Assessing performance of satellite constellations. For a given constellation of satellites, each having a given number of sensors, a method is disclosed for determining the times of access between each sensor and a plurality of targets located on Earth. Calculation time required for determining access is greatly decreased using pre-computed access calculations as a baseline.

Patent
   6144334
Priority
Feb 26 1998
Filed
Feb 26 1998
Issued
Nov 07 2000
Expiry
Feb 26 2018
Assg.orig
Entity
Small
21
11
all paid
1. A method for determining access between a sensor and a target comprising:
inputting initial approximate orbital parameters of a first satellite bearing a sensor;
determining approximate orbital parameters for revolutions of the first satellite bearing a sensor;
storing the approximate orbital parameters for revolutions of the first satellite bearing the sensor;
determining the first satellite access periods to a target;
storing the first satellite access periods to the target;
determining estimated access periods between at least one subsequent satellite and the target, wherein determining estimated access periods further comprises:
comparing approximate orbital parameters for the revolutions of the first satellite;
estimating the time of access from a given revolution of the subsequent satellite (Revs) to the target using interpolation; and
displaying the time of access graphically for an analyst to use in mission planning.
2. The method for determining access between a sensor and a target of claim 1, wherein the first satellite is hypothetical and approximate orbital parameters for the revolutions of the first satellite are hypothetical.
3. The method for determining access between a sensor and a target of claim 2, wherein the hypothetical revolutions used are those with longitude of ascending node values closest to that of Revs.
4. The method for determining access between a sensor and a target of claim 3, wherein estimating the time of access from Revs to the target further comprises interpolating and adjusting for the difference between time past the ascending node of Revs and that of the hypothetical revolutions.
5. The method for determining access between a sensor and a target of claim 4 further comprising:
repeating the method of claim 4 for each of a plurality of targets.
6. The method for determining access between a sensor and a target of claim 4 further comprising:
repeating the method of claim 4 for a plurality of revolutions of a plurality of subsequent satellites.
7. The method for determining access between a sensor and a target of claim 4, further comprising:
adjusting for differences between orbital parameters of Revs and those of the hypothetical revolutions.
8. The method for determining access between a sensor and a target of claim 1, wherein displaying the time of access graphically comprises generating and orbital path and target areas graphical representation.
9. The method for determining access between a sensor and a target of claim 1 wherein displaying the time of access graphically comprises generating an access graph for two hypothetical orbit passes of the first satellite.

The present invention relates generally to assessing the performance of satellite constellations. In particular, the present invention relates to a solution for the problem of determining, for a given constellation of satellites, each having a given number of sensors, the times of access between each sensor and a plurality of targets of varying sizes and shapes on the surface of the Earth, and providing that information for various decision making processes.

The determination of periods of access between a satellite constellation and targets on the surface of the Earth is a computationally expensive, extremely time-consuming process. A typical example would involve calculating access between 3,000 or more sensors (e.g., a constellation of 66 satellites, each having 48 sensors) and 3,000 or more targets, including many area targets of irregular shape--a total of more than 9 million access calculations. Even with high speed computer equipment employing state-of-the art satellite system analysis software, calculating a week of access under such circumstances would require nearly a year of processing time. A more limited problem--such as calculating loss of access due to failure of one or more sensors on a given satellite in the constellation--could take several hours to process.

To overcome the shortcomings of approaches used to date, a method and apparatus is needed that will yield quick and accurate estimates of access times, based on a series of access calculations performed in advance for a single (possibly hypothetical) satellite over a systematically selected set of revolutions. Using the pre-computed access calculations as a baseline, such a method would estimate the access times between a given satellite in the constellation and a given target by interpolation and other appropriate adjustments. As the calculations required for interpolation and correction factors are much simpler than those required to actually calculate access between satellite constellations and ground targets, such a method would provide this necessary information in a much more timely manner.

It is therefore an object of the present invention to provide a method and apparatus to yield quick and accurate estimates of access times from satellites in a constellation, and subfields of view of those satellites, to a plurality of targets on the surface of the earth.

It is a further object of the present invention to provide a method and apparatus to yield quick and accurate estimates of access from satellites in a constellation, and subfields of view of those satellites, to a plurality of targets on the surface of the earth, based on a series of access calculations performed in advance for a single, hypothetical satellite over a systematically selected set of revolutions.

It is a further object of the present invention to provide a method and apparatus to speed up significantly access calculations for a typical satellite constellation by a large order of magnitude.

FIG. 1 illustrates the flow of processing of the present invention.

FIG. 2 illustrates the procedure for estimating the access periods between a given satellite in the constellation of interest and a given target Tx.

FIG. 3 illustrates a satellite orbit pass and an area target.

FIG. 4 illustrates an access graph for the two hypothetical orbit passes shown in FIG. 3.

FIG. 5 illustrates a report for the two hypothetical orbit passes of FIG. 3 .

