3. A class ab CMOS output stage according to
a second transistor having a source and drain respectively connected between the respective supply line and the respective differential signal line of said pair of differential signal lines, and having a gate for receiving a respective logic signal; and a third transistor having a source and drain respectively connected between the respective supply line and a gate of the respective transistor of said pair of complementary output transistors, and having a gate for receiving the respective logic signal.
4. A class ab CMOS output stage according to
6. An output stage according to
a pair of first and second diodes connected in series between a respective supply line and a respective differential signal line of the pair of differential signal lines; and a first transistor connected to the first diode of a respective pair of diodes forming a current mirror for mirroring a differential signal current for the respective transistor of said pair of complementary control transistors, and to a terminal of the second diode of said pair of diodes.
7. An output stage according to
8. An output stage according to
a second transistor having conduction terminals connected between the respective supply line and the respective differential signal line of said pair of differential signal lines, and having a control terminal for receiving a respective logic signal; and a third transistor having conduction terminals connected between the respective supply line and a control terminal of the respective transistor of said pair of complementary output transistors, and having a control terminal for receiving the respective logic signal.
10. An output stage according to
11. An output stage according to
13. An operational amplifier according to
a pair of first and second diodes connected in series between a respective supply line and a respective differential signal line of the pair of differential signal lines; and a first transistor connected to the first diode of a respective pair of diodes forming a current mirror for mirroring a differential signal current for the respective transistor of said pair of complementary control transistors, and to a terminal of the second diode of said pair of diodes.
14. An operational amplifier according to
15. An operational amplifier according to
a second transistor having conduction terminals respectively connected between the respective supply line and the respective differential signal line of said pair of differential signal lines, and having a conduction terminal for receiving a respective logic signal; and a third transistor having conduction terminals respectively connected between the respective supply line and a conduction terminal of the respective transistor of said pair of complementary output transistors, and having a conduction terminal for receiving the respective logic signal.
16. An operational amplifier according to
17. An operational amplifier according to
18. An operational amplifier according to
20. A method according to
connecting a pair of first and second diodes in series between a respective supply line and a respective differential signal line of the pair of differential signal lines; and connecting a first transistor to the first diode of a respective pair of diodes forming a current mirror for mirroring a differential signal current for the respective transistor of the pair of complementary control transistors, and to a terminal of the second diode of said pair of diodes.
21. A method according to
|
The present invention relates to the field of operational amplifiers, and more particularly, to an output stage of a CMOS operational amplifier.
A circuit widely used in analog systems for amplifying signals superimposed on a variable continuous component reaching voltage levels close to the supply lines is a rail-to-rail operational amplifier. When it is no longer possible to use a common output stage, more complex circuit approaches become necessary. The amplifier must be able to handle an input signal having an amplitude equal to the voltage difference between the two supply rails, while providing an output signal having an amplitude that may equal such a voltage difference. There is a wealth of approaches described in the prior art which address certain known problems, but nonetheless, these approaches often have well-recognized drawbacks.
To better illustrate an approach for these known problems, and the advantages provided by the circuit of the invention, it is useful to refer to a circuit described in the IEEE Journal of Solid State Circuits, vol. 29, No. 12, December 1994, wherein a rail-to-rail amplifier for VLSI cells is disclosed. FIG. 1 shows an output stage in which the current generators may be formed with MOS transistors. The minimum supply voltage is equal to :
Vsuppmin=2*Vgs(pch|nch)+Vds(sat)
By using 1 μm BiCMOS technology with voltage thresholds of 0.64V for the N-channel, and -0.75V for the P-channel, the minimum supply voltage will be Vsuppmin=2V. The maximum voltage determined by such a low voltage fabrication technology is 6V.
The lin1 and lin2 lines originate from the input stage, which is not shown in the figure because it is not essential for the following discussion. The two signal currents provided by lines lin1 and lin2 must be in phase with each other. If we assume that the signal current is flowing in, the current available to the complementary pair of control MOS transistors M4 and M5 will be increased on the high side transistor because of line lin1. For the low side transistor, the current is decreased because a portion is input along line lin2 by the input stage.
