A casing 60 made of metal and having side walls 60-1 formed on both sides thereof is attached to a chassis 30 to over a back surface of the chassis 30. The casing 60 is coupled to the chassis with its side walls fitted to outer surfaces of side walls 30-1 of the chassis 30. The casing is fixed to the chassis by screws at two positions on both sides in an intermediate portion in a longitudinal direction. Moreover, a mechanism for suppressing wobbling motion of the casing is formed on the side walls of the casing and the chassis in the vicinity of longitudinal opposite ends.

Patent
   6195225
Priority
Mar 17 1998
Filed
Mar 11 1999
Issued
Feb 27 2001
Expiry
Mar 11 2019
Assg.orig
Entity
Large
153
13
EXPIRED
1. A disk drive comprising a receiving mechanism for receiving a disk as a received disk, on which data is recorded, an ejecting mechanism for ejecting said received disk, a carriage mechanism having a head unit for access to said received disk and holding a head unit so that said head unit is movable in a radial direction of said received disk, a moving mechanism for moving said carriage mechanism, a disk table for holding and rotating said received disk, and a drive motor for rotating said disk table, said receiving mechanism, said ejecting mechanism, said carriage mechanism, and said moving mechanism being mounted on a principal surface of a chassis which is made of metal, wherein:
said chassis has a U-shaped section with side walls formed on each side thereof;
said disk drive further comprises a motor chassis of metal and a printed wiring board mounted on said motor chassis to form a stator of said drive motor on said back surface of said chassis;
said stator including a plurality of stator cores extending in a radial fashion and a plurality of stator coils each of which is wound around each of said stator cores;
said motor chassis comprises an attaching element having an inverted L shape extending upward from its one end to be brought into contact with said back surface of said chassis; and
said back surface of said chassis being covered with a lower cover made of metal and having a U-shaped portion with side walls formed on each side thereof, said lower cover being coupled to said chassis with its side walls fitted to outer surfaces of said side walls of said chassis, said lower cover being screwed to said chassis at two positions on both sides in an intermediate portion in a longitudinal direction, said disk drive further comprising an anti-wobbling mechanism for suppressing wobbling motion of said lower cover, and said anti-wobbling mechanism being formed on said both side walls of said lower cover and said chassis in the vicinity of longitudinal opposite ends of said lower cover and said chassis.
2. A disk drive as claimed in claim 1, wherein at least one of each side wall of said lower cover and a principal surface of said lower cover is provided with threaded holes formed at a plurality of positions to fix by screws said disk drive to another apparatus.
3. A disk drive as claimed in claim 1, wherein said anti-wobbling mechanism comprises a latch formed on one of each side wall of said lower cover and each side wall of said chassis, and a notch which is formed on the other side wall of each of said cover and chasis and which is engageable with said latch to prevent said latch from being dislocated both in a backward/forward direction and in a vertical direction.
4. A disk drive as claimed in claim 3, wherein a small gap is formed between said latch and an edge of said notch in each of the backward/forward and the vertical directions of said disk drive.
5. A disk drive as claimed in claim 4, wherein said lower cover has an opening formed on a principal surface thereof at a region corresponding to said motor chassis, said lower cover being attached to said chassis so that said principal surface is flush with said motor chassis.

The present invention relates to a disk drive for use in recording and reproducing data on a disk-shaped recording medium such as a magnetic disk and, in particular, to a carriage mechanism of the disk drive.

Referring to FIGS. 1 through 3, a conventional magnetic disk drive designed for magnetic disks will be described. Such a magnetic disk drive is disclosed in, for example, Japanese Patent Laid-Open (JP-A) No. 9-91943. In the magnetic disk drive illustrated in FIG. 1, a reception mechanism and an ejection mechanism for receiving and ejecting a magnetic disk, respectively, are omitted for clarity of illustration. A chassis 10 comprises a pair of side walls 10-1 on both sides thereof. All components and parts are mounted on a principal surface of the chassis 10. A main printed wiring board 11 and a subsidiary printed wiring board 20 are fixed by screws to the principal surface of the chassis 10. For the main printed wiring board 11, two support members 10-2 (FIG. 2) are formed integrally with the chassis 10 by cutting and rising corresponding portions of a principal plate of the chassis 10. The main printed wiring board 10 is fixed onto the support members 10-2 by the use of screws 12.

A stepping motor 13 is attached to a rear wall 10-3 at a rear end of the chassis 10. An output shaft 13-1 of the stepping motor 13 penetrates through the rear wall 10-3. The output shaft 13-1 has a top end rotatably supported by a shaft receptacle 10-4 integrally formed with the chassis 10 by cutting and rising a corresponding portion of the principal plate of the chassis 10. The output shaft 13-1 has a threaded outer peripheral surface. A carriage mechanism 14 is provided with an arm 14-1 with a pin 14-2 embedded therein. The pin 14-2 is engaged with the threaded outer surface of the output shaft 13-1. With this structure, rotation of the output shaft 13-1 brings about the movement of the carriage mechanism 14 in the same direction as the output shaft 13-1. On the carriage mechanism 14, magnetic heads are mounted for access to the magnetic disk. The carriage mechanism 14 serves to move the magnetic heads in the radial direction of the magnetic disk.

The carriage mechanism 14 is provided with a U-shaped bearing arm 14-3 formed on the side opposite to the arm 14-1. A guide bar 15 penetrates through the bearing arm 14-3. The guide bar 15 is held by a guide bar clamp 16. With this structure, the carriage mechanism 14 is guided by the guide bar 15 during the movement following the rotation of the output shaft 13-1. The guide bar clamp 16 is fixed by a screw to a support plate 10-5 (FIG. 2). The support plate 10-5 is formed integrally with the chassis 10 by cutting and rising a corresponding portion of the principal plate of the chassis 10, and projects upward through a hole formed in the main printed wiring board 11.

In FIG. 3, a motor 21 for rotating the magnetic disk and other circuit components (not shown) are mounted on a subsidiary printed wiring board 20 only on the upper surface thereof. Accordingly, the subsidiary printed wiring board 20 is fixed to the principal plate of the chassis 10 by the screws 12 (FIG. 1) to be substantially in contact therewith at the position closer to a slot for the magnetic disk, i.e., to a front bezel 17.

The structure of the motor 21 will briefly be described. The motor 21 comprises a rotation shaft 21-1, a center metal 21-2, a plurality of cores 21-3, a plurality of stator coils 21-4, a ring-shaped permanent magnet 21-5, and a circular casing 21-6 attached to the rotation shaft 21-1. The center metal 21-2 has a cylindrical shape and serves as a bearing. Each of the cores 21-3 radially outwardly extends from the center. Each of the stator coils 21-4 is wound around an end portion of each corresponding core 21-3. The permanent magnet 21-5 surrounds these cores 21-3. The casing 21-6 holds the permanent magnet 21-5. When the rotation shaft 21-1 is rotated, the permanent magnet 21-5 and the casing 21-6 rotate together with the rotation shaft 21-1. A reference numeral 21-7 depicts an index magnet. A combination of the cores 21-3 and the stator coils 21-4 serves as a stator of the motor 21. A combination of the permanent magnet 21-5 and the casing 21-6 serves as a rotor of the motor 21. The stator and the rotor of the type are disclosed in, for example, Japanese Patent Laid-Open (JP-A) No. 9-91866 and, therefore, will not be described in detail.

The casing 21-6 has a protruding portion formed at its center and a flat portion 21-6a formed on an upper surface of the protruding portion. To the flat portion 21-6a, a disk table 21-8 formed by a plastic magnet is integrally fixed. The flat portion 21-6a is provided with an arm 22 attached to a bottom surface thereof. A drive roller 23 is rotatably mounted on the arm 22. Each of the flat portion 21-6a and the disk table 21-8 has a generally rectangular hole formed therein. Through these holes, the drive roller 23 projects upward from the disk table 21-8. The magnetic disk received in the magnetic disk drive is placed on the disk table 21-8. The drive roller 23 is inserted in and engaged with a hole formed in a hub of the magnetic disk. Thus, the magnetic disk is rotated following the rotation of the rotor. The disk table 21-8 is disclosed in, for example, Japanese Patent Laid-Open (JP-A) No. 9-91814 and is not described in detail herein.

Above the motor 21, an eject plate 24 and a disk holder unit 25 are incorporated as the ejection mechanism the reception mechanism for the magnetic disk, respectively. The eject plate 24 and the disk holder unit 25 are also disclosed in the above-mentioned Japanese Patent Laid-Open (JP-A) No. 9-91814 or 9-91943. The chassis 10 is coupled with a cover plate 18 to protect an internal space inside the chassis 10.

In the above-mentioned disk drive, the motor 21 is mounted on the principal surface of the chassis 10, in other words, built inside the chassis 10. With this structure, magnetic flux generated from the stator coil 21-4 or the permanent magnet 21-5 acts on the magnetic head to adversely affect data reading or writing operation. Moreover, since the motor 21 is built inside the chassis 10, a greater part of a limited space on the principal surface of the chassis 10 is occupied by the motor 21. This inevitably restricts a mounting space for other mechanisms. In order to solve the above-mentioned problems, the present inventors have proposed, as a previous technique, a disk drive illustrated in FIG. 4 (Japanese Patent Application No. 10-1988 published as a JP-A 11-203767 on Jul. 30, 1999). FIG. 4 shows a characteristic part of the magnetic disk drive, including a chassis 30 and a drive motor 40 (hereinafter simply referred to as a motor) attached to the chassis 30 for rotating a magnetic disk.

The chassis 30 bears a reception mechanism for receiving a magnetic disk, an ejection mechanism for ejecting the magnetic disk that has been received, a carriage mechanism which has a head unit for accessing the magnetic disk and which carries the head unit so that the head unit is movable in a radial direction of the magnetic disk, and a moving mechanism for moving the carriage mechanism. All of these components are mounted on a principal surface of the chassis 30, i.e., an upper surface in FIG. 4. These components are well known in the art and will not be described herein. In other words, a feature of this embodiment lies in installation of the motor 40 in the chassis 30. Other configurations are basically similar to those of the conventional disk drive.

The motor 40 is similar in structure to the motor 21 described in conjunction with FIG. 3 and comprises a rotor 41 and a stator 42 combined with the rotor 41. The rotor 41 has a disk-shaped metallic casing 41-1. The casing 41-1 has a protruding portion 41-11 formed at its center to protrude upward. The protruding portion 41-11 has an upper surface to which a disk table 43 is mounted. The chassis 30 has an opening 30a which allows only an upper part of the protruding portion 41-11 to pass therethrough and project on the principal surface. Thus, the disk table 43 is projected on the principal surface of the chassis 30.

A rotation shaft 44 of metal is integrally fixed to the rotor 41 at the center thereof to pass through the casing 41-1 and the disk table 43. When the disk table 43 is injection-molded by the use of a plastic magnet, the casing 41-1 and the rotation shaft 44 are integrally assembled. The casing 41-1 has a cylindrical member 41-12 formed on its outer periphery to extend downward. A ring-shaped permanent magnet 45 is attached to an inner surface of the cylindrical member 41-12.

As described in conjunction with FIG. 3, the protruding portion 41-11 is provided with an arm 46 attached to a bottom surface thereof. A drive roller 47 is rotatably mounted on the arm 46. Each of the protruding portion 41-11 and the disk table 43 has a generally rectangular hole formed therein. Through these holes, the drive roller 47 projects upward from the disk table 43. The magnetic disk received in the magnetic disk drive is placed on the disk table 43. The drive roller 47 is inserted in and engaged with a hole formed in a hub of the magnetic disk. Thus, the magnetic disk is rotated following the rotation of the rotor 41.

On the other hand, the stator 42 is attached to a back surface of the chassis 30 by means of a metallic motor chassis 50 of metal. More specifically, the stator 42 is formed on a printed wiring board 51 mounted on the principal surface of the motor chassis 50. As described in conjunction with FIGS. 3 and 4, the stator 42 comprises a plurality of stator cores 42-1, a plurality of stator coils 42-2, and a bearing unit (center metal) 42-3. Each of the stator cores 42-1 extends radially outwardly from an outer periphery of a ring-shaped member of metal. Each of the stator coils 42-2 is wound around an end portion of each corresponding core 42-1. The bearing unit 42-3 is formed at the center of the printed wiring board 51 and supports the rotation shaft 44. The motor chassis 50 has a plurality of attaching elements 50-1 of an inverted-L shape which extend upward from a peripheral edge of the motor chassis 50 to abut against the back surface of the chassis 30.