Referring to FIG. 1, the practice of the present invention is depicted. Several revolutions of an initial satellite having the characteristics of a member satellite of the constellation of interest, using approximate orbital parameters, supplied by the user are calculated 102. In a preferred embodiment, each revolution of the single satellite would differ from the preceding one in terms of longitude of ascending node (LAN), with time past the ascending node (TPAN) held constant at 0. The degree of difference in LAN between any two revolutions would depend upon the acceptable level of granularity in the access computation. A typical example would be a series of 360 evenly distributed revolutions, in which the LAN of any given revolution would differ by one degree from that of the preceding one. For each revolution, access of the sensors of the single satellite in that specific orbit are calculated to all targets of interest 104 and stored.

In an alternative embodiment, the calculations can be performed for a hypothetical satellite. In another alternative embodiment, the calculations can be performed for a plurality of hypothetical satellites and stored for future access.

A satellite with a ground track having a consistent pattern of variation in latitude, as measured against the time past the ascending node, is assumed 106. It is also assumed that any subfields of view maintain a constant orientation relative to the ground track of the satellite 108.

Using the initial satellite or hypothetical satellite revolutions and pre-computed access periods as a baseline, the access periods between a subsequent satellite in the constellation and a given target Tx are estimated 110.

Referring to FIG. 2, the procedure for estimating the access periods between a subsequent satellite in the constellation and a given target Tx is depicted. The approximate orbital parameters for a given revolution Revs of the satellite of interest is compared to the approximate orbital parameters for two hypothetical revolutions HRev1 and HRev2 whose LAN values are closest to that of Revs 202. Using a standard interpolation process and adjusting for the difference between the TPAN of Revs and that of HRev1 and HRev2 (assumed to be 0), the times of access from Revs to target Tx is estimated 204. This process is repeated for each revolution of each satellite of interest with reference to each target for which the constellation is responsible 206.

Further adjustments are made for differences between the orbital parameters of Revs and those of HRev1 and Hrev2 208.

If the LAN of Revs is equal within an error tolerance to that of one of the single satellite or hypothetical satellite revolutions, only one of the latter need be used, thus simplifying the process. In this event, it is still necessary to account for difference in TPAN and other factors.

In the preferred embodiment of this method, orbits of the constellation's satellites are propagated via a computer program for satellite system analysis. The satellite system analysis is also used for setting up the single satellite or hypothetical satellite revolutions used as a benchmark and for precomputing access from those single satellite or hypothetical satellite revolutions to the targets of interest. Reports and graphs generated by the computer program facilitate the comparisons needed for estimating access periods for the actual satellites of the constellation.

FIG. 3 shows a zoomed in map window having satellite orbit pass 302 and area target 304. In this example, the LAN of orbit pass 302 is 122.5 degrees. First reference hypothetical orbit pass 306 having a LAN of 120 degrees and second reference orbit pass 308 having a LAN of 130 degrees are also shown. Using a calculating means such as STK's Access Tool available from Analytical Graphics, Inc. of Malvern, Pa., access periods between hypothetical orbit passes 306 and 308 and area target 304 are calculated. Dashed lines 310 and 314 drawn respectively between the beginning and end points of the two access periods, allow the user to estimate access period 312 for northern directed real orbit pass 302.

FIG. 4 depicts an access graph for the two hypothetical orbit passes shown in FIG. 3. Lines 402 and 404 reflect the access periods calculated for hypothetical orbit passes 306 and 308, respectively. Dashed lines 406 connect the beginnings and ends of lines 402 and 404, and a line representing the orbit pass of interest 408 is drawn parallel to lines 402 and 404 and located at a point 25 percent of the distance between lines 402 and 404. This represents the relationship between the LAN of the real orbit pass, 122.5 degrees, and those of the hypothetical orbit passes, 120 and 130 degrees. The beginning and end points of line 408 provide a basis for estimating the access period between the orbit pass of interest and the area target. Coordinate feature 410 enables the user to display the x and y coordinates by clicking on a point on the graph. The beginning or end time of the access period of the real orbit pass can be shown by clicking on the beginning or end point of line 408.

FIG. 5 depicts a report for the two hypothetical orbit passes of FIG. 3. Using interpolation procedures, one can derive the approximate start and stop times of the access period for the real orbit pass are derived.

Having thus described the basic concept of the invention, it will be readily apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements and modifications will occur and are intended to those skilled in the art, but are not expressly stated herein. These modifications, alterations and improvements are intended to be suggested hereby, and within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims and equivalents thereto.

Woodburn, James, Claffey, Douglas

Patent Priority Assignee Title
10122487, Oct 19 2012 Schweitzer Engineering Laboratories, Inc. Time distribution switch
10288741, Jan 11 2013 Schweitzer Engineering Laboratories, Inc. Multi-constellation GNSS integrity check for detection of time signal manipulation
10375108, Dec 30 2015 Schweitzer Engineering Laboratories, Inc Time signal manipulation and spoofing detection based on a latency of a communication system
10527732, Feb 09 2017 Schweitzer Engineering Laboratories, Inc. Verification of time sources
10819727, Oct 15 2018 Schweitzer Engineering Laboratories, Inc Detecting and deterring network attacks
10912104, Feb 01 2019 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Interleaved, static time division multiple access (TDMA) for minimizing power usage in delay-sensitive applications
11630424, Jul 13 2018 Schweitzer Engineering Laboratories, Inc. Time signal manipulation detection using remotely managed time
6859769, Jan 26 1999 ANSYS GOVERNMENT INITIATIVES, INC Method and apparatus for creating elements and systems for description of position and motion of bodies in three-dimensional space to support orbital maneuver analysis
9083503, May 02 2013 Schweitzer Engineering Laboratories, Inc. Synchronized clock event report
9270442, Apr 29 2014 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Time signal propagation delay correction
9319100, Aug 12 2013 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Delay compensation for variable cable length
9400330, Oct 19 2012 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Manipulation resilient time distribution network
9425652, Jun 16 2014 Schweitzer Engineering Laboratories, Inc. Adaptive holdover timing error estimation and correction
9520860, Oct 19 2012 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Time distribution switch
9590411, Dec 15 2011 Schweitzer Engineering Laboratories, Inc. Systems and methods for time synchronization of IEDs via radio link
9599719, Oct 19 2012 Schweitzer Engineering Laboratories, Inc. Detection of manipulated satellite time signals
9709680, Sep 08 2012 Schweitzer Engineering Laboratories, Inc. Quality of precision time sources
9709682, May 06 2013 Schweitzer Engineering Laboratories, Inc. Multi-constellation GNSS integrity check for detection of time signal manipulation
9759816, Jan 11 2013 Schweitzer Engineering Laboratories, Inc. Multi-constellation GNSS integrity check for detection of time signal manipulation
9760062, Oct 19 2012 Schweitzer Engineering Laboratories, Inc. Time distribution with multi-band antenna
9813173, Oct 06 2014 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Time signal verification and distribution
Patent Priority Assignee Title
5408237, Nov 08 1991 Wengen Wireless LLC Earth-fixed cell beam management for satellite communication system
5448621, Aug 02 1993 CDC PROPRIETE INTELLECTUELLE Dynamic reallocation of spectral capacity in cellular communication systems
5519404, Dec 14 1993 France Telecom Method of allocating a communication channel in a satellite network
5537679, Aug 01 1994 CDC PROPRIETE INTELLECTUELLE Communication network with flexible handoff scheduling for mobile nodes
5543813, Aug 12 1993 KDDI Corporation System for determining and registering location of mobile terminal for communication system with non-geosynchronous satellites
5552794, Apr 29 1994 CSR TECHNOLOGY INC Position estimation using satellite range rate measurements
5596328, Aug 23 1994 Honeywell INC Fail-safe/fail-operational differential GPS ground station system
5600328, Jun 21 1995 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Demodulator circuit in global positioning system receiver
5610614, Sep 13 1995 Trimble Navigation Limited Real-time kinematic initialization test system
5697050, Aug 23 1995 THERMO FUNDING COMPANY LLC Satellite beam steering reference using terrestrial beam steering terminals
5721810, Mar 24 1995 Electronics and Telecommunications Research Institute; Korea Telecommunication Authority Method of automatically controlling and verifying telecommands in satellite control system
//////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 25 1998WOODBURN, JAMESANALYTICAL GRAPHICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0091940048 pdf
Feb 26 1998Analytical Graphics, Inc.(assignment on the face of the patent)
Mar 04 1998CLAFFEY, DOUGLASSANALYTICAL GRAPHICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0091940032 pdf
Jan 21 2005ANALYTICAL GRAPHICS, INC MANUFACTURERS AND TRADERS TRUST COMPANYNOTICE OF SECURITY INTEREST IN U S PATENTS0156610536 pdf
May 19 2011ANALYTICAL GRAPHICS, INC Silicon Valley BankSECURITY AGREEMENT0264770843 pdf
Aug 14 2020ANALYTICAL GRAPHICS, INC Silicon Valley BankAMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT0535120267 pdf
Dec 01 2020Silicon Valley BankANALYTICAL GRAPHICS, INC RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 026477 08430545580535 pdf
Dec 01 2020Silicon Valley BankANALYTICAL GRAPHICS, INC RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 053512 02670545580786 pdf
Feb 22 2022ANALYTICAL GRAPHICS, INC ANSYS GOVERNMENT INITIATIVES, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0598110883 pdf
Feb 22 2022ANSYS GOVERNMENT INITIATIVES, INC ANSYS GOVERNMENT INITIATIVES, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0598110883 pdf
Date Maintenance Fee Events
Mar 31 2004M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
May 07 2008M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jul 29 2009ASPN: Payor Number Assigned.
May 07 2012M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Nov 07 20034 years fee payment window open
May 07 20046 months grace period start (w surcharge)
Nov 07 2004patent expiry (for year 4)
Nov 07 20062 years to revive unintentionally abandoned end. (for year 4)
Nov 07 20078 years fee payment window open
May 07 20086 months grace period start (w surcharge)
Nov 07 2008patent expiry (for year 8)
Nov 07 20102 years to revive unintentionally abandoned end. (for year 8)
Nov 07 201112 years fee payment window open
May 07 20126 months grace period start (w surcharge)
Nov 07 2012patent expiry (for year 12)
Nov 07 20142 years to revive unintentionally abandoned end. (for year 12)