This condition induces a shift towards a higher potential for the pair of control MOS transistors for the class AB stage transistors M4 and M5. As the voltage at the source of transistor M5 increases while the voltage on its gate remains constant, the current flowing in transistor M5 decreases while the current flowing in transistor M4 increases. The gate voltage of transistor M4 remains constant while its source voltage increases. This causes a voltage increase on the gates at the output of MOS transistors M3 and M6.
Input currents lin1 and lin2 are the bias current generated by the respective I1 and I3 current generators. If the input currents lin1 and lin2 become equal, the current through the control transistors M4 and M5 become null and the gate voltages of transistors M3 and M6 will be different only by a saturation Vds voltage of the transistor M4. In this case, transistor M6 is turned on at the maximum possible Vgs voltage, which is given by:
Vgs(max)=Vdd-2*Vds(sat)
M5 is turned off at the lowest possible Vgs voltage, which is given by:
Vgs(min)=Vds(sat)
This condition is also duplicated when the two signal currents on lines lin1 and lin2 are flowing out of the output stage. Hence, the two turn on voltages Vds(sat) for both the output MOS transistors M3 and M6 are nearly saturated. Such a voltage could become very useful when the supply voltage decreases, i.e., in applications intended to function at relatively low voltages.
The present invention provides for an improved class AB CMOS output stage for an operational amplifier, with rail-to-rail dynamics, and that is particularly advantageous in low supply voltage applications. This result is achieved with an output stage without bias current generators. Bias is provided by current mirrors of the signal currents themselves. This avoids problems related to nonideal matching among current generators, and the consequent introduction of imprecisions due to offset voltages.
Bias of a complementary pair of control transistors for the class AB output stage is derived from the differential signal input lines lin1 and lin2 connected to the output stage from the input stage of the operational amplifier. The bias is represented by a pair of differential signal currents in opposing phase to each other.
The different aspects and advantages of the circuit of the invention will become clearer through the following detailed description of a particular preferred embodiment, and by referring to the annexed drawings wherein:
FIG. 1 shows the circuit diagram of the output stage of a rail-to-rail operational amplifier, according to the prior art;
FIG. 2 shows a circuit diagram of an output stage of an operational amplifier, according to the present invention; and
FIG. 3 shows an input stage for an operational amplifier for driving an output stage of an operational amplifier, according to the present invention.
FIG. 2 shows the circuit diagram of a class AB output stage, according to a preferred embodiment of the present invention. Operation of the circuit of the invention requires that the differential signal currents, lin1 and lin2, be in opposing phase to each other. This is contrary to that required by the prior art output stage of the rail-to-rail operational amplifier illustrated in FIG. 1.
The MOS transistors M4, M7 and M8 are operatively equivalent to the MOS transistors M1, M2 and M4 of the prior art circuit shown in FIG. 1. However, the diode pair M4, M7 are not biased by a constant current generated by a dedicated current generator. On the contrary, the diode pair M4, M7 are biased by the differential signal currents themselves. Furthermore, the source of the transistor M8 is not connected to a current generator, but rather to a MOS transistor M5 which mirrors the differential signal current. The same may be said for the circuit portion comprising the transistors M10, M13, M9 and M14, which is symmetrically complementary.
In analyzing the function of signal currents lin1 and lin2, if lin1 increases, i.e., the injected current increases, while lin2 decreases, i.e., less current is injected, the potential level of the complementary pair of control transistors M8, M9 shifts higher. This occurs when the current output provided by transistor M5 is greater than the current absorbed by transistor M14. The capacity of absorbing current for transistor M9 decreases, and the capacity of absorbing current for transistor M8 increases so that it is always more conductive because its Vgs increases. As a consequence, the gate voltages of both the output transistors M6, M15 rise.
