The present invention provides a nucleotide sequence encoding carbamoyl phosphate synthetase II of Plasmodium falciparum. carbamoyl phosphate synthetase II catalyses the first committed and rate-limiting step in the de novo pyrimidine biosynthetic pathway. P. falciparum relies exclusively on pyrimidine synthesis de novo because of its inability to salvage pyrimidines. Mature human red blood cells, however, have no recognized requirement for a pyrimidine nucleotide. Accordingly, this enzyme represents a prime chemotherapeutic locus. The present invention relates to the use of the sequence encoding carbamoyl phosphate synthetase II in the recombinant production of carbamoyl phosphate synthetase II and to antisense molecules, ribozymes and other gene inactivation agents designed from this sequence.

Patent
   6183996
Priority
Dec 03 1992
Filed
Sep 10 1998
Issued
Feb 06 2001
Expiry
Jul 06 2015
Assg.orig
Entity
Large
1
1
EXPIRED
3. An antisense oligonucleotide capable of blocking expression of the nucleic acid molecule as shown in SEQ ID No:1.
1. A ribozyme capable of cleaving carbamoyl phosphate synthetase II mRNA, the ribozyme including sequences complementary to portions of mRNA obtained from the nucleic acid molecule as shown in SEQ ID NO:1.
2. The ribozyme as claimed in claim 1 in which the ribozyme includes sequences complementary to portions of mRNA obtained from inserted sequence one or two of the nucleic acid molecule as shown by nucleotides 1976-2671 or 4988-6796 of SEQ. ID. NO: 1.
4. A polynucleotide construct which produces in a cell the ribozyme as claimed in claim 1 or the antisense oligonucleotide as claimed in claim 3.

This application is a continuation-in-part of application Ser. No. 08/446,885, filed Jul. 6, 1995, now U.S. Pat. No. 5,849,573.

The present invention relates to nucleotide sequences encoding carbamoyl phosphate synthetase II of Plasmodium falciparum, to methods of producing this enzyme using recombinant DNA technology and to the use of this sequence and enzyme in the design of therapeutics.

The urgency for the design of novel chemotherapeutic agents for the treatment of malaria has been renewed in recent times due to the evolution of human malarial parasites, primarily Plasmodium falciparum, which are resistant to traditional drugs. Research into a vaccine seems a very plausible alternative, but after years of investigation, no clinically acceptable product has come to date. At the same time, there is also an increasing decline in the efficacy of insecticides against mosquito vectors. At present, more than two-thirds of the world's population--approximately 500 million people--are thought to live in malaria areas (Miller, 1989). It ranks eighth in the World Health Organization's (WHO) list of ten most prevalent diseases of the world (270 million infections a year) and ranks ninth of the ten most deadly diseases, claiming over 2 million lives a year (Cox, 1991; Marshall, 1991). Though chiefly confined to poor nations, there are recent reports of infections in the United States (Marshall, 1991) and Australia (Johnson, 1991), and ever increasing cases of travellers' malaria (Steffen and Behrens, 1992).

Comparative biochemical studies between the malaria parasite, P. falciparum and its host have revealed differences in a number of metabolic pathways. One such distinction is that the parasite relies exclusively on pyrimidine synthesis de novo because of its inability to salvage preformed pyrimidines (Sherman, 1979). Moreover, the mature human red blood cell has no recognised requirement for pyrimidine nucleotides (Gero and O'Sullivan, 1990). Major efforts have been directed towards the development of inhibitors of the pyrimidine biosynthetic pathway (Hammond et al., 1985; Scott et al., 1986; Prapunwattana et al., 1988; Queen et al., 1990; Krungkrai et al., 1992), confirming its potential as a chemotherapeutic locus. Current research into the molecular biology of the key pyrimidine enzymes is envisioned as a powerful tool, not only to get a better understanding of the parasite's biochemistry, but also to explore specific differences between the parasite and the mammalian enzymes.

Glutamine-dependent carbamoyl phosphate synthetase (CPSU, EC 6.3.5.5) catalyses the first committed and rate-limiting step in the de novo pyrimidine biosynthetic pathway of eukaryotic organisms (Jones, 1980). Moreover, because it catalyzes a complex reaction involving three catalytic units and several substrates and intermediates, it is a very interesting enzyme to study from a biochemical point of view. The structural relationship of CPSII to other pyrimidine enzymes varies in different organisms, making it a good subject for evolutionary studies.

The paucity of material that can be obtained from malarial cultures has hampered the isolation of adequate amounts of pure protein for analysis. The difficulty in purifying CPS is further augmented by its inherent instability. Studies using crude extracts from P. berghei (a rodent malaria) revealed a high molecular weight protein containing CPS activity, which was assumed to be associated with ATCase (Hill et al., 1981), a situation also found in yeast (Makoff and Radford, 1978). However, recent analysis by Krungkrai and co-workers (1990) detected separate CPSII and ATCase activities in P. berghei. Although CPS activity has been detected in P. falciparum (Reyes et al., 1982) until this current study there is no indication of its size nor its linkage with other enzymes in the pathway.

The glutamine-dependent activity of CPSII can be divided into two steps: (1) a glutaminase (GLNase) reaction which hydrolyzes glutamine (Gln) and transfers ammonia to the site of the carbamoyl phosphate synthetase; and (2) a synthetase reaction. where carbamoyl phosphate is synthesised from two molecules of adenosine triphosphate (ATP), bicarbonate and ammonia. The second activity involves three partial reactions: (a) the activation of bicarbonate by ATP; (b) the reaction of the activated species carboxyphosphate with ammonia to form carbamate; and (c) the ATP-dependent phosphorylation of carbamate to form carbamoyl phosphate (powers and Meister, 1978). Hence, there are two major domains in CPSII, the glutamine amidotransferase domain (GAT) and the carbamoyl phosphate synthetase domain (CPS) or simply synthetase domain. The glutaminase domain (GLNase) is a subdomain of GAT, while there are two ATP-binding subdomains in the synthetase domain.

In view of the similarities between the glutamine amidotransferase domain of CPS and other amidotransferases, it has been proposed that these subunits arose by divergent evolution from a common ancestral gene (=20 kDa) representing the GLNase domain and that particular evolution of the CPS GAT domain (=42 kDa which includes the putative structural domain only present in CPS) must have involved fusions and/or insertions of other sequences (Werner et al., 1935). The GAT of mammalian CPSI gene has been proposed to be formed by a simple gene fusion event at the 5' end of this ancestral gene with an unknown gene (Nyunoya et al., 1985).

The genes for the larger synthetase domains of various organisms were postulated to have undergone a gene duplication of an ancestral kinase gene resulting in a polypeptide with two homologous halves (Simmer et al., 1990). Unlike the subunit structure of E. coli and arginine-specific CPS of yeast, a further fusion of the genes encoding GAT and the synthetase domains was suggested to have formed the single gene specific for pyrimidine biosynthesis in higher eukaryotes. Conversely, Simmer and colleagues (1990) proposed that the arginine-specific CPS's (like cpa1 and cpa2 in yeast) as well as rat mitochondrial CPSI arose by defusion from the pyrimidine chimera.

The present inventors have isolated and characterised the complete gene encoding the CPSII enzyme from P. falciparum (pfCPSII). Reported here is the sequence including 5' and 3' untranslated regions. In so doing, the present inventors have identified the respective glutaminase and synthetase domains. Unlike CPSII genes in yeast, D. discoideum, and mammals, there is no evidence for linkage to the subsequent enzyme, aspartate transcarbamoylase (ATCase). This is in contrast to the report by Hill et al., (1981) for the enzymes from P. berghei. The present inventors have, however, found two large inserts in the P. falciparum gene of a nature that does not appear to have been previously described.

Accordingly, in a first aspect, the present invention consists in a nucleic acid molecule encoding carbamoyl phosphate synthetase II of Plasmodium falciparum, the nucleic acid molecule including a sequence substantially as shown in Table 1 from 1 to 7176, or from 1 to 750, or from 751 to 1446, or from 1447 to 2070, or from 2071 to 3762, or from 3763 to 5571, or from 5572 to 7173, of from 1 to 3360, or from 2071 to 6666, or from 2071 to 7173, or a functionally equivalent sequence.

In a preferred embodiment of the present invention, the nucleic acid molecule includes a sequence shown in Table 1 from -1225 to 7695 or a functionally equivalent sequence.

In a second aspect, the present invention consists in an isolated polypeptide, the polypeptide including an amino acid sequence substantially as shown in Table 1 from 1 to 2391, from 483 to 690, from 691 to 1254, 1858 to 2391, from 1 to 1120, from 691 to 2222, or from 691 to 2391.

As used herein the term "functionally equivalent sequence" is intended to cover minor variations in the nucleic acid sequence which, due to degeneracy in the code, do not result in the sequence encoding a different polypeptide.

In a third aspect the present invention consists in a method of producing Plasmodium falciparum carbamoyl phosphate synthetase II, the method comprising culturing a cell transformed with the nucleic acid molecule of the first aspect of the present invention under conditions which allow expression of the nucleic acid sequence, and recovering the expressed carbamoyl phosphate synthetase II.

The cells may be either bacteria or eukaryotic cells. Examples of preferred cells include E.coli, yeast, and Dictyostelium discoideum.

As will be readily understood by persons skilled in this field, the elucidation of the nucleotide sequence for CPSII enables the production of a range of therapeutic agents. These include antisense nucleotides, ribozymes, and the targeting of RNA and DNA sequences using other approaches, e.g., triplex formation.

As can be seen from a consideration of the sequence set out in Table 1 the Plasmodium falciparum CPSII gene includes two inserted sequences not found in other carbamoyl phosphate synthetase genes. The first inserted sequence separates the putative structural domain and the glutiminase domain whilst the second inserted sequence separates the two ATP binding subdomains of the synthetase subunit CPSa and CPSb.

TABLE 1
Nucleotide and Deduced
Amino Acid Sequence of the Carbamoyl Phosphate
Synthetase II Gene from Plasmodium falciparum [SEQ ID NOS:1 and 2]
. . . . . .
-1225 GAATTCCTTCAGCCAAAAAAAATGACAACGCAAATTTTAAGAAAAGAAAAACAATCGACT
-1156
. . . . . .
-1165 CGTCTTTGAATGAGGTTAGAAATTCGATACGTGAAAGGGACTTAAGAAGGCTTAACAGAG
-1106
. . . . . .
-1105 AAAAGAGTAAAATCTTATAAGCATTTGAAGGAAAAAATAATAAAATAAAAAAATAAAAAG
-1046
. . . . . .
-1045 ATAAAAAATATTTATATTTGATATGTAGTATATATAATGATTATTCATATTAATAACATA
-986
. . . . . .
-985 GATAAAAAACTTTTTTTTTTTTTTTTTTTCTTTATATTTATTAACAATACATTTAAGTTA
-926
. . . . . .
-925 TTTTATATATATATATATATATATATATATATATATATATATATATGTTTGTGTGTTCAT
-866
. . . . . .
-865 TTGTTTATAAAATTACTTGAAATATAAAACTTATTAATATATTTCCAATTAATATGAATA
-806
. . . . . .
-805 CAATTATTAATATTTTCATGTGTACACATTAATATAGTTTTACACTTCTTATAATAAAAC
-746
. . . . . .
-745 CATCCTATATATTATACACAATATATAATACTCCCCAATATTGTGGTTCCTATAATTTTA
-686
. . . . . .
-685 TTTATATATTTATTTATTAATTTATTCATTTATTTATTTTTTTTCTTAGTTTATAAAATA
-626
. . . . . .
-625 GTAATTCTACTAATTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAATT
-566
. . . . . .
-565 TACATATGAAAAATGAACTTGTATATGTAAATTTATAAATATTTTAAACATAAATATAAA
-506
. . . . . .
-505 TGTATAAAAAAAAAAAAGAAAAATGGGAAAAAATAATATAGATATATATATAAATATATA
-446
. . . . . .
-445 TATATATATAATTATTGGGGATATTCTCTGAATCATAGGTCTTAAACAGTTTTATTCTTT
-385
. . . . . .
-385 TAACATCACAAAGTTGTTATTAAAAGTATATATATCTTATTGGTTCCTATATAAAACTAT
-326
. . . . . .
-325 AGTATTCTATAATATATTCTGTATATTTCATTTTATCATTTGTAAGCAATCCCTATTTAT
-266
. . . . . .
-265 TATAATTATTATTTTTTTTTTTATAAAAGAGGTATAAAACAGTTTATTCAATTTTTTTCC
-206
. . . . . .
-205 TAAAGGAGCAACCTTCAGTCAATTTACATTTTCCACCGGTTGGTTGGCACAACATAATGT
-146
. . . . . .
-145 TACAGCTAAAAAAAGAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATATATATAT -86
. . . . . .
-85 ATATATATATATATACATAATATGTACAATGCTACCATACAAGTATATAAATTTTTCAAC -26
. .
-25 ATTGTTGTGATGTTGCATTTTTCTT -1
. . . . . .
1 ATGTATATTTCTTTTAAATATAATTTATATATATATATATATATATATATATATATATTT 60
1 M Y I S F K Y N L Y I Y I Y I Y I Y I F 20
. . . . . .
61 GTTCTTATAGATTTTAAAACAGTTGGGAGGTTAATTCTTGAAGATGGTAACGAATTTGTA 120
21 V L I D F K T V G R L I L E D G N E F V 40
. . . . . .
121 GGGTACAGTGTAGGTTACGAAGGGTCTAAAGGAAATAATAGTATATCATGTCATAAGGAG 180
41 G Y S V G Y E G C K G N N S I S C H K E 60
. . . . . .
181 TATAGAAATATTATTAATAATGATAATAGCAAGAATAGTAATAATTCATTTTGTAATAAT 240
61 Y R N I I N N D N S K N S N N S F C N N 80
. . . . . .
241 GAACAAAACAATTTGAAAGATCATTTATTATATAAAAATAGTCGATTAGAAAATGAAGAT 300
81 E E N N L K D D L L Y K N S R L E N E D 100
. . . . . .
301 TTTATTGTTACAGGTGAAGTTATATTTAATACAGCTATGGTTGGATATCCTGAAGCTTTA 360
101 F X V T G E V Z F N T A M V G Y P E A L 120
. . . . . .
361 ACGGACCCAAGTTATTTTGGTCAAATATTAGTTTTAACATTTCCTTCTATTGGTAATTAT 420
121 T D P S Y F G Q I L V L T F P S I G N Y 140
. . . . . .
421 GGTATTGAAAAAGTAAAACATGATGAAACGTTTGGATTAGTACAAAATTTTGAAAGTAAT 480
141 G I E K V K H D E T F G L V Q N F E S N 160
. . . . . .
481 AAAATTCAAGTACAAGGTTTAGTTATTTGTGAATATTCGAAGCAATCATATCATTACAAT 540
161 K X Q V Q G L V X C E Y S K Q S Y H Y N 180
. . . . . .
541 TCTTATATTACCTTAAGTGAATGGTTAAAGATTTATAAAATTCCATGTATAGGTGCTATA 600
181 S Y I T L S E W L K I Y K I P C I G G I 200
. . . . . .
601 GATACAAGAGCCTTAACAAAACTTTTAAGAGAAAAAGGTAGTATGTTAGGTAAAATACTT 660
201 D T R A L T K L L R E K G S M L G K I V 220
. . . . . .
661 ATATATAAAAACAGACAACATATTAATAAATTATATAAAGAAATTAATCTTTTTGATCCT 720
221 I Y K N R Q H I N K L Y K E I N L F D P 240
. . . . . .
721 GGTAATATAGATACTCTAAAATATGTATGTAATCATTTTATACGTGTTATTAAGTTGAAT 780
241 G N I D T L K Y V C N H F I R V I K L N 260
. . . . . .
781 AATATTACATATAATTATAAAAATAAGGAAGAATTTAATTATACCAATGAAATGATTACT 840
261 N I T Y N Y K N K E E F N Y T N E N I T 280
. . . . . .
841 AATGATTCTTCAATGGAAGATCATGATAATGAAATTAATGGTAGTATTTCTAATTTTAAT 900
281 N D S S M E D H D N Z I N G S I S N F N 300
. . . . . .
901 AATTGTCCAAGTATCTCTAGTTTTGATAAAAGTGAATCGAAAAATGTTATTAATCATACA 960
301 N C P S I S S F D K S E S K N V I N H T 320
. . . . . .
961 TTGTTAAGAGATAAAATGAACCTAATAACTTCATCTGAAGAATATCTGAAACATCTTCAT
1020
321 L L R D K M N L I T S S E E Y L K D L H 340
. . . . . .
1021 AATTGTAATTTTAGTAATAGTAGTGATAAAAATGATTCTTTTTTTAAGTTATATGGTATA
1080
341 N C N F S N S S D K N D S F F K L Y G I 360
. . . . . .
1021 TGTGAATATGATAAATATTTAATTGACCTTGAAGAAAATGCTAGCTTTCATTATAATAAT
1140
351 C E Y D K Y L I D L E E N A S F H Y N N 380
. . . . . .
1141 GTAGATGAATATGGATATTATGATGTTAATAAAAATACAAATATTCTATCTAATAATAAA
1200
381 V D E Y G Y Y D V N K N T N I L S N N K 400
. . . . . .
1201 ATAGAACAAAACAACAATAACGAAAATAACAAAAATAACAAAAATAACAACAATAACGAG
1260
401 I E Q N N N N Z N N K N N K N N N N N E 420
. . . . . .
1261 GTTGATTATATAAAGAAAGATGAGGATAATAATGTCAATAGTAAGGTCTTTTATAGCCAA
1320
421 V D Y I K K D E D N N V N S K V F Y S Q 440
. . . . . .
1321 TATAATAATAATGCACAAAATAATGAACATACCGAATTTAATTTAAATAATGATTATTCT
1380
441 Y N N N A Q N N E H T E F N L N N D Y S 460
. . . . . .
1381 ACTTATATTAGAAAGAAAATGAAAAATCAAGAATTCCTTAATTTGGTAAACAAAAGAAAA
1440
461 T Y I R K K M K N E E F L N L V N K R K 480
. . . . . .
1441 GTAGACCATAAAGAAAAAATTATTGTTATTGTTGATTGTGGTATTAAAAATAGTATAATC
1500
481 V D H K E K I I V I V D C G I K N S I I 500
. . . . . .
1501 AAAAATTTAATAAGACACGGTATGGATCTTCCATTAACATATATTATTGTACCTTATTAT
1560
501 K N L I R H G M D L P L T Y I I V P Y Y 520
. . . . . .
1561 TACAATTTTAATCATATAGATTATGATGCAGTTCTTTTATCTAATGGTCCTGGAGATCCT
1620
521 Y N F N H I D Y D A V L L S N G P G D P 540
. . . . . .
1621 AAAAAGTGTGATTTCCTTATAAAAAATTTGAAAGATAGTTTAACAAAAAATAAAATTATA
1680
541 K K C D F L I K N L K D S L T K N K I I 560
. . . . . .
1681 TTTGGTATTTGTTTAGGTAATCAACTATTAGGTATATCATTAGGTTGTGACACATATAAA
1740
561 F G I C L G N Q L L G I S L G C D T Y K 580
. . . . . .
1741 ATGAAATATGGTAATAGAGGTGTTAATCAACCCGTAATACAATTAGTAGATAATATATGT
1800
581 M K Y G N R G V N Q P V I Q L V D N I C 600
. . . . . .
1801 TACATTACCTCACAAAATCATGGATACTGTTTAAAGAAAAAATCAATTTTAAAAAGAAAA
1860
601 Y I T S Q N H G Y C L K K K S I L K R K 620
. . . . . .
1861 GAGCTTGCGATTAGTTATATAAATGCTAATGATAAATCTATACAAGGTATTTCACATAAA
1920
621 E L A I S Y I N A N D I S I E G I S H K 640
. . . . . .
1921 AATGGAAGATTTTATAGTGTCCAGTTTCATCCTCAGGGTAATAATGGTCCTGAAGATACA
1980
641 N G R F Y S V Q F H F E G N N G P E D T 660
. . . . . .
1981 TCATTTTTATTTAACAATTTTCTTTTAGATATCTTTAATAAGAAAAAACAATATAGAGAA
2040
661 S F L F K N F L L D I F N K K K Q Y R E 680
. . . . . .
2041 TATTTAGGATATAATATTATTTATATAAAAAAGAAAGTGCTTCTTTTAGGTAGTGGTGGT
2100
681 Y L G Y N I I Y I K K K V L L L G S G G 700
. . . . . .
2101 TTATGTATAGGACAAGCAGCACAATTCGATTATTCAGGAACA(AAGCAATTAAAAGTTTA
2160
701 L C I G Q A G E F D Y S G T Q A I K S L 720
. . . . . .
2161 AAAGAATGTGGTATATATGTTATATTAGTTAATCCTAACATAGCAACTGTTCAAACATCA
2220
721 K E C G I Y V I L V N F N I A T V Q T S 740
. . . . . .
2221 AAAGGTTTGGCAGATAAGGTATACTTTTTACCAGTTAATTGTGAATTTGTAGAAAAAATT
2280
741 K G L A D K V Y F L P V N C E F V E K I 760
. . . . . .
2281 ATTAAAAAGGAAAAACCTGATTTTATTTTATGTACATTTGGTGGTCACACAGCTTTAAAT
2340
761 I K K E K P D F I L C T F G G Q T A L N 780
2341 TGTGCTTTAATGTTAGATCAAAAAAAAGTATTGAAAAAGAATAATTGTCAATGTTTAGGT
2400
781 C A L M L D Q K K V L K K N N C C C L G 800
. . . . . .
2401 ACATCTTTAGAATCTATAAGAATAACAGAAAATAGAACATTATTTGCTGAAAAATTAAAA
2460
801 T S L E S I R I T E N R T L F A E K L K 820
. . . . . .
2461 GAAATTAATGAAAGAATAGCTCCATATGGTAGTGCAAAAAATGTTAATCAAGCTATTGAT
2520
821 E I N E R I A P Y G S A K N V N Q A I D 840
. . . . . .
2521 ATAGCTAATAAAATAGGATATCCAATATTAGTACGTACAACATTTTCGTTAGGAGGATTA
2580
841 I A N K I G Y P I L V R T T F S L G G L 860
. . . . . .
2581 AATAGTAGTTTCATAAATAATGAAGAAGAACTTATCGAAAAATGTAATAAAATATTTTTA
2640
861 N S S F I N N E E E L I E K C N K I F L 880
. . . . . .
2641 CAAACTGATAATGAAATATTTATAGATAAATCATTACAAGGATGGAAAGAAATAGAATAT
2700
881 Q T D N E T F I D K S L Q G W K E I E Y 900
. . . . . .
2701 GAATTATTAAGAGATAATAAAAATAATTGTATAGCTATATGTAATATGGAAAATATAGAT
2760
901 E J L R D N K N N C I A I C N M E N I D 920
. . . . . .
2761 CCATTAGGTATACATACAGGAGATAGTATAGTTGTTGCACCTTCACAAACATTAAGTAAT
2820
921 P L G I H T G D S I V V A P S Q T L S N 940
. . . . . .
2821 TATGAATATTATAAATTTAGAGAAATAGCATTAAAGGTAATTACACATTTAAATATTATA
2880
941 Y L Y Y K F R E I A L K V I T H L N I I 960
. . . . . .
2881 GGAGAATGTAATATACAATTTGGTATAAATCCACAAACAGGAGAATATTGTATTATTGAA
2940
961 G E C N I Q F G I N P Q T G E Y C I I E 980
. . . . . .
2941 GTTAATGCTAGGCTTAGTAGAAGTTCAGCATTACCTTCTAAAGCTACTGGTTATCCACTT
3000
981 V N A R L S R S S A L A S K A T G Y P L 1000
. . . . . .
3001 GCTTATATATCAGCAAAAATAGCCTTGGGATATGATTTGATAAGTTTAAAAAATAGCATA
3060
1001 A Y I S A K I A L G Y D L I S L K N S I 1020
. . . . . .
3061 ACTAAAAAAACAACTGCCTGTTTTGAACCCTCTCTAGATTACATTACAACAAAAATACCA
3120
1021 T K K T T A C F E P S L D Y I T T K I P 1040
. . . . . .
3121 CGATCGGATTTAAATAAATTTGAGTTTGCTTCTAATACAATGAATAGTAGTATGAAAAGT
3180
1041 R W D L N K F E F A S N T M N S S M K S 1060
. . . . . .
3181 GTAGGAGAAGTTATGTCTATAGGTAGAACCTTTGAAGAATCTATACAAAAATCTTTAAGA
3240
1061 V G E V M S I G R T F E E S I Q K S L R 1080
. . . . . .
3241 TGTATTGATGATAATTATTTAGGATTTAGTAATACGTATTGTATAGATTGGGATGAAAAG
3300
1081 C I D D N Y L G F S N T Y C I D W D E K 1100
. . . . . .
3301 AAAATTATTCAAGAATTAAAAAATCCATCACCAAAAAGAATTGATGCTATACATCAAGCT
3360
1101 K I I E E L K N P S P K R I D A I H Q A 1120
. . . . . .
3361 TTCCATTTAAATATGCCTATGGATAAAATACATGAGCTGACACATATTGATTATTGGTTC
3420
1121 F H L N M P M D K I H E L T H I D Y W F 1140
. . . . . .
3421 TTACATAAATTTTATAATATATATAATTTAGAAAATAAGTTGAAAACGTTAAAATTAGAG
3480
1141 L H K F Y N I Y N L Q N K L K T L K L E 1160
. . . . . .
3481 CAATTATCTTTTAATGATTTGAAGTATTTTAAGAAGCATGGTTTTAGTGATAAGCAAATA
3540
1161 Q L S F N D L X Y F K K W G F S D K Q I 1180
. . . . . .
3541 GCTCACTACTTATCCTTCAACACAAGCGATAATAATAATAATAATAATAATATTAGCTCA
3600
1181 A H Y L S F N T S D N N N N N N N I S S 1200
. . . . . .
3601 TGTAGGGTTACAGAAAATGATGTTATGAAATATA&AGAAAAGCTAGGATTATTTCCACAT 3660
1201 C R V T E N D V M K Y R E K L G L F P H 1220
. . . . . .
3661 ATTAAAGTTATTGATACCTTATCAGCCGAATTTCCGGCTTTAACTAATTATTTATATTTA
3720
1221 I K V I D T L S A E F P A L T N Y L Y L 1240
. . . . . .
3721 ACTTATCAAGGTCAAGAACATGATGTTCTCCCATTAAATATGAAAAGGAAAAAGATATGC
3780
1241 T Y Q G Q E H D V L P L N M K R K K I C 1260
. . . . . .
3781 ACGCTTAATAATAAACGAAATGCAAATAAGAAAAAAGTCCATGTCAAGAACCACTTATAT
3840
1261 T L N N K R N A N K K K V R V K N X L Y 1280
. . . . . .
3841 AATGAAGTAGTTGATGATAAGGATACACAATTACACAAAGAAAATAATAATAATAATAAT
3900
1281 N E V V D D K D T Q L H K E N N N N N N 1300
. . . . . .
3901 ATGAATTCTGGAAATGTAGAAAATAAATGTAAATTGAATAAAGAATCCTATGGCTATAAT
3960
1301 M N S G N V E N K C K L N K E S Y G Y N 1320
. . . . . .
3961 AATTCTTCTAATTGTATCAATACAAATAATATTAATATAGAAAATAATATTTGTCATGAT
4020
1321 N S S N G I N T N N I N I E N N I C H D 1340
. . . . . .
4021 ATATCTATAAACAAAAATATAAAAGTTACAATAAACAPLTTCCAATAATTCTATATCAAT
4080
1341 I S I N K N I K V T I N N S N N S I S N 1360
. . . . . .
4081 AATGAAAATGTTGAAACAAACTTAAATTGTGTATCTGAAAGGGCCGGTAGCCATCATATA
4140
1361 N E N V E T N L N C V S E R A G S H H I 1380
. . . . . .
4141 TATGGTAAAGAAGAAAAGAGTATAGGATCTGATGATACAAATATTTTAAGTGCACAAAAT
4200
1381 Y G K E E K S I G S D D T N I L S A C N 1400
. . . . . .
4201 TCAAATAATAACTTTTCATGTAATAATGAGAATATGAATAAAGCAAACGTTGATGTTAAT
4260
1401 S N N N F S C N N E N M N K A N V D V N 1420
. . . . . .
4261 GTACTAGAAAATGATACGAAAAAACGAGAAGATATAAATACTACAACAGTATTTATGGAA
4320
1421 V L E N D T K K R E D I N T T T V F N E 1440
. . . . . .
4321 GGTCAAAATAGTGTTATTAATAATAAGAATAAAGAGAATAGTTCTTTATTGAAAGGTGAT
4380
1441 G Q N S V I N N K N K E N S S L L K G D 1460
. . . . . .
4381 GAAGAAGATATTGTGATGGTAAATTTAAAAAAGGAAAATAATTATAATAGTGTAATTAAT
4440
1461 E E D I V N V N L K K E N N Y N S V Y N 1480
. . . . . .
4441 AATGTAGATTGTAGGAAAAAGGATATGGATGGAAAAAATATAAATGATGAATGTAAAACA
4500
1481 N V D C R K K D M D G K N I N D E C K T 1500
. . . . . .
4501 TATAAGAAAAATAAATATAAAGATATGGGATTAAATAATAATATAGTAGATGAGTTATCC
4560
1501 Y K K N K Y K D M G L N N N I V D E L S 1520
. . . . . .
4561 AATGGAACATCACATTCAACTAATGATCATTTATATTTAGATAATTTTAATACATCAGAT
4620
1521 N G T S H S T N D H L Y L D N F N T S D 1540
. . . . . .
4621 GAAGAAATAGGGAATAATAAAAATATGGATATGTATTTATCTAAGGAAAAAAGTATATCT
4680
1541 E E I G N N K N M D M Y L S K E K S I S 1560
. . . . . .
4681 AATAAAAACCCTGGTAATTCTTATTATGTTGTAGATTCCGTATATAATAATGAATACAAA
4740
1561 N K N P G N S Y Y V V D S V Y N N E Y K 1580
. . . . . .
4741 ATTAATAAGATGAAAGAGTTAATAGATAACGAAAATTTAAATGATGAATATAATAATAAT
4800
1581 I N K M K E L I D N E N L N D E Y N N N 1600
. . . . . .
4801 GTTAATATGAATTGTTCTAATTATAATAATGCTAGTGCATTTGTAAATGGAAAGGATAGA
4860
1601 V N M N C S N Y N N A S A F V N G K D K 1620
. . . . . .
4861 AATGATAATTTAGAAAATGATTGTATTGAAAAAAATATGGATCATACATACAAACATTAT
4920
1621 N D N L E N D C I E K N M D H T Y K H Y 1640
. . . . . .
4921 AATCGTTTAAACAATCGTAGAAGTACAAATGAGAGGATGATGCTTATGGTAAACAATGAA
4980
1641 N R L N N R R S T N E R M M L M V N N E 1660
. . . . . .
4981 AAAGAGAGCAATCATGAGAAGGGCCATAGAAGAAATGGTTTAAATAAAAAAAATAAAGAA
5040
1661 K E S N H E K C H R R N G L N K K N K E 1680
. . . . . .
5041 AAAAATATGGAAAAAAATAAGGGAAAAAATAAAGACAAAAAGAATTATCATTATGTTAAT
5100
1681 K N M E K N K G K N K D K K N Y H Y V N 1700
. . . . . .
5101 CATAAAAGGAATAATGAATATAATAGTAACAATATTGAATCGAAGTTTAATAATTATGTT
5160
1701 H K R N N E Y N S N N I E S K F N N Y V 1720
. . . . . .
5161 GATGATATAAATAAAAAAGAATATTATGAAGATGAAAATGATATATATTATTTTACACAT
5220
1721 D D I N K K E Y Y E D E N D I Y Y F T H 1740
. . . . . .
5221 TCGTCACAAGGTAACAATGACGATTTAAGTAATGATAATTATTTAAGTAGTGAAGAATTG
5280
1741 S S Q G N N D D L S N D N Y L S S E E L 1760
. . . . . .
5281 AATACTGATGAGTATGATGATGATTATTATTATGATGAACATGAAGAAGATGACTATGAC
5340
1761 N T D E Y D D D Y Y Y D E D E E D D Y D 1780
. . . . . .
5341 GATGATAATGATGATGATGATGATGATGATGATGATGGGGAGGATGAGGAGGATAATGAT
5400
1781 D D N D D D D D D D D D G E D E E D N D 1800
. . . . . .
5401 TATTATAATGATGATGGTTATGATAGCTATAATTCTTTATCATCTTCAAGAATATCAGAT
5460
1801 Y Y N D D G Y D S Y N S L S S S R I S D 1820
. . . . . .
5461 GTATCATCTGTTATATATTCAGGGAACGAAAATATATTTAATGAAAAATATAATGATATA
5520
1821 V S S V I Y S G N E N T F N E K Y N D I 1840
. . . . . .
5521 GGTTTTAAAATAATCGATAATAGGAATGAAAAAGAGAAAGAGAAAAAGAAATGTTTTATT
5580
1841 G F K I I D N R N E K E K E K K K C F I 1860
. . . . . .
5581 GTATTAGGTTGTGGTTGTTATCGTATTGGTAGTTCTGTAGAATTTGATTGGAGTGCTATA
5640
1861 V L G C G C Y R I Q S S V E F D W S A I 1880
. . . . . .
5641 CATTGTGTAAAGACCATAAGAAAATTAAACCATAAAGCTATATTAATAAATTGTAACCCA
5700
1881 H C V K T I R K L N H K A I L T N C N F 1900
. . . . . .
5701 GAAACTGTAAGTACAGATTATGATGAAAGTGATCGTCTATATTTTGATGAAATAACAACA
5760
1901 E T V S T D Y D E S D R L Y F D E I T T 1920
. . . . . .
5761 GAAGTTATAAAATTTATATATAACTTTGAAAATAGTAATGGTGTGATTATAGCTTTTGGT
5820
1921 E V I K F I Y N F E N S N G V I I A F G 1940
. . . . . .
5821 GGACAAACATCAAATAATTTAGTATTTAGTTTATATAAAAATAATGTAAATATATTACGA
5880
1941 G Q T S N N L V F S L Y K N N V N I L G 1960
. . . . . .
5881 TCAGTGCACAAAGTGTTGATTCTTGTGAAAATAGGAATAAATTTTCGCACTTATGTGATT
5940
1961 S V H K V L I V V K I G I N F R T Y V I 1980
. . . . . .
5941 CTTAAAATTGATCAACCGAAATGGAATAAATTTACAAAATTATCCAAGGCTATACAATTT
6000
1981 L K I D Q P K W N K F T K L S K A I Q F 2000
. . . . . .
6001 GCTAATGAGGTAAAATTTCCTGTATTAGTAAGACCATCGTATGTATTATCTGGTGCAGCT
6060
2001 A N E V K F F V L V R P S Y V L S G A A 2020
. . . . . .
6061 ATGAGAGTTGTAAATTGTTTTGAAGAATTAAAAAACTTTTTAATGAAGGCAGCTATTGTT
6120
2021 M R V V N C F E E L K N F L M K A A I V 2040
. . . . . .
6121 AGTAAAGATAATCCTGTTCTAATATCAAAATTTATTGAGAATGCTAAAGAAATAGAAATA
6180
2041 S K D N P V V I S K F T E N A K E I E I 2060
. . . . . .
6181 GATTGTGTTAGTAAAAATGGTAAAATAATTAATTATGCTATATCTGAACATGTTGAAAAT
6240
2061 D C V S K N G K I I N Y A I S E H V E N 2080
. . . . . .
6241 CCTGGTGTACATTCAGGTGATCCAACATTAATATTACCTGCACAAAATATATATGTTGAA
6300
2081 A G V H S C D A T L I L P A Q N I Y V E 2100
. . . . . .
6301 ACACATAGGAAAATAAAGAAAATATCCGAAAACATTTCAAAATCATTAAATATATCTGGT
6360
2101 T H R K I K K I S E K I S K S L N I S G 2120
. . . . . .
6361 CCATTTAATATACAATTTATATCTCATCAAAATGAAATAAAAATTATTGAATGTAATTTA
6420
2121 P F N I Q F I C H Q N E I K I I E C N L 2140
. . . . . .
6421 AGAGCATCTAGAACTTTTCCATTTATATCAAAAGCTCTAAATCTAAACTTTATAGATTTA
6480
2141 R A S R T F P F I S K A L N L N F I D L 2160
. . . . . .
6481 GCTACAAGGATATTAATGGGTTATGACGTCAAACCAATTAATATATCATTAATTGATTTA
6540
2161 A T R I L N G Y D V K P I N I S L I D L 2180
. . . . . .
6541 GAATATACAGCTGTAAAAGCACCGATTTTCTCATTTAATAGATTACATGGATCAGATTGT
6600
2181 E Y T A V K A P I F S F N R L H G S D C 2200
. . . . . .
6601 ATACTAGGTGTAGAAATGAAATCTACAGGTGAAGTAGCATGTTTTGGTTTAAATAAATAT
6660
2201 I L C V E M K S T G E V A C F G L N K Y 2220
. . . . . .
6661 GAAGCTTTATTAAAATCATTAATAGCTACAGGTATGAAGTTACCCAAAAAATCAATACTT
6720
2221 E A L L K S L I A T G M K L F K K S I L 2240
. . . . . .
6721 ATAAGTATTAAAAATTTAAATAATAAATTAGCTTTTGAAGAACCGTTCCAATTATTATTT
6780
2241 I S I K N L N N K L A F E E P F C L L F 2260
. . . . . .
6781 TTAATGGGATTTACAATATATGCGACTCAAGGTACGTATCATTTCTACTCTAAATTTTTA
6840
2261 L N G F T I Y A T E G T Y D F Y S K F L 2280
. . . . . .
6841 CAATCTTTTAATCTTAATAAAGGTTCTAAATTTCATCAAACACTTATTAAAGTTCATAAT
6900
2281 E S F N V N K G S K F H Q R L I K V H N 2300
. . . . . .
6901 AAAAATGCAGAAAATATATCACCAAATACAACAGATTTAATTATGAATCATAAAGTTGAA
6960
2301 K N A E N I S P N T T D L I M N H K V E 2320
. . . . . .
6961 ATGGTTATTAATATAACTGATACATTAAAAACAAAGGTTAGTTCAAATGGTTATAAAATT
7020
2321 M V I N I T D T L K T K V S S N G Y K I 2340
. . . . . .
7021 AGAAGATTAGCATCAGATTTCCAGGTTCCTTTAATAACTAATATGAAACTTTGTTCTCTT
7080
2341 R R L A S D F Q V P L I T N M K L C S L 2360
. . . . . .
7081 TTTATTGACTCATTATATAGAAAATTCTCAAGACAAAAGGAAAGAAAATCATTCTATACC
7140
2361 F I D S L Y R K F S R Q K E R K S F Y T 2380
. . .
7141 ATAAAGAGTTATGACGAATATATAAGTTTGGTATAA
7176
2381 I K S Y D E Y I S L V * 2392
. . . . . .
7177 GCAAGAAATTATTCAATAAATTCGATTTAACATTACTTATTTATGTATTTATTAACTTTC
7235
. . . . . .
7237 ATTCCATAACAACATGAAAAGTATAAATATATAAATAGTAATATATAATATATAATATAT
7296
. . . . . .
7297 ATATATATATATATATATATATTTATTTATTTAATTATATTTACGTTTAAATATTAATAA
7356
. . . . . .
7357 ATGTTTTTATTAAATATGATCATTAATTTATATTGATTTATTTTTTTATAAATTTTTGTT
7416
. . . . . .
7417 ATATATACAAATTTTATTTATTCACTCATATGTATAAACCAAAATGGTTTTTTCAATTTA
7476
. . . . . .
7477 CAAATAATTTTATAATTTTAATAAATTTATTAATTATAAAAAAAATAAAAATATATAAAC
7536
. . . . . .
7537 ATTAAAATGTATAAATTCTTTTAATTATATAATAATTTATAAATGTTATGATTTTTTTAA
7596
. . . . . .
7597 AAAATTCAACGAAAAAAAAGAGGAACTGTATATACAAAAGGGACTATATATATGTATATA
7656
. . .
7657 TATATATATATATATATGTTTTTTTTTCCTTATTCTAGA
7695

The GAT domain is made up of two subdomains: a putative structural domain (1-750) and a glutaminase domain (1447-2070). These two subdomains are separated by a first inserted sequence (751-1446, underlined). The two ATP binding subdomains of the synthetase subunit, CPSa (2071-3762) and CPSb (5572-5173) are separated by a second inserted sequence (3763-5571, underlined).

As these inserted sequences are not found in other carbamoyl phosphate synthetase genes they represent prime targets for therapies including, but not limited to, antisense nucleotides, ribozymes and triplex forming nucleotides as there is a decreased likelihood of deleterious reaction with host homologues of the gene.

Antisense RNA molecules are known to be useful for regulating gene expression within the cell. Antisense RNA molecules which are complementary to portion(s) of CPSII can be produced from the CPSII sequence. These antisense molecules can be used as either diagnostic probes to determine whether or not the CPSII gene is present in a cell or can be used as a therapeutic to regulate expression of the CPSII gene, Antisense nucleotides prepared using the CPSII sequence include nucleotides having complementarity to the CPSII mRNA and capable of interfering with its function in vivo and genes containing CPSII sequence elements that can be just transcribed in living cells to produce antisense nucleotides. The genes may include promoter elements from messenger RNA (polymerase II) from cells, viruses, pathogens or structural RNA genes (polymerase I & III) or synthetic promoter elements. A review of antisense design is provided in "Gene Regulation; Biology of Antisense RNA and DNA" R. P. Erickson and J. G. Izant, Raven Press 1992. Reference may also be had to U.S. Pat. No. 5,208,149 which includes further examples on the design of antisense nucleotides. The disclosure of each of these references is incorporated herein by reference.

As used herein the term "nucleotides" include but are not limited to oligomers of all naturally-occurring deoxyribonucleotides and ribonucleotides as well as any nucleotide analogues. Nucleotide analogues encompass all compounds capable of forming sequence-specific complexes (eg duplexes or hetroduplexes) with another nucleotide including methylphosphonates or phosphorothioates but may have advantageous diffusion or stability properties. The definition of nucleotides includes natural or analogue bases linked by phosphodiester bonds, peptide bonds or any other covalent linkage. These nucleotides may be synthesised by any combination of in vivo in living cells, enzymatically in vitro or chemically.

Ribozymes useful in regulating expression of the CPSII gene include nucleotides having CPSII sequence for specificity and catalytic domains to promote the cleavage of CPSII mRNA in vitro or in vivo. The catalytic domains include hammerheads, hairpins, delta-virus elements, ribosome RNA introns and their derivatives. Further information regarding the design of ribozymes can be found in Haseloff, J. & Gerlach, W. L. (1988) Nature 334. 585; Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. & Cech, T. R. (1982) Cell 31, 147; International Patent Application No. WO 88/04300, U.S. Pat. No. 4,987,071 and U.S. Pat. No. 5,254,678. The disclosure of each of these references is incorporated herein by reference. The catalytic elements may enhance the artificial regulation of a CPSII target mRNA by accelerating degradation or some other mechanism.

Triple helix oligonucleotides can be used to inhibit transcription from the genome. Given the sequence provided herein for the CPSII gene it will now be possible to design oligonucleotides which will form triplexes thereby inhibiting transcription of the CPSII gene. Information regarding the generation of oligonucleotides suitable for triplex formation can be found in a Griffin et al (Science 245:967-971 (1989)) this disclosure of this reference is incorporated herein by reference.

Triplex agents include all nucleotides capable of binding to the CPSII gene through formation of the complex with DNA or chromatin. The interaction can be through formation of a triple-stranded Hoogsteen structure or other mechanisms such as strand invasion that relies on the CPSII sequence information.

Accordingly, in a fourth aspect the present invention consists in a ribozyme capable of cleaving carbamoyl phosphate synthetase II mRNA, the ribozyme including sequences complementary to portions of mRNA obtained from the nucleic acid molecule of the first aspect of the present invention.

In a preferred embodiment of this aspect of the present invention the ribozyme includes sequences complementary to mRNA obtained from the first or second inserted sequences of the nucleic acid molecule of the first aspect of the present invention.

In a fifth aspect the present invention consists in an antisense oligonucleotide capable of blocking expression of the nucleic acid molecule of the first aspect of the present invention.

As stated above, in one aspect the present invention relates to a method of producing CPSII by recombinant technology. The protein produced by this method and the polypeptides of the present invention will be useful in in vitro drug binding studies in efforts to develop other anti-malarial therapeutics.

In order that the nature of the present invention may be more clearly understood the method by which the P. falciparum CPSII gene was cloned will now be described with reference to the following Examples and Figures.

FIG. 1: A summary of a "gene walking" strategy used to clone and sequence the full length P. falciparum carbamoyl phosphate synthetase II gene.

FIG. 2: P. falciparum carbamoyl phosphate synthetase II (pfCPSII) gene sequence with the 21 consensus GUC (GTC) ribozyme cleavage sites identified (underlined) (SEQ ID NO:1).

FIG. 3: Output of RNA mfold analysis showing the GUC sites from CPSRz1/M10 a and CPSRz4/M15 more accessible than the M17 and M18 sites (Seq. Id. No:1).

FIGS. 4A-C: A. Sequences for the phosphorothioated antisense DNA used in inhibition studies of P. Falciparum in culture (SEQ ID NOS:3-15); B. Map of the positions of the antisense sequences within the pfCPSII gene; C. Growth supression of P. Falciparum in vitro after a 24 hr incubation with the oligonucleotides.

FIG. 5. Cultures of P. Falciparum and selected mammalian cell lines were incubated with 2.5 and 5.0 μM CPSRz1, CPSRz4 and 60-mer random oligonucleotide. Cell viability was assessed by measuring the % incorporation of tritiated hypoxanthine.

Cloning of the P. falciparum Carbamoyl Phosphate Synthetase II (pfCPSII) Gene

The conventional way to screen for genes of which the amino acid sequence had not been previously determined is via heterologous probing, i.e. with gene fragments of the target enzyme from closely related organisms. This has proved to be unsuccessful for several workers with Plasmodium falciparum largely due to the unusually high A-T content of its genome. After initial unfruitful attempts to isolate the CPSII gene in Plasmodium falciparum using a yeast ura2 gene fragment (Souciet et al., 1989), the present inventors opted to amplify part of the CPSII gene using the polymerase chain reaction (PCR) (Saiki et al., 1988) with a view to use the amplified product as probe for screening.

The present inventors isolated and cloned a PCR product using oligonucleotides designed from conserved sequences from the amino terminal GAT domain and the first half of the synthetase domain of the CPS gene. Nucleotide sequencing confirmed that a portion of the CPSII gene had been obtained. Total parasite DNA was fragmented with a restriction enzyme and subjected to Southern analysis using the CPSII-specific gene probe. The sizes of DNA fragments hybridizing to the gene probe were determined then the DNA in the corresponding bands were used for the construction of a "mini-library". In this way a smaller population of clones were screened for the pf CPSII gene.

To isolate the full length pfCPSII gene, a series of mini-libraries were constructed utilising different segments of known sequence to gain information of the unknown flanking regions both towards the 5' and 3' termini of the gene using "gene-walking". The strategy employed is summarised in FIG. 1.

In the first Southern analysis, total P. falciparum DNA was digested with HindIII and EcoRI and hybridisation was carried out using the pfCPSII 453 bp PCR product. A 3.0 kb HindIII and a smaller EcoRI fragment hybridised to the probe. Subsequent screening of a HindIII pTZ18U mini-library resulted in the isolation of a recombinant that contained a 3.0 kb pfCPSII gene fragment, CPS2. The 453 bp PCR product was localised in the middle of this segment.

Two regions from both the 5' and 3' ends of CPS2 were used to isolate neighbouring sequences at either end in order to obtain the further gene sequences. A HindIII/EcoRI fragment from the 5' end of CPS2 was instrumental in isolating a further 1.5 kb fragment, CPS1 consisting of the complete 5' region of the gene and some non-encoding sequences.

A 550 bp inverse PCR (IPCR; Triglia et al., 1988) product was obtained with the aid of known sequences from the 3' end of CPS2.

This IPCR product was used to screen for the 3' region flanking CPS2, A 3.3 kb HindIII recombinant containing CPS3 as well as a related 3.3 kb XBaI clone (not presented in FIG. 1) were isolated by the mini-library technique. Using a 200 bp XbaI/HindIII fragment from the 3' end of CPS 3, a 1.3 kb XbaI segment, CPS4 was cloned which contained the putative stop codon and some 3' non-coding region.

Combining these four gene fragments (CPS1, CPS2, CPS3 and CPS4) excluding their overlaps, gives a total of 8.8 kb consisting of approximately 7.0 kb coding and 1.8 flanking sequences.

The complete nucleotide sequence of the CPSII gene in P. falciparum, together with its 5' and 3' flanking sequences, is presented in Table 1.

Design of Ribozymes

Our first generation ribozymes were designed using the consensus sequences cleavage site, GUC, found in naturally occurring hammerhead ribozymes (see Haseloff and Gerlach, 1988, the entire contents of which are incorporated herein by reference). In total, there are 21 GUC sites in the entire 7.1 kb coding region of pfCPSII (FIG. 1 and Table 2). To select the putative sites that are relatively more accessible to binding, the pfCPSII mRNA folding pattern was analysed using mfold Program (ANGIS/GCG). This was done in windows of 500 nucleotides, with 250 nucleotide overlaps between each window.

To screen for the best (most accessible) sites within the CPS II mRNA, a series of antisense DNA oligonucleotides were designed and synthesised from sequences around the selected (by mfold) GUC sequences mentioned above. Also included were two antisense oligonucleotides (M17 and M18) where the mfold program had indicated intramolecular base pairing of the GUC sequences may be occurring (FIG. 2). As seen from the bio-assays of suppression of malarial growth by the antisense oligonucleotides, there appears to be a correlation between the predicted accessibility of each site and the effectiveness as judged by the % inhibition of growth (FIG. 3). The antisense oligonucleotides M10 (Rz1 site) and M15 (Rz4 site) were much more effective in growth inhibition than M17 and M18 where the mfold program predicted internal base pairing.

These results led to the synthesis of ribozymes based on the Rz1 and Rz4 sites (ribozymes CPSRz1 and CPSRz4).

TABLE 2
GUC sites present in the coding region of pfCPSII. Nucleotide
numbers indicate the position of the G of the triplet in the gene sequence.
1. 170
2. 281
3. 380
4. 905 CPSRz1 site/M10
5. 1294
6. 1306
7. 1607
8. 1939
9. 1967
10. 2324
11. 2387
12. 3195
13. 3731 CPSRz4 site/M15
14. 3817
15. 3823
16. 4013
17. 432Z
18. 5223 M17
19. 5735
20. 6359
21. 6383

CPSRz1 and CPSRz4 as Antimalarials

The ability of CPSRz1 and CPSRz4 to cleave a 550 base mRNA fragment of pfCPSII was assessed. Growth inhibition studies on P. falciparum cultures were initially conducted using higher concentrations of ribozymes, at 2.5 and 5.0 μM. Both ribozymes were shown to be very effective at these concentrations as shown in the marked decrease in incorporation of tritiated hypoxanthine (FIG. 4). In the same study, a series of mammalian cell lines in culture were treated with the same concentrations of the ribozymes, and no effect cell viability was observed. As a negative control, a 60-mer DNA oligonucleotide of random sequence was used.

As will be readily appreciated by those skilled in the art the isolation of this gene and its sequencing by the present inventors opens up a range of new avenues for treatment of Plasmodium falciparum infection. The present invention enables the production of quantities of the Plasmodium falciparum carbamoyl phosphate synthetase II enzyme using recombinant DNA technology. Characterisation of this enzyme may enable its use as a chemotherapeutic loci.

The isolation of this gene also will enable the production of antisense molecules, ribozymes or other gene inactivation agents which can be used to prevent the multiplication of the parasite in infected individuals.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Cox, F. E. G. (1991) Malaria vaccines: while we are waiting. Parasitology Today 7: 189-190

Gero, A. M. and O'Sullivan, W. J. (199)) Purines and pyrimidines in malarial parasites. Blood Cells 16: 467-498

Hammond, D. J. Burchell, J. R. and Pudney, M. (1965) Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2.(4.t-butylcyclohexyl)-3-hydroxy-1, 4-naphthoquinine in vitro. Mol. Biochem. Parasitol 14: 97-109

Haseloff, J. And Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334:585-591

Hill, B., Kilsby, J. Rogerson, G. W., McIntosh, R T. and Ginger, C. D. (1981). The Enzymes of pyrimidine biosynthesis in a range of parasitic protozoa and helminths. Mol. Biochem. Parasitol. Z: 123-134.

Johnson, C. Malaria back to plague us. Sydney Morning Herald, Nov. 13, 1991.

Jones, M. E. (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49: 253-279.

Krungkrai, J. Cerami, A. and Henderson, G. B. (1990) Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from Plasmodium berghei and Crithidia fasciculata. Biochemistry 29: 6270-6275.

Krungkrai, J. Krungkrai, S. R. and Phakanont, K. (1992) Antimalarial activity of orotate analogs that inhibit dihydrootase and dihydroorotate dehydrogenase. Biochem. Pharmacol. 43: 1295-1301.

Marshal, E. (1991) Malaria parasite gaining ground against science. Science 2: 190,

Nyunoya, H., Broglie, K. E., Widgren, W. E. and Lusty C. J (1985) Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J. Biol. Chem. 260: 9346-9356.

Prapunwattana, P., O'Sullivan, W. J. and Yuthavong, Y. (1988) Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol. Biochemi. 27: 119-124.

Queen, S. A., Vander Jagt, D. L. and Reyes, P. (1990) In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. Antimicrob. Agents Chemother. 34: 1393-1398.

Reyes, P., Rathod, P. K., Sanchez, D. J. Mrema, J. E. K., Rieckmann, K. H. and Heidrich, H. G. (1982) Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol. Biochem. Parasitol. 5: 275-290.

Rubino S. D., Nyunoya, H. and Lusty, C. J. (1986) JBC 261(24):11320-11327.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis K. B. and Erlich H. A. (1958) Science 239:487-491,

Scott, H. V., Gero, A. M. and O'Sullivan, W. J. (1986) In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. Mol Biochem. Parasitol. 18: 3-15.

Sherman, I. W. (1979) Biochemistry of Plasmodium (malarial parasites) Microbiol. Rev. 43: 453-495.

Simmer, J. P., Kelly, R. E., Rinker, Jr., A. G., Scully, J. L. and Evans D. R. (1990) Mammalian carbamyl phosphate synthetase (CPS), J. Biol. Chem 265: 10395-10402.

Simmer, J. P., Kelly, R. E., Austin, G. R., Jr., Scully, J. L. and Evans, D. R. (1990) JBC 285(18):10395-10402.

Souciet, J. L., Nagy, M., Le Gouar, M., Lacroute, F. and Potier, S. (1989) Gene (Amst.) 79: 59-70.

Triglia, T., Peterson, M. G. and Kemp, D. J. (1988) PNAS 16:8186.

Werner, M., Feller, A. and Pierard, A. (1985) Nucleotide sequence of yeast genie CPA1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Eur. J. Biochem. 146: 371-381.

Stewart, Thomas S., Flores, Maria V., O'Sullivan, William J.

Patent Priority Assignee Title
11046945, Feb 27 2013 Cornell University Labeled glutaminase proteins, isolated glutaminase protein mutants, methods of use, and kit
Patent Priority Assignee Title
5585479, Jul 24 1992 United States of America as represented by the Secretary of the Navy Antisense oligonucleotides directed against human ELAM-I RNA
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 10 1998Unisearch Limited(assignment on the face of the patent)
Feb 08 1999STEWART, THOMAS S Unisearch LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0098670171 pdf
Feb 08 1999FLORES, MARIA V Unisearch LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0098670171 pdf
Feb 08 1999O SULLIVAN, WILLIAM J Unisearch LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0098670171 pdf
Date Maintenance Fee Events
Aug 25 2004REM: Maintenance Fee Reminder Mailed.
Feb 07 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 06 20044 years fee payment window open
Aug 06 20046 months grace period start (w surcharge)
Feb 06 2005patent expiry (for year 4)
Feb 06 20072 years to revive unintentionally abandoned end. (for year 4)
Feb 06 20088 years fee payment window open
Aug 06 20086 months grace period start (w surcharge)
Feb 06 2009patent expiry (for year 8)
Feb 06 20112 years to revive unintentionally abandoned end. (for year 8)
Feb 06 201212 years fee payment window open
Aug 06 20126 months grace period start (w surcharge)
Feb 06 2013patent expiry (for year 12)
Feb 06 20152 years to revive unintentionally abandoned end. (for year 12)