A main printed wiring board corresponding to the main printed wiring board 11 described in conjunction with FIG. 3 is also mounted on the back surface of the chassis 30. With this structure, the receiving and the ejecting mechanisms for the magnetic disk, the carriage mechanism movably holding the magnetic disk, and the moving mechanism for moving the carriage mechanism can easily be mounted in the space on the principal surface of the chassis 30.

In the disk drive illustrated in FIG. 4, it is essential to provide a component for suppressing vibration or shock given to the chassis 30. Such a component can easily be implemented by a lower cover attached to the back surface of the chassis 30. However, the lower cover must be attached to the chassis 30 with flexibility in addition to sufficient mechanical strength against the vibration or the shock. The reason is given below. The disk drive of the type is generally combined with an electronic apparatus such as a personal computer and used as a memory device. The combination is achieved by fixing the lower cover with screws to an attaching element of the electronic apparatus. Typically, such fixation by the screws is carried out at a plurality of positions so that the lower cover is susceptible to mechanical strain. If the mechanical strain is transmitted from the lower cover to the chassis 30, the chassis 30 may be deformed to result in malfunction or operation error of a movable member formed on the principal surface of the chassis 30. In view of the above, it is necessary to attach the lower cover to the chassis 30 with flexibility.

It is therefore an object of the present invention to provide a disk drive in which a lower cover for suppressing vibration or shock applied to a chassis is attached to the chassis with flexibility.

A disk drive according to the present invention comprises a receiving mechanism for receiving a disk as a received disk on which data are recorded, an ejecting mechanism for ejecting the received disk that has been received, a carriage mechanism having a head unit for access to the received disk and holding the head unit so that the head unit is movable in a radial direction of the disk, a moving mechanism for moving the carriage mechanism, a disk table for holding and rotating the received disk, and a drive motor for rotating the disk table. The receiving mechanism, the ejecting mechanism, the carriage mechanism, and the moving mechanism are mounted on a principal surface of a chassis which is made of metal.

According to an aspect of the present invention, the chassis has a U-shaped section with side walls formed on each side thereof. The disk drive further comprises a motor chassis made of metal and a printed wiring board mounted on the motor chassis to form a stator of the drive motor on the back surface of the chassis. The stator includes a plurality of stator cores extending in a radial fashion and a plurality of stator coils each of which is wound around each of the stator cores. The motor chassis has an attaching element of an inverted L shape extending upward from its one end to be brought into contact with the back surface of the chassis. The back surface of the chassis is covered with a lower cover made of metal and having a U-shaped portion with side walls formed on each side thereof. The lower cover is coupled to the chassis with its side walls fitted to outer surfaces of the side walls of the chassis. The lower cover is screwed to the chassis at two positions on both sides in an intermediate portion in a longitudinal direction. The disk drive further comprises a mechanism for suppressing wobbling motion of the lower cover. The mechanism is formed on both side walls of the lower cover and the chassis at positions in the vicinity of longitudinal opposite ends of the lower cover and the chassis.

FIG. 1 is a plan view showing an internal structure of a conventional disk drive including a main printed wiring board, a subsidiary printed wiring board, a carriage mechanism, and other peripheral mechanisms;

FIG. 2 is a sectional view taken along a line 2--2 in FIG. 1;

FIG. 3 is a sectional view taken along a line 3--3 in FIG. 1;

FIG. 4 is a sectional view of a disk drive to which this invention is applicable, showing the relationship between a chassis and a motor attached to the chassis for driving the rotation of a magnetic disk;

FIG. 5 is a front view of the disk drive in FIG. 4, showing the relationship between the chassis, a motor chassis, and a casing;

FIG. 6 is a bottom view of the chassis, the motor chassis, and the casing illustrated in FIG. 5;

FIG. 7 is a perspective view for describing the attachment of a lower cover to the chassis; and

FIG. 8 is an enlarged view showing an anti-wobbling mechanism illustrated in FIG. 7.

Referring to FIGS. 5 through 8, description will be made about a preferred embodiment of the present invention in conjunction with the case where it is applied to a magnetic disk drive similar to that illustrated in FIG. 4.

FIG. 5 shows in detail the chassis 30, the motor chassis 50, and the printed wiring board 51 among various components of the disk drive (FIG. 4). In FIGS. 5 and 6, the chassis 30 has side walls 30-1 formed on both sides thereof. The stator 42 of the motor 40 projects on the back surface of the chassis 30. Therefore, in this embodiment, the chassis 30 is provided with a casing 60 called a lower cover that is assembled with the chassis 30 on the back surface thereof. Like the chassis 30, the casing 60 has side walls 60-1 formed on both sides thereof and has a U-shaped section. The casing 60 is removably fitted to the chassis 30 on the outer surface of the side walls 30-1 thereof. The casing 60 is formed so that its principal surface is coplanar with the motor chassis 50 when assembled with the chassis 30. The casing 60 has an opening 60a formed at a region corresponding to the motor chassis 50.

In the illustrated example, attaching elements 50-1 are provided at two positions. The attaching elements 50-1 are attached by the screws to the back surface of the chassis 30. The motor chassis 50 is provided with a plurality of (herein, three) latches 50-2 formed at separate positions on its peripheral edge. The latches 50-2 are for fixing the printed wiring board 51 onto the motor chassis 50.

The casing 60 is fixed to the chassis 30 by screws 70 at two positions on both sides of an intermediate portion of the chassis 30 in the longitudinal direction thereof. For this purpose, the casing 60 is provided with attaching elements 60-2 as L-shaped bent portions formed on the edge of the opening 60a thereof. Moreover, on the side walls 60-1 of the casing 60 and the side walls 30-1 of the chassis 30, anti-wobbling mechanisms for suppressing wobbling motion of the casing 60 are formed at positions in the vicinity of longitudinal opposite ends.

Referring to FIGS. 7 and 8, description will be made about the anti-wobbling mechanisms. Each of the side walls 60-1 of the casing 60 is provided with two latches 60-4. On the other hand, each of the side walls 30-1 of the chassis 30 is provided with notches 30-3 each of which is engageable with each corresponding latch 60-4 and serves to prevent the latch 60-4 from being dislocated both in a backward/forward, namely, longitudinal direction and in a vertical direction. Each notch 30-3 has a cut portion 30-3a extending on the principal surface of the chassis 30. The cut portion 30-3a serves to prevent the collision of the latch 60-4 when the side wall 60-1 of the casing 60 is fitted to the side wall 30-1 of the chassis 30. Specifically, the latch 60-4 of the casing 60 is put into the notch 30-3 through the cut portion 30-3a. Thereafter, the casing 60 is slid rightward in FIG. 7 to be put into the state shown in FIG. 8. As seen from FIG. 8, a small gap is formed between the latch 60-4 and the edge of the notch 30-3 in each of the backward/forward and the vertical directions.

As described above, each of the side walls 60-1 of the casing 60 is provided with threaded holes 60-5 formed at three positions to fix by screws the disk drive to an electronic apparatus such as a personal computer. Similar threaded holes 60-6 are formed on the principal surface of the casing 60 at two positions in the vicinity of each side wall 60-1. Thus, the threaded holes are formed on both the side walls and the principal surface of the casing 60. This is because, depending on the structure of the electronic apparatus, the disk drive is fixed to the electronic apparatus either at the side wall 60-1 or at the principal surface thereof. In case where the disk drive is fixed at the side wall 60-1, it is possible to select, as screwing positions, two threaded holes among the three threaded holes. Specifically, in FIG. 7, it is possible to select one of a combination of the rightmost and the leftmost threaded holes and another combination of the intermediate and the rightmost threaded holes.

In any event, the casing 60 is fixed to the electronic apparatus by the screws at four positions on its both sides. It is therefore difficult to prevent the casing 60 from being subjected to mechanical strain due to the screwing. On the other hand, the casing 60 is screwed to the chassis 30 only at the two positions on both sides in the intermediate portion in the longitudinal direction and the side walls of the casing 60 and the chassis 30 are fitted to each other through the anti-wobbling mechanism, as described above. As a result, the casing 60 is fixed to the chassis 30 by the screws 70 at its intermediate portion with sufficient mechanical coupling strength resistant against vibration or shock. Moreover, in remaining portions except the fixing or screwing portion, particularly at the longitudinal opposite ends, the casing 60 has flexibility with respect to the chassis 30 with wobbling motion suppressed to some extent by the above-mentioned anti-wobbling mechanism. Therefore, even if the casing 60 is subjected to mechanical strain due to the screwing, such mechanical strain is never transmitted to the chassis 30.

It is noted here that the notches 30-3 and the latches 60-4 can be reversed in position. In other words, the notches may be formed on the side wall 60-1 of the casing 60 while the latches may be formed on the side wall 30-1 of the chassis 30.

As described in the foregoing, according to the present invention, the casing (the lower cover) for suppressing the vibration or the shock applied to the chassis can be fixed to the chassis not only with the sufficient mechanical strength against the vibration or the shock but also with the flexibility to avoid propagation of the mechanical strain.

Takahashi, Makoto, Komatsu, Hisateru

Patent Priority Assignee Title
10010651, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
10034682, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating frontal sinusitis
10098652, Apr 21 2004 ACCLARENT, INC Systems and methods for transnasal dilation of passageways in the ear, nose or throat
10124154, Jun 10 2005 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
10188413, Apr 21 2004 ACCLARENT, INC Deflectable guide catheters and related methods
10206821, Dec 20 2007 ACCLARENT, INC Eustachian tube dilation balloon with ventilation path
10232152, Mar 14 2013 INTERSECT ENT, INC. Systems, devices, and method for treating a sinus condition
10271719, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
10357640, May 15 2009 INTERSECT ENT, INC Expandable devices and methods for treating a nasal or sinus condition
10376416, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
10406332, Mar 14 2013 INTERSECT ENT, INC Systems, devices, and method for treating a sinus condition
10441758, Apr 21 2004 Acclarent, Inc. Frontal sinus spacer
10471185, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
10492810, Apr 21 2004 ACCLARENT, INC Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
10500380, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating sinusitis
10524814, Mar 20 2009 ACCLARENT, INC Guide system with suction
10524869, Mar 15 2013 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
10631756, Apr 21 2004 ACCLARENT, INC Guidewires for performing image guided procedures
10639457, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
10695080, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
10702295, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
10716629, Sep 15 2006 ACCLARENT, INC Methods and devices for facilitating visualization in a surgical environment
10779752, Apr 21 2004 Acclarent, Inc. Guidewires for performing image guided procedures
10806477, Apr 21 2004 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
10842978, Jun 10 2005 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
10856727, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
10874838, Apr 21 2004 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
11019989, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
11020136, Apr 21 2004 Acclarent, Inc. Deflectable guide catheters and related methods
11065061, Apr 21 2004 ACCLARENT, INC Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
11110210, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
11116392, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
11123091, Apr 04 2005 INTERSECT ENT, INC. Device and methods for treating paranasal sinus conditions
11202644, Apr 21 2004 ACCLARENT, INC Shapeable guide catheters and related methods
11207087, Mar 20 2009 Acclarent, Inc. Guide system with suction
11291812, Mar 14 2003 INTERSECT ENT, INC. Sinus delivery of sustained release therapeutics
11311419, Dec 20 2007 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
11484693, May 15 2009 INTERSECT ENT, INC. Expandable devices and methods for treating a nasal or sinus condition
11497835, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
11511090, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
11529502, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
11589742, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
11654216, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
11672960, Mar 14 2013 INTERSECT ENT, INC. Systems, devices, and method for treating a sinus condition
11826494, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
11850120, Dec 20 2007 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
11864725, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
7019965, Sep 30 2002 Oracle America, Inc Ejector mechanism and a carrier including same
7361168, Aug 04 2004 ACCLARENT, INC Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
7410480, Apr 21 2004 ACCLARENT, INC Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
7474509, Jul 28 2004 TDK Corporation Magnetic recording apparatus with head arm holding part
7720521, Apr 21 2004 ACCLARENT, INC Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
7951130, Mar 14 2003 INTERSECT ENT, INC. Sinus delivery of sustained release therapeutics
7951131, Mar 14 2003 INTERSECT ENT, INC. Sinus delivery of sustained release therapeutics
7951132, Mar 14 2003 INTERSECT ENT, INC Sinus delivery of sustained release therapeutics
7951133, Mar 14 2003 INTERSECT ENT, INC Sinus delivery of sustained release therapeutics
7951134, Mar 14 2003 INTERSECT ENT, INC. Sinus delivery of sustained release therapeutics
7951135, Mar 14 2003 INTERSECT ENT, INC. Sinus delivery of sustained release therapeutics
8025635, Apr 04 2005 INTERSECT ENT, INC Device and methods for treating paranasal sinus conditions
8080000, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
8088101, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8090433, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
8100933, Sep 30 2002 ACCLARENT, INC Method for treating obstructed paranasal frontal sinuses
8109918, Mar 14 2003 INTERSECT ENT, INC Sinus delivery of sustained release therapeutics
8114062, Apr 21 2004 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
8114113, Sep 23 2005 ACCLARENT, INC Multi-conduit balloon catheter
8118757, Apr 30 2007 ACCLARENT INC , A DELAWARE CORPORATION Methods and devices for ostium measurement
8123722, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8142422, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8146400, Apr 21 2004 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
8172828, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8182432, Mar 10 2008 ACCLARENT, INC Corewire design and construction for medical devices
8190389, May 17 2006 ACCLARENT, INC Adapter for attaching electromagnetic image guidance components to a medical device
8317816, Sep 30 2002 ACCLARENT, INC Balloon catheters and methods for treating paranasal sinuses
8337454, Apr 04 2005 INTERSECT ENT, INC Device and methods for treating paranasal sinus conditions
8388642, Jan 18 2005 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
8414473, Apr 21 2004 ACCLARENT, INC Methods and apparatus for treating disorders of the ear nose and throat
8425457, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
8435290, Mar 31 2009 ACCLARENT, INC System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
8439687, Dec 29 2006 ACCLARENT, INC Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
8485199, May 08 2007 ACCLARENT INC , A DELAWARE CORPORATION Methods and devices for protecting nasal turbinate during surgery
8535707, Jul 10 2006 INTERSECT ENT, INC Devices and methods for delivering active agents to the osteomeatal complex
8585730, Dec 18 2007 INTERSECT ENT, INC Self-expanding devices and methods therefor
8585731, Dec 18 2007 INTERSECT ENT, INC Self-expanding devices and methods therefor
8702626, Apr 21 2004 ACCLARENT, INC Guidewires for performing image guided procedures
8715169, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8721591, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8740839, Apr 04 2005 INTERSECT ENT, INC. Device and methods for treating paranasal sinus conditions
8740929, Feb 06 2001 ACCLARENT, INC Spacing device for releasing active substances in the paranasal sinus
8747389, Apr 21 2004 ACCLARENT, INC Systems for treating disorders of the ear, nose and throat
8763222, Aug 01 2008 INTERSECT ENT, INC Methods and devices for crimping self-expanding devices
8764709, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8764726, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8764729, Apr 21 2004 ACCLARENT, INC Frontal sinus spacer
8764786, Sep 30 2002 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
8777926, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
8802131, Jul 10 2006 INTERSECT ENT, INC Devices and methods for delivering active agents to the osteomeatal complex
8828041, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8852143, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8858586, Apr 21 2004 Acclarent, Inc. Methods for enlarging ostia of paranasal sinuses
8858974, Apr 04 2005 INTERSECT ENT, INC Device and methods for treating paranasal sinus conditions
8864787, Apr 21 2004 ACCLARENT, INC Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
8870893, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8894614, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating frontal sinusitis
8905922, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8932276, Apr 21 2004 ACCLARENT, INC Shapeable guide catheters and related methods
8945088, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8951225, Jun 10 2005 ACCLARENT, INC Catheters with non-removable guide members useable for treatment of sinusitis
8961398, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
8961495, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8968269, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
8979888, Jul 30 2008 ACCLARENT, INC Paranasal ostium finder devices and methods
8986341, Dec 18 2007 INTERSECT ENT, INC. Self-expanding devices and methods therefor
9039657, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9039680, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9050440, Sep 23 2005 ACCLARENT, INC Multi-conduit balloon catheter
9055965, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9072626, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
9084876, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9089258, Mar 15 2007 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
9101384, Apr 21 2004 ACCLARENT, INC Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
9107574, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9155492, Sep 24 2010 ACCLARENT, INC Sinus illumination lightwire device
9167961, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
9179823, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9198736, May 17 2006 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
9220879, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9241834, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
9265407, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9308361, Jan 18 2005 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
9351750, Apr 21 2004 ACCLARENT INC Devices and methods for treating maxillary sinus disease
9370649, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9399121, Apr 21 2004 ACCLARENT, INC Systems and methods for transnasal dilation of passageways in the ear, nose or throat
9433437, Mar 15 2013 ACCLARENT, INC Apparatus and method for treatment of ethmoid sinusitis
9457175, Sep 30 2002 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
9463068, May 08 2007 Acclarent, Inc. Methods and devices for protecting nasal turbinates
9468362, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9554691, Apr 21 2004 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
9572480, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9585681, Apr 04 2005 INTERSECT ENT, INC. Device and methods for treating paranasal sinus conditions
9603506, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9610428, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
9615775, Apr 30 2007 Acclarent, Inc. Methods and devices for ostium measurements
9629656, May 17 2006 ACCLARENT, INC Adapter for attaching electromagnetic image guidance components to a medical device
9629684, Mar 15 2013 ACCLARENT, INC Apparatus and method for treatment of ethmoid sinusitis
9636258, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
9649477, Apr 21 2004 Acclarent, Inc. Frontal sinus spacer
9750401, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
9782283, Aug 01 2008 INTERSECT ENT, INC. Methods and devices for crimping self-expanding devices
9820688, Sep 15 2006 Acclarent, Inc. Sinus illumination lightwire device
9826999, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
9861793, Mar 10 2008 ACCLARENT, INC Corewire design and construction for medical devices
9999752, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
Patent Priority Assignee Title
4692828, Jul 31 1984 TEAC Corporation Magnetic disk drive capable of mechanical connection to a data processing instrument without deformation
4713714, Nov 26 1985 Motorola, Inc Computer peripheral shock mount for limiting motion-induced errors
4812932, Jul 09 1986 Hitachi, Ltd. Vibration proof supporting structure for disk-type information memory unit
4845581, Nov 02 1987 Seagate Technology LLC Disc housing clamping method
5062016, May 05 1986 Set of structural brackets that allow electronic/electrical assemblies to be mounted within a computer enclosure
5633768, Oct 27 1993 TEAC Corporation Sheet metal frame construction for a disk apparatus
5805378, Sep 26 1995 MITSUMI ELECTRIC CO , LTD Magnetic disk drive of a structure capable of being lightened in weight
5875068, Sep 18 1995 ALPS Electric Co., Ltd. Magnetic recording/reproducing device with retaining structure for engaging a top cover and bottom cover
JP11203767,
JP8147848,
JP991814,
JP991866,
JP991943,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 08 1999KOMATSU, HISATERUMITSUMI ELECTRIC CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0098190528 pdf
Mar 08 1999TAKAHASHI, MAKOTOMITSUMI ELECTRIC CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0098190528 pdf
Mar 11 1999Mitsumi Electric Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 27 2002ASPN: Payor Number Assigned.
Aug 10 2004M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 04 2005ASPN: Payor Number Assigned.
Jan 04 2005RMPN: Payer Number De-assigned.
Sep 08 2008REM: Maintenance Fee Reminder Mailed.
Feb 27 2009EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 27 20044 years fee payment window open
Aug 27 20046 months grace period start (w surcharge)
Feb 27 2005patent expiry (for year 4)
Feb 27 20072 years to revive unintentionally abandoned end. (for year 4)
Feb 27 20088 years fee payment window open
Aug 27 20086 months grace period start (w surcharge)
Feb 27 2009patent expiry (for year 8)
Feb 27 20112 years to revive unintentionally abandoned end. (for year 8)
Feb 27 201212 years fee payment window open
Aug 27 20126 months grace period start (w surcharge)
Feb 27 2013patent expiry (for year 12)
Feb 27 20152 years to revive unintentionally abandoned end. (for year 12)