In this case, saturation of M8 is reached when it is no longer able to absorb more current from transistor M14 because lin2 has become null. Even in this case, the maximum turn on voltage of transistor M15 is equal to
Vgs(max)=Vdd-2*Vds(sat)
while the minimum turn off voltage of M6 is
Vgs(min)=Vds(sat).
Therefore, the circuit of the invention retains the functional characteristics of the prior art circuit of FIG. 1, while being more compact and having a more easily controlled offset. In particular, there are no current generators to bias the differential stage components that would need to be accurately matched to avoid offset errors, as in the prior art circuit. By not counting the MOS transistors M3, M1, M11 and M16 included in the diagram of FIG. 2, the essential functional diagram comprises ten transistors while the prior art circuit of FIG. 1 requires a minimum of twelve transistors. The twelve transistors are calculated by considering that each bias current generator is implemented with at least one MOS transistor. The current generators used in the prior art circuit introduce noise originating from the supply lines, or from their bias lines. In contrast, the circuit of the invention as shown in FIG. 2 does not require any current generators because it draws the necessary bias current from the signal lines lin1 and lin2.
Referring to FIG. 3, a circuit diagram of an input stage suitable for driving the class AB class output stage of the invention is illustrated. There are two N-channel and P-channel differential pairs that also have a double input compatibility. The reference indications for the transistors forming the input stage of FIG. 3 are progressive. The same reference indications used for illustrating the output stage circuits of FIGS. 1 and 2 are repeated.
Patent | Priority | Assignee | Title |
6353363, | Feb 29 2000 | SMSC ANALOG TECHNOLOGY CENTER, INC | Low voltage rail-to-rail CMOS output stage |
6388523, | Oct 16 2000 | Macom Technology Solutions Holdings, Inc | Dual-drive coupling for output amplifier stage |
6788147, | Nov 05 2002 | DIALOG SEMICONDUCTOR B V | Operational amplifier with class-AB+B output stage |
6870422, | Feb 29 2000 | SMSC ANALOG TECHNOLOGY CENTER, INC | Low voltage rail-to-rail CMOS input stage |
6933784, | Nov 05 2003 | Texas Instruments Incorporated | Output stage for high gain and low distortion operational amplifier |
7170351, | Sep 26 2003 | Renesas Electronics Corporation | Differential AB class amplifier circuit and drive circuit using the same |
7508265, | Nov 10 2006 | Orise Technology Co., Ltd. | Rail-to-rail class-AB operational amplifier |
7760180, | May 25 2004 | Renesas Electronics Corporation | Drive circuit, operation state detection circuit, and display device |
7839994, | Mar 01 2005 | Marvell International Ltd. | Class A-B line driver for gigabit Ethernet |
8452001, | Mar 01 2005 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Class A-B line driver for gigabit Ethernet |
Patent | Priority | Assignee | Title |
5786731, | Mar 29 1996 | National Semiconductor Corporation | Class AB complementary transistor output stage having large output swing and large output drive |
5808514, | Sep 19 1996 | Maxim Integrated Products, Inc. | Three state output method and apparatus for high speed amplifiers |
JP41807, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 18 1998 | STMicroelectronics S.r.l. | (assignment on the face of the patent) | / | |||
Jan 02 1999 | GIACOMINI, DAVIDE | STMICROELECTRONICS S R L | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009758 | /0178 |
Date | Maintenance Fee Events |
Feb 10 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 29 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 03 2008 | ASPN: Payor Number Assigned. |
Feb 24 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 19 2003 | 4 years fee payment window open |
Mar 19 2004 | 6 months grace period start (w surcharge) |
Sep 19 2004 | patent expiry (for year 4) |
Sep 19 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 19 2007 | 8 years fee payment window open |
Mar 19 2008 | 6 months grace period start (w surcharge) |
Sep 19 2008 | patent expiry (for year 8) |
Sep 19 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 19 2011 | 12 years fee payment window open |
Mar 19 2012 | 6 months grace period start (w surcharge) |
Sep 19 2012 | patent expiry (for year 12) |
Sep 19 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |