A composite tool and instrument is configured as a hammer having a metal striking head electrically coupled to capacitive sensing electronics disposed in a handle of the hammer. The head can thus serve as a sensing plate portion of a capacitive sensor responsive to a change in the effective dielectric constant of a building surface caused by the proximity of a structural member hidden behind that surface. The head can also serve as a sensing electrode portion of a sensor used to sense the proximity of AC power lines hidden behind the surface. In a preferred composite tool, the hammer has a handle made of an electrically insulating polymeric material and has an electrical conductor axially threaded through the handle so as to electrically couple the striking head to sensing electronics located in a cavity at the end of the handle distal from the head.
|
11. Apparatus for sensing an object behind an opaque building surface and for driving a nail into the sensed object, the apparatus comprising, in combination:
a hammer having a metal striking head for driving the nail; and a capacitive measurement circuit disposed within the hammer, the capacitive measurement circuit adapted to indicate when the striking head is proximate the object.
1. Apparatus comprising, in combination, a hammer an a capacitive measurement circuit for sensing an object behind an opaque surface, the apparatus comprising indicator means for indicating the proximity of the sensed object to an operator, the apparatus characterized in that:
a metal striking head of the hammer comprises a sensing plate electrically coupled to the capacitive measurement circuit which is disposed in a handle of the hammer, the capacitive measurement circuit adapted to measure a capacitance between the head of the hammer and an electric ground; and wherein; the indicator means is adapted to indicate a representation of the measured capacitance.
7. Apparatus comprising, in combination, a hammer and a capacitive measurement circuit adapted to measure a first electrical capacitance between a metallic head of the hammer and an electrical ground and to indicate the proximate presence of an object hidden behind a wall when an operator grasps the hammer by a handle thereof and moves the head of the hammer across the wall, the apparatus further comprising:
a touch sensing plate disposed on the handle, the capacitive measurement circuit adapted to measure a second electrical capacitance between the touch sensing plate and the ground at each of a plurality of predetermined times and to thereby sense the presence of the operator.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
12. The apparatus of
13. The apparatus of
|
1. Field of the Invention
The invention provides means for finding a support member hidden behind a building surface and for inserting a nail or similar fastener into the support member. In the preferred embodiment a composite tool for construction and remodeling of houses and other buildings is provided by the combination of a capacitive stud sensor with a carpenter 's hammer.
2. Background Information
Many buildings have walls, ceilings or floors constructed so that supporting structural members (e.g., wall studs) are concealed behind a surface (eg., a plasterboard wall panel). It is often desirable to determine the location of the hidden structural members--e.g., when one wishes to drive a nail into wall stud in order to hang a picture or other object on the wall. Many approaches to this problem have been proposed and used. These include tapping on the wall and estimating the stud 's location from the quality of the sound, as well as moving a pivotally-mounted permanent magnet along the wall to find the ferromagnetic nails or screws that a previous worker had used to hold up the wallboard.
Of particular interest to the present invention is the prior art of locating a hidden structural member by using a capacitive sensor responsive to a change in the effective dielectric constant of the wall created by the presence of that member. Notable among the prior patent art in this area are:
U.S. Pat. No. 4,099,118, wherein Franklin et al. teach a portable capacitive sensor to be moved along the wall and to visually indicate the proximity of a stud to an operator.
U.S. Pat. No. 4,464,622, wherein Franklin teaches a capacitive stud sensor comprising improved adjustment and calibration means. The disclosure of Franklin is herein incorporated by reference.
U.S. Pat. Nos. 4,853,617, and 4,992,741 wherein Douglas et al. teach an instrument comprising a metal detector and a capacitive sensor, the instrument also having a bar-graph display usable by the operator to more accurately determine the location of a hidden structural member. Douglas et al. also provide circuitry responsive to the AC power line frequency (e.g., 50 or 60 Hz) in order to warn the operator of the proximity of energized and unshielded electrical lines behind the wall. The teachings of Douglas et al. are herein incorporated by reference.
U.S. Pat. No. 5,352,974, wherein Heger teaches an improved capacitive sensor that informs its operator when a wall is too thick or too thin for stud detection and when the operator has (incorrectly) calibrated the instrument by placing it over a stud, rather than over a section of the wall between two adjacent studs.
U.S. Pat. No. 5,562,240, wherein Campbell teaches a tool comprising a nail gun, or the like, having a proximity sensor attached thereto, the composite tool further comprising a visual indicator to inform the operator when a firing end of the nail gun is aligned with a wall stud or other nail-receiving structural element.
Also of interest to the present invention is improved apparatus and method for making capacitive proximity measurements, as taught by the inventor in his U.S. Pat. No. 5,730,165, the disclosure of which is herein incorporated by reference.
A composite tool of the invention comprises a hammer having a metal striking head electrically coupled to sensing electronics disposed in a handle of the hammer. The head can thus serve as a sensing plate portion of a capacitive sensor responsive to a change in the effective dielectric constant of a building surface caused by the proximity of a structural member hidden behind that surface. The head can also serve as a sensing electrode portion of a sensor used to sense the proximity of AC power lines hidden behind the surface. In a preferred embodiment, the hammer has a handle made of electrically insulating polymeric material, the handle having an electrical conductor axially threaded therethrough, the conductor electrically coupling the striking head to sensing electronics disposed within the handle.
The composite tool comprises indicator means displaying the proximity of a structural member, or of energized AC wiring to an operator. In a preferred embodiment, the indicator means comprises a visual bar-graph display capable of displaying an effective wall thickness when the head of the hammer is touched to the wall and moved thereacross. In another embodiment, the indicator means comprises a light emitting diode, or other such light source having a controllable flash rate and operated responsive to the effective wall thickness to signal the proximity of a structural member to an operator. Moreover, in some embodiments the composite tool of the invention may comprise other visual, audible, or tactile signaling means for indicating to an operator that the head of the hammer is adjacent an AC power line hidden behind a wall.
In addition to providing a capacitive proximity instrument for sensing and displaying the effective thickness of a building wall, a preferred embodiment of the invention also comprises a second capacitive sensing means for sensing the proximity of an operator and for activating the first capacitive proximity measurement means responsive thereto. In a preferred embodiment, the proximity instrument is built into a hammer having a metal striking head and an electrically insulating handle.
FIG. 1 is a partly cut-away perspective view of a stud-sensing hammer of the invention proximate a hidden stud.
FIG. 2 is a sectional view of a second embodiment of the invention, the section taken as depicted by the double-headed arrow 2--2 in FIG. 1.
FIG. 3 is schematic circuit diagram showing the sensing electronics of the invention
A hammer 10, modified by the inclusion of a capacitive sensing circuit 12 configured to measure an electrical capacitance between a plate 14 and an electric ground 16, can be used to determine the location of objects, such as a wall stud 18, hidden behind a wall 20 or other opaque surface. As hereinbefore noted, a variety of capacitive sensors have been applied to this use, but these have generally required a person 22 seeking the stud 18 to use a sensor separate from the hammer. The present invention simplifies the user 's task by using the metal striking head 24 of the hammer 10 as the sensing plate 14.
In a preferred embodiment the hammer 10 comprises a metal striking head 24 and a dielectric handle portion 26 depending therefrom. A wire 28 or other metallic member, such as a conductor trace on a circuit board, is disposed generally along the axis 30 of the handle 26 and is either metallically connected to or capacitively coupled to the head 24 so as to couple it to the rest of the capacitive sensing circuitry 12, which may be disposed, along with a portable energy supply 32, in a cavity 34 formed in that end 36 of the handle 26 distal from the head 24. As depicted in FIG. 2, a threaded plug 38, or other suitable closure, may be used to seal these elements within the handle 26. Although the preferred source of energy is a lithium primary battery that is expected to power the sensing circuitry 12 for several years, other known portable energy sources could be used. Applicable portable energy sources include a high value capacitor of the type commonly called a "capattery"; a secondary battery rechargeable from the AC power lines; or a secondary battery rechargeable by means of a solar cell.
Although capacitive sensing circuitry of the sort earlier taught by Franklin in U.S. Pat. No. 4,464,622, or by Douglas et al. in U.S. Pat. Nos. 4,853,617, and 4,995,741, could be used in practicing the invention, a preferred embodiment employs capacitive sensing circuitry 12 of the type referred to as charge transfer sensing circuitry. The inventor has provided teaching of this sort of circuitry for other uses in his U.S. Pat. No. 5,730,165. Turning now to FIG. 3, one finds a schematic depiction of a charge transfer measurement circuit 12 comprising a first sensing plate 14a (i.e., the hammer head 24) used to measure a first electrical capacitance to an electrical ground 16. As is known from the inventor's earlier teachings, this is advantageously done by repeatedly charging the plate 14a by means of a charging transistor 40 and subsequently discharging the plate 14a by means of a discharging transistor 42 into a charge detector 44. This process is preferably carried out under the control of a microcontroller 46, which has the capability of selectively measuring either the capacitance of the plate 14a to ground 16 or of measuring the capacitance of a second sensing plate 14b, which may is used to form a "wake-up" area disposed on a portion of the handle 26 distal from the head. When the user places a finger or portion of his or her hand over the wake-up area a preferred sensor makes a transition from a power-conserving sleep mode, in which the wake-up plate is periodically monitored, to a frilly operational mode. It will be realized by those skilled in the art that the wake up plate 14b may comprise a metal plate disposed on the surface of the handle so that the user is coupled thereto upon directly touching the plate, or it may comprise a metal plate disposed beneath a thin insulating layer so that the user is capacitively coupled thereto when placing a portion of his or her body adjacent the plate 14b.
Because the sensor of the invention is a portable device that must operate from an exhaustible power supply 32, in a preferred mode of operation the microcontroller 46 spends much of its time in a well known power-conserving "sleep" mode. At each of a predetermined set of times (e.g., after the expiration of a regular interval) the microcontroller 46 wakes up, measures the capacitance to ground of the wake-up plate 14b and compares the result of that measurement with a predetermined threshold value stored in memory. If a user 22 is holding the hammer 10 so that a portion of his hand rests on the second sensing plate 14b, the capacitance measured at that plate 14b will be above the threshold, and the microcontroller will begin repetitively measuring and displaying the capacitance to ground of the hammer head plate 14a. On the other hand, if the capacitance measured at the TOUCH plate 14b is below the threshold value, the microcontroller 46 returns to sleep mode. In a preferred embodiment the TOUCH plate 14b is disposed on a portion of the surface of the handle 26 that the user does not normally touch while hammering, but that is sufficiently close to his or her normal hand position (e.g., is disposed a few centimeters above where the user's thumb would normally grip the handle) so that a single, comfortable motion is all that is needed for the user to touch the second sensing plate 14b and thereby activate the display. In a less desirable embodiment, the second sensing plate 14b would be disposed on the handle so that the user touched the plate 14b whenever the hammer was being held. In this case, the display would operate during hammering, which could be annoying, but would still provide an energy conserving means by allowing the apparatus to be in sleep mode when not in active use.
When the preferred hammer 10 is being held by a user 22 who is touching the TOUCH sensing plate and the capacitance to ground of the head 24 is being repeatedly measured, the microcontroller 46 provides an output representative of that capacitance to an indicator means 48 adapted to visibly or audibly indicate to the user 22 a current relative value of capacitance. An extremum in this capacitance is associated with the proximate presence of a stud 18 behind the wall 20.
In a preferred embodiment the indicator means 48 may comprise a columnar display 50, which may comprise a plurality of light emitting diodes or a liquid crystal display, is disposed on the back of the hammer handle 26 so that a user 22 can see the measured capacitance represented in a bar-graph fashion on the handle by looking at the columnar display to see the relative height of the active portion. In another embodiment, as depicted in FIG. 2, the hammer handle 26 comprises a transparent or translucent portion 52 proximal the head 24 and an opaque portion 54 distal from the head. In this embodiment the indicator means 48 may comprise a single light emitting diode 56 disposed adjacent the interface between the two portions 52, 54 of the handle, can be turned on and off by the microcontroller 46 at a rate indicative of the measured capacitance. This flashing light will be reflected and refracted at the surface of the handle, so that the operator viewing the handle will see displayed thereon a representation of the measured capacitance. In this embodiment the user 22 moves the hammer head 24 across the wall 20 while observing the rate at which the LED flashes, wherein a maximum in the flash rate may indicate that the hammer head 24 is disposed adjacent a stud 18.
In some known hammers a steel I-beam extends along substantially the entire axis of the hammer handle 26. The I-beam is inserted into the conventional handle-attaching hole in the hammer head 24 and is glued in place in a plastic molding operation that also enrobes the rest of the I-beam with a layer of varying thickness so as to form a handle having a desired shape. It will be understood that the capacitance measurement circuitry, in order to be compatible with this structure, may involve the use of circuit boards that can be fitted about or adjacent the beam and cast into the handle at a selected location along the handle. In one embodiment, the capacitance measurement circuitry is cast into a partially transparent portion of the handle 26 lying between the head and an opaque rubber cushioning grip.
As hereinbefore noted, it is known in the art of electronic stud finding to provide an additional safety feature to the operator by including circuitry responsive to the AC mains frequency and by then warning the operator when the stud finder is disposed adjacent an energized conductor so that he or she does not drive a nail into the wiring. Such means for detecting the presence of energized and unshielded wires may be readily incorporated into the stud sensing hammer of the invention, and suitable alerting means may be provided to warn the operator of a proximate energized conductor. One could, of course, provide a visual warning e.g., by showing a rapidly oscillating bar graph on a columnar display 50 or by using a rapid and repetitive characteristic flashing sequence of an LED 56. Alternately, one could provide a piezoelectric element 58 driven by the sensing circuitry and disposed on a surface of the handle to provide an audible or tactile warning of the hazard.
Although the present invention has been described with respect to several preferred embodiments, many modifications and alterations can be made without departing from the invention. Accordingly, it is intended that all such modifications and alterations be considered as within the spirit and scope of the invention as defined in the attached claims.
Patent | Priority | Assignee | Title |
10007636, | Oct 26 2000 | Cypress Semiconductor Corporation | Microcontroller programmable system on a chip |
10017977, | Aug 21 2009 | UUSI, LLC | Keyless entry assembly having capacitance sensor operative for detecting objects |
10020810, | Oct 26 2000 | MONTEREY RESEARCH, LLC | PSoC architecture |
10133432, | Jul 25 2006 | MUFG UNION BANK, N A | Technique for increasing the sensitivity of capacitive sense arrays |
10248604, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Microcontroller programmable system on a chip |
10261932, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Microcontroller programmable system on a chip |
10386969, | Sep 26 2008 | MUFG UNION BANK, N A | System and method to measure capacitance of capacitive sensor array |
10429058, | May 28 2015 | GLOCORE TOOLS, LLC | High visibility tool handle with active illumination |
10466980, | Oct 24 2001 | MUFG UNION BANK, N A | Techniques for generating microcontroller configuration information |
10698662, | Nov 15 2001 | Cypress Semiconductor Corporation | System providing automatic source code generation for personalization and parameterization of user modules |
10725954, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Microcontroller programmable system on a chip |
10788937, | May 07 2007 | Cypress Semiconductor Corporation | Reducing sleep current in a capacitance sensing system |
10954709, | Aug 21 2009 | UUSI, LLC | Vehicle assembly having a capacitive sensor |
11029795, | Sep 26 2008 | Cypress Semiconductor Corporation | System and method to measure capacitance of capacitive sensor array |
11634937, | Aug 21 2009 | UUSI, LLC | Vehicle assembly having a capacitive sensor |
11693143, | Sep 30 2019 | Zircon Corporation | Scanner for detecting objects behind an opaque surface |
6386625, | Nov 11 1999 | DR ING H C F PORSCHE AKTIENGESELLSCHAFT | Vehicle construction and method of making same |
6452097, | May 25 2001 | MUDMASTER, INC | Method and device for installing wallboard over a previously installed junction box |
6466036, | Nov 25 1998 | NEODRÓN LIMITED | Charge transfer capacitance measurement circuit |
6661240, | Oct 04 2000 | General Electric Co. | Methods and systems for capacitive motion sensing and position control |
6851487, | Apr 04 2003 | TayMac Corporation | Power tool and beam location device |
6954867, | Jul 26 2002 | Microsoft Technology Licensing, LLC | Capacitive sensing employing a repeatable offset charge |
6978503, | May 17 2004 | Combination stud finder-hammer tool | |
6995747, | Sep 07 2001 | Microsoft Technology Licensing, LLC | Capacitive sensing and data input device power management |
7013516, | Jun 17 2003 | READY TOOLS, LLC | Hammer |
7013570, | Jun 18 2003 | Irwin Industrial Tool Company | Stud finder |
7023425, | Sep 07 2001 | Microsoft Technology Licensing, LLC | Data input device power management including beacon state |
7030768, | Sep 30 2003 | Water softener monitoring device | |
7050927, | Mar 30 2001 | Microsoft Technology Licensing, LLC | Capacitance touch slider |
7066278, | Apr 04 2003 | TayMac Corporation | Power tool and beam location device |
7124312, | Jul 26 2002 | Microsoft Technology Licensing, LLC | Capacitive sensing employing a repeatable offset charge |
7158125, | Mar 30 2001 | Microsoft Technology Licensing, LLC | Capacitance touch slider |
7178250, | Jul 21 2004 | Irwin Industrial Tool Company | Intersecting laser line generating device |
7253643, | Jul 19 2006 | MONTEREY RESEARCH, LLC | Uninterrupted radial capacitive sense interface |
7307485, | Nov 14 2005 | MONTEREY RESEARCH, LLC | Capacitance sensor using relaxation oscillators |
7310887, | Jul 21 2004 | Irwin Industrial Tool Company | Intersecting laser line generating device |
7312616, | Jan 20 2006 | MONTEREY RESEARCH, LLC | Successive approximate capacitance measurement circuit |
7369055, | Sep 30 2003 | Water softener monitoring system | |
7467572, | Nov 03 2004 | HBC FQ LLC | Hammer with mallet head and measuring handle |
7469481, | Jul 21 2004 | Black & Decker Inc | Intersecting laser line generating device |
7487596, | Jun 25 2004 | Black & Decker Inc | Laser line projected on an edge of a surface |
7489111, | Dec 08 2005 | Robert W., Wise | Holstered cordless power tool |
7721609, | Mar 31 2006 | MUFG UNION BANK, N A | Method and apparatus for sensing the force with which a button is pressed |
7737724, | Apr 17 2007 | MUFG UNION BANK, N A | Universal digital block interconnection and channel routing |
7761845, | Sep 09 2002 | MUFG UNION BANK, N A | Method for parameterizing a user module |
7765095, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Conditional branching in an in-circuit emulation system |
7770113, | Nov 19 2001 | MUFG UNION BANK, N A | System and method for dynamically generating a configuration datasheet |
7774190, | Nov 19 2001 | MONTEREY RESEARCH, LLC | Sleep and stall in an in-circuit emulation system |
7812825, | Mar 30 2001 | Microsoft Technology Licensing, LLC | Capacitance touch slider |
7825688, | Mar 16 2004 | MONTEREY RESEARCH, LLC | Programmable microcontroller architecture(mixed analog/digital) |
7844437, | Nov 19 2001 | MUFG UNION BANK, N A | System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit |
7884621, | Jan 20 2006 | MONTEREY RESEARCH, LLC | Successive approximate capacitance measurement circuit |
7893724, | Mar 22 2005 | RPX Corporation | Method and circuit for rapid alignment of signals |
8026739, | Apr 17 2007 | MUFG UNION BANK, N A | System level interconnect with programmable switching |
8040142, | Mar 31 2006 | MONTEREY RESEARCH, LLC | Touch detection techniques for capacitive touch sense systems |
8040321, | Jul 10 2006 | MONTEREY RESEARCH, LLC | Touch-sensor with shared capacitive sensors |
8049569, | Sep 05 2007 | MONTEREY RESEARCH, LLC | Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes |
8058937, | Jan 30 2007 | MONTEREY RESEARCH, LLC | Setting a discharge rate and a charge rate of a relaxation oscillator circuit |
8067948, | Mar 27 2006 | MUFG UNION BANK, N A | Input/output multiplexer bus |
8069405, | Nov 19 2001 | MONTEREY RESEARCH, LLC | User interface for efficiently browsing an electronic document using data-driven tabs |
8069428, | Oct 24 2001 | MUFG UNION BANK, N A | Techniques for generating microcontroller configuration information |
8069436, | Aug 10 2005 | MONTEREY RESEARCH, LLC | Providing hardware independence to automate code generation of processing device firmware |
8078894, | Apr 25 2007 | MUFG UNION BANK, N A | Power management architecture, method and configuration system |
8078970, | Nov 09 2001 | MONTEREY RESEARCH, LLC | Graphical user interface with user-selectable list-box |
8085067, | Dec 21 2005 | MONTEREY RESEARCH, LLC | Differential-to-single ended signal converter circuit and method |
8085100, | Feb 03 2006 | MONTEREY RESEARCH, LLC | Poly-phase frequency synthesis oscillator |
8086417, | Jul 03 2007 | MONTEREY RESEARCH, LLC | Normalizing capacitive sensor array signals |
8089288, | Nov 16 2006 | MUFG UNION BANK, N A | Charge accumulation capacitance sensor with linear transfer characteristic |
8089289, | Jul 03 2007 | MUFG UNION BANK, N A | Capacitive field sensor with sigma-delta modulator |
8089461, | Jun 23 2005 | MONTEREY RESEARCH, LLC | Touch wake for electronic devices |
8089472, | May 26 2006 | MUFG UNION BANK, N A | Bidirectional slider with delete function |
8092083, | Apr 17 2007 | MUFG UNION BANK, N A | Temperature sensor with digital bandgap |
8103496, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Breakpoint control in an in-circuit emulation system |
8103497, | Mar 28 2002 | MONTEREY RESEARCH, LLC | External interface for event architecture |
8120408, | May 05 2005 | MONTEREY RESEARCH, LLC | Voltage controlled oscillator delay cell and method |
8127046, | Dec 04 2006 | DEKA Products Limited Partnership | Medical device including a capacitive slider assembly that provides output signals wirelessly to one or more remote medical systems components |
8130025, | Apr 17 2007 | MONTEREY RESEARCH, LLC | Numerical band gap |
8144126, | May 07 2007 | MUFG UNION BANK, N A | Reducing sleep current in a capacitance sensing system |
8149048, | Oct 26 2000 | MUFG UNION BANK, N A | Apparatus and method for programmable power management in a programmable analog circuit block |
8160864, | Oct 26 2000 | MONTEREY RESEARCH, LLC | In-circuit emulator and pod synchronized boot |
8169238, | Jul 03 2007 | MUFG UNION BANK, N A | Capacitance to frequency converter |
8174274, | Dec 23 2009 | MAT INDUSTRIES, LLC | Nailer with integrated stud finder |
8176296, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Programmable microcontroller architecture |
8248084, | Mar 31 2006 | MONTEREY RESEARCH, LLC | Touch detection techniques for capacitive touch sense systems |
8272813, | Jan 30 2006 | Combination power tool and object sensor | |
8286125, | Aug 13 2004 | MONTEREY RESEARCH, LLC | Model for a hardware device-independent method of defining embedded firmware for programmable systems |
8315832, | Jul 03 2007 | MONTEREY RESEARCH, LLC | Normalizing capacitive sensor array signals |
8321174, | Sep 26 2008 | MUFG UNION BANK, N A | System and method to measure capacitance of capacitive sensor array |
8358142, | Feb 27 2008 | PARADE TECHNOLOGIES, LTD | Methods and circuits for measuring mutual and self capacitance |
8358150, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Programmable microcontroller architecture(mixed analog/digital) |
8370791, | Nov 19 2001 | MUFG UNION BANK, N A | System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit |
8402313, | May 01 2002 | MONTEREY RESEARCH, LLC | Reconfigurable testing system and method |
8476928, | Apr 17 2007 | MUFG UNION BANK, N A | System level interconnect with programmable switching |
8487639, | Nov 21 2008 | PARADE TECHNOLOGIES, LTD | Receive demodulator for capacitive sensing |
8487912, | Feb 01 2008 | MONTEREY RESEARCH, LLC | Capacitive sense touch device with hysteresis threshold |
8493351, | Mar 30 2006 | MONTEREY RESEARCH, LLC | Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device |
8499270, | Apr 25 2007 | MUFG UNION BANK, N A | Configuration of programmable IC design elements |
8516025, | Apr 17 2007 | MUFG UNION BANK, N A | Clock driven dynamic datapath chaining |
8517642, | Feb 11 2009 | Tool mounted stud finder | |
8525798, | Jan 28 2008 | MUFG UNION BANK, N A | Touch sensing |
8527949, | Nov 19 2001 | MUFG UNION BANK, N A | Graphical user interface for dynamically reconfiguring a programmable device |
8533677, | Nov 19 2001 | MUFG UNION BANK, N A | Graphical user interface for dynamically reconfiguring a programmable device |
8536902, | Jul 03 2007 | MUFG UNION BANK, N A | Capacitance to frequency converter |
8537121, | May 26 2006 | MONTEREY RESEARCH, LLC | Multi-function slider in touchpad |
8547114, | Nov 14 2006 | MUFG UNION BANK, N A | Capacitance to code converter with sigma-delta modulator |
8555032, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Microcontroller programmable system on a chip with programmable interconnect |
8570052, | Feb 27 2008 | PARADE TECHNOLOGIES, LTD | Methods and circuits for measuring mutual and self capacitance |
8570053, | Jul 03 2007 | MUFG UNION BANK, N A | Capacitive field sensor with sigma-delta modulator |
8575947, | Nov 21 2008 | PARADE TECHNOLOGIES, LTD | Receive demodulator for capacitive sensing |
8692563, | Feb 27 2008 | PARADE TECHNOLOGIES, LTD | Methods and circuits for measuring mutual and self capacitance |
8717042, | Mar 27 2006 | MUFG UNION BANK, N A | Input/output multiplexer bus |
8736303, | Oct 26 2000 | MONTEREY RESEARCH, LLC | PSOC architecture |
8793635, | Oct 24 2001 | MUFG UNION BANK, N A | Techniques for generating microcontroller configuration information |
8866500, | Mar 26 2009 | PARADE TECHNOLOGIES, LTD | Multi-functional capacitance sensing circuit with a current conveyor |
8909960, | Apr 25 2007 | MUFG UNION BANK, N A | Power management architecture, method and configuration system |
8976124, | May 07 2007 | MUFG UNION BANK, N A | Reducing sleep current in a capacitance sensing system |
9104273, | Feb 29 2008 | MUFG UNION BANK, N A | Multi-touch sensing method |
9152284, | Mar 30 2006 | MONTEREY RESEARCH, LLC | Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device |
9154160, | Mar 16 2011 | MUFG UNION BANK, N A | Capacitance to code converter with sigma-delta modulator |
9166621, | Nov 14 2006 | MUFG UNION BANK, N A | Capacitance to code converter with sigma-delta modulator |
9268441, | Apr 05 2011 | PARADE TECHNOLOGIES, LTD | Active integrator for a capacitive sense array |
9417728, | Jul 28 2009 | PARADE TECHNOLOGIES, LTD | Predictive touch surface scanning |
9423427, | Feb 27 2008 | PARADE TECHNOLOGIES, LTD | Methods and circuits for measuring mutual and self capacitance |
9442146, | Mar 26 2009 | PARADE TECHNOLOGIES, LTD | Multi-mode capacitive sensing device and method with current conveyor |
9448964, | May 04 2009 | MUFG UNION BANK, N A | Autonomous control in a programmable system |
9494627, | Mar 31 2006 | MONTEREY RESEARCH, LLC | Touch detection techniques for capacitive touch sense systems |
9494628, | Feb 27 2008 | PARADE TECHNOLOGIES, LTD | Methods and circuits for measuring mutual and self capacitance |
9500686, | Jun 29 2007 | MUFG UNION BANK, N A | Capacitance measurement system and methods |
9507465, | Jul 25 2006 | MUFG UNION BANK, N A | Technique for increasing the sensitivity of capacitive sensor arrays |
9564902, | Apr 17 2007 | MUFG UNION BANK, N A | Dynamically configurable and re-configurable data path |
9575481, | Aug 21 2009 | UUSI, LLC | Fascia panel assembly having capacitance sensor operative for detecting objects |
9705494, | Aug 21 2009 | UUSI, LLC | Vehicle assemblies having fascia panels with capacitance sensors operative for detecting proximal objects |
9720805, | Apr 25 2007 | MUFG UNION BANK, N A | System and method for controlling a target device |
9760192, | Jan 28 2008 | MUFG UNION BANK, N A | Touch sensing |
9766650, | Oct 26 2000 | MONTEREY RESEARCH, LLC | Microcontroller programmable system on a chip with programmable interconnect |
9766738, | Aug 23 2006 | MUFG UNION BANK, N A | Position and usage based prioritization for capacitance sense interface |
9797179, | Aug 21 2009 | UUSI, LLC | Vehicle assembly having a capacitive sensor |
9843327, | Oct 26 2000 | MONTEREY RESEARCH, LLC | PSOC architecture |
9845629, | Aug 21 2009 | UUSI, LLC | Vehicle keyless entry assembly having capacitance sensor operative for detecting objects |
9954528, | Oct 26 2000 | Cypress Semiconductor Corporation | PSoC architecture |
D518684, | Mar 11 2005 | Hammer flask | |
RE42386, | Sep 30 2003 | Water softener monitoring system | |
RE46317, | Jul 03 2007 | MONTEREY RESEARCH, LLC | Normalizing capacitive sensor array signals |
Patent | Priority | Assignee | Title |
4099188, | Oct 09 1974 | Asahi Kogaku Kogyo Kabushiki Kaisha | Automatic exposure control device for single lens reflex camera |
4464622, | Mar 11 1982 | Electronic wall stud sensor | |
4853617, | Mar 24 1987 | Duracell Inc; STANLEY WORKS, THE, 1000 STANLEY DRIVE, NEW BRITAIN, CT 06050, A CORP OF CT | Apparatus having capacitive sensor and metal detector for detecting objects concealed behind surfaces |
4992741, | Mar 24 1987 | The Stanley Works | Capacitive sensor and metal detector with a display for quantitatively displaying signals resulting from concealed objects |
5296806, | Feb 03 1992 | Method for locating metal studs hidden behind a wall partition by use of particulate magnetic material | |
5352974, | Aug 14 1992 | Zircon Corporation | Stud sensor with digital averager and dual sensitivity |
5457394, | Apr 12 1993 | Lawrence Livermore National Security LLC | Impulse radar studfinder |
5512834, | May 07 1993 | Lawrence Livermore National Security LLC | Homodyne impulse radar hidden object locator |
5562240, | Jan 30 1995 | Proximity sensor controller mechanism for use with a nail gun or the like | |
5730165, | Dec 26 1995 | Atmel Corporation | Time domain capacitive field detector |
Date | Maintenance Fee Events |
Jul 26 2004 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jul 29 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 06 2008 | R2552: Refund - Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 06 2008 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Aug 13 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 13 2004 | 4 years fee payment window open |
Aug 13 2004 | 6 months grace period start (w surcharge) |
Feb 13 2005 | patent expiry (for year 4) |
Feb 13 2007 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 13 2008 | 8 years fee payment window open |
Aug 13 2008 | 6 months grace period start (w surcharge) |
Feb 13 2009 | patent expiry (for year 8) |
Feb 13 2011 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 13 2012 | 12 years fee payment window open |
Aug 13 2012 | 6 months grace period start (w surcharge) |
Feb 13 2013 | patent expiry (for year 12) |
Feb 13 2015 | 2 years to revive unintentionally abandoned end. (for year 12) |