Methods and apparatus are described to manipulate the position of the heart to provide surgical access to lateral and posterior portions of the heart. A jack apparatus connected to a surgical retractor can be positioned in the surgical cavity to produce a sideways force on the heart. A tripod apparatus can be used to hold up the heart into a desired position. A band can be attached to the heart to rotate its position. Fingers attached to the bottom of a blade on a surgical retractor can be used to manipulate the heart's position.

Patent
   6234960
Priority
Sep 30 1998
Filed
Sep 30 1998
Issued
May 22 2001
Expiry
Sep 30 2018
Assg.orig
Entity
Small
116
8
EXPIRED
1. A cradle for supporting a heart within a chest cavity during cardiac surgery, comprising:
a band adapted to wrap around a portion of said heart so as to leave exposed all areas of said heart other than where said band is positioned; and
at least one connecting element connected to said band for holding heart in a preselected position within said chest cavity to provide surgical access to lateral or posterior heart vessels of said heart.
2. The cradle of claim 1, wherein said connecting elements are connected to a surgical retractor.
3. The cradle of claim 2, wherein said connecting elements are connected to rotatable rods on said surgical retractor.
4. The cradle of claim 1, wherein said band is made of an elastic material.
5. The cradle of claim 1, wherein said band is adapted to wrap around the tip of said heart.
6. The cradle of claim 1, wherein said connecting elements are made of an elastic material.

The present invention is directed to apparatus, systems, equipment and methods for heart bypass surgery.

In heart surgery, the patient's sternum is often spread using a surgical retractor. This allows the surgeon access to the patient's heart to perform the necessary procedures. An example of a prior art surgical retractor is given in Koros, et al., U.S. Pat. No. 5,167,223, which is incorporated herein by reference.

In beating heart surgery, the surface of the heart must be stabilized to perform surgical procedures such as bypass graphs. Often, a stabilizing fork which is attached to a surgical retractor is used to stabilize the surface of the heart. Because the heart is a pulsatile contractive muscle, the area for which the bypass is to be performed must be stabilized to allow the surgeon to suture the bypass graph to the target artery.

For some procedures, the current stabilizing fork cannot be properly placed to provide sufficient stabilization of the surgical site. Generally this is so where the target artery is located on the back side of the heart and the heart must be rotated and stabilized. Stabilization forks are not designed to rotate or hold the heart in a rotated position. For this reason, in practice, the stabilizer fork is often removed from the surgical retractor by a surgical assistant and held manually in position on the surface of the heart. A problem with this method is that it places another person within the surgical field, thereby limiting the amount of space the surgeon has available to perform the desired surgical procedures. Devices such as the Octopus from CTS, have been designed to hold the heart in a rotated position and provide stabilization of the surgical site, though they are complicated to set up and require constant attention throughout the procedure.

It is desired to have an improved method and apparatus for positioning and stabilizing the heart during heart surgery.

The present invention provides apparatus systems and methods which enable heart surgery on all vessels of the heart, but especially on the less accessible lateral and posterior vessels of the heart.

In one embodiment the present invention comprises a stabilizing apparatus that allows for a stabilizing element to apply force from inside the surgical space. In a preferred embodiment, a support is connected to a surgical retractor and positioned within the surgical space. A jack connected to the support is extended so that a stabilizing element at the end of the jack can contact the heart with a sideways, rather than a downward, force on the heart. This provides sufficient stabilizing force for lateral and posterior vessels of the heart.

Another embodiment of the present invention comprises an elastic band that wraps around the heart. Lines attached to the band can be manipulated to maneuver and rotate the heart so as to provide surgical access to the lateral and posterior vessels of the heart. In one embodiment, the lines can be sent to a rotatable assembly to maneuver the band.

Another embodiment of the present invention comprises fingers that can be attached to the bottom of a blade on a retractor arm. The fingers are attached so that they can rotate outward. These fingers can be used to manipulate the heart during heart surgery.

FIG. 1 is a side view of a stabilizer apparatus of the present invention.

FIG. 2 is a top view of the stabilizer apparatus of FIG. 1.

FIG. 3 is a cross-sectional view of a connector portion of the stabilizer apparatus of FIG. 1.

FIG. 4 is a partial view of the stabilizer apparatus of FIG. 1 showing the support, the arms, and the driving means.

FIG. 5 is a partial cross-sectional view of the stabilizing apparatus of FIG. 1 showing an arm slidably attached to the support.

FIG. 6 is a perspective view of a heart supporting apparatus of the present invention.

FIG. 7 is a view of the arms of the supporting apparatus of FIG. 6.

FIG. 8 is a view of the multi-arm portion of a heart supporting apparatus with a flexible mesh positioned between the arms.

FIGS. 9-11 are cross-sectional views illustrating the connection of the base and multi-arm portion of the heart supporting apparatus.

FIG. 12 is a diagram illustrating the positioning of the heart using the heart supporting apparatus of FIG. 6.

FIGS. 13 and 14 are diagrams illustrating a band with attached lines to rotate the heart.

FIGS. 15A-C are diagrams illustrating the rotatable assembly for use with the apparatus of FIGS. 13 and 14.

FIG. 16 is a front view of a retractor arm showing fingers for manipulating the heart.

FIG. 17 is a side view of the retractor arm with fingers of FIG. 16.

FIG. 18 is a diagram illustrating the positioning of the heart with the fingers attached to the retractor arm.

FIG. 19 is a diagram of an alternate embodiment of a band with straps for manipulating the heart.

FIGS. 20 and 21 are diagrams illustrating a web for attaching to the heart.

FIG. 22 is diagram of a flexible line with teeth.

FIG. 23 is a diagram of a locking mechanism.

FIGS.1-5 illustrate a stabilizer apparatus 20 that can be used to apply pressure on portions of the heart during a heart operation.

The stabilizer apparatus 20 is adapted to detachably attach to a surgical retractor. The clamping mechanism 24 at the proximal end of the support 22 comprises first and second arms 24a and 24b. First arm 24a is integrally affixed to vertical support member 22 of the stabilizer apparatus 20. Second arm 24b is slidably affixed to vertical support member 22. Second arm 24b moves proximally and distally with respect to first arm 24a. In a preferred embodiment, the second arm 24b is disposed within channel 22a of support 22 as illustrated in FIG. 5, and displaced by screw mechanism 26 as illustrated in FIG. 3.

During use, stabilizer apparatus 20 is clamped to a surgical retractor external to the surgical cavity. The distal end of the stabilizer apparatus is positioned within the surgical cavity. As illustrated in FIGS. 1-5 stabilizer apparatus can stabilize the surface of the heart during a surgical procedure. Looking at FIGS. 1 and 2, jack 28 is disposed adjacent to the distal end of support 22. Stabilization mechanism consists of guide rods 30 and 32, a screw 34 for driving guide rods 30 and 32, scissor assemblies 33 and 35, base 37, and stabilizing element 36. The driving means, screw 34, is rotated either clockwise or counterclockwise to displace guide rods 33 and 35. As guide rods 33 and 35 are displaced about a vertical plane, scissor assembly 33 and 35 moves within a horizontal plane perpendicular to the vertical plane in which the driving mechanism is disposed. The distal end of the scissor assembly contains a base 37 for attaching a stabilization element 36.

The stabilization element 36 may be in the form of a stabilizer fork with 2 arms. Alternately, the stabilization element 36 may be formed in many different shapes, such as, closed loops, square, or other geometric shapes.

The advantage of the stabilizing apparatus of the present invention is that the stabilizing force can be provided sideways in the surgical cavity rather than downwards into the surgical cavity. In prior systems an adequate stabilizing force can not be supplied when the surgical site is not on top of the heart when the heart is rotated. The stabilizing forks tend to slip off of the side of the heart. In the present invention, the stabilizing force will be substantially perpendicular to the side of the heart. Thus the stabilizing element will not slip off of the heart.

As illustrated in FIGS. 6-12, in one embodiment of the present invention, a tripod stabilizer 50 is adapted to be placed within the surgical site to stabilize and hold an organ in a translated position. As illustrated in FIGS. 6-8 tripod stabilizer consists of first and second bodies. The bodies are a base 52 and multi-arm portion 54. The base 52 and multi-arm portion 50 are preferably made of least 3 movable arms. In use the patients organ is moved and held while tripod stabilizer is placed in a desired position. The arms on first and second end of tripod stabilizer are moved into a desired pattern to for supporting the organ. As illustrated in FIG. 8 a flexible mesh 50 may be disposed between the arms to provide further support and to limit the movement of the flexible arms. The first and second end of tripod stabilizer move in relation to each other. As illustrated in FIG. 9, in one embodiment the proximal end of one of the tripods is adapted to receive the distal end of the other tripod. As illustrated in FIG. 9, one tripod end 60 is inserted into another tripod end 62, serrated teeth 60a and 62a on each respective body engage, thereby the overall length of the assembly 50 may be adjusted as necessary.

A alternate embodiment is illustrated in FIGS. 10-11. Tripod end 62 is generally hollow and has a tapered inner surface. A locking collar 64 is disposed adjacent the tripod end 62'. The exterior surface of the second body contains threads which engage the threaded locking collar 64. In use the tripod end 60' is inserted into the tripod end 62' and the threaded locking collar 64 is advanced over the threads to lock tripod end 60' into position.

As illustrated in FIG. 12 tripod stabilizer 50 can be used to support and stabilize a region of the heart to allow the physician to perform a surgical procedure on the desired area.

FIGS. 13-15 illustrate a device for rotating and supporting the heart while performing heart surgery. A band 70 is placed about the circumference of the heart. This band 70 is preferably elastic. Flexible lines 72 and 74 are attached to the band disposed about the heart. Line 74 is preferably attached as far away from the rotating device 76 so that you can obtain maximum rotation of the heart while performing the surgery. The proximal end of the line 74 is attached to the rotating device 76. As illustrated in FIG. 15A rotating device 76 preferably comprises a rotatable rod 76a which the lines can wrap around when the rod 76a is rotated.

The lines 72 and 74 are placed on the band 70 in a position away from the rotating devices 76 and 78. As illustrated in FIG. 14., the lines are tightened by rotating rod 76a in rotation device 76.

The means for rotating the heart may be moved about the retractor depending upon the axis of desired rotation. Further the band disposed about the heart may not be necessary. Instead sutures can be placed through the exterior surface of the heart muscle thereby eliminating the requirement of placing a band around the heart.

FIG. 19 shows an alternate embodiment in which a band 80 is connected to straps 82. The band 80 is wrapped around a portion of the heart. In one embodiment the band 80 is wrapped around the tip or apex of the heart.

The straps 82 in one embodiment use microhooks or are adapted to receive microhooks, such as in a velcro system, so that the straps can be secured to position band 80 and thus the heart.

As shown in FIGS. 20 and 21, an alternative embodiment to placing a band around the heart, is to place a webbed or strapped net around the apex of the heart. Apparatus 98 includes web 100 and lines 102. Lines 102 are preferably flexible and can be attached to the rotating device 76 on the surgical retractor. The webbing or netting can be cut away if it covers the desired surgical site. The web is preferably designed so that if a portion is cut from the netting, the cut will not expand.

As shown in FIGS. 22-24, a further design for the flexible lines and locking mechanism is a slip lock mechanism. Flexible lines 104 includes a plurality of raised cross-members 106 spaced along its length, each cross-member being in the shape of a ratchet tooth. Locking mechanism 108 includes a strap accepting channel 110 having an angled locking face 112 for engaging with one of the raised cross members 106. In use, after the proximal end of the flexible strap 104 is inserted into locking members and the insertion force is relaxed, the force on the flexible line 104 by virtue of its configuration causes one of the raised cross-members to abut against the angled locking face 112, to lock the flexible strap in place. The angled locking face 112 may be a flexible tooth that allows the strap to move if sufficient force is applied. Alternately, the flexible tooth may be spring loaded so that it can deflect.

As illustrated in FIGS. 16-18 a retractor arm 90 includes a blade 90a. When the retractor is used to spread and hold open the patients sternum, the blade 90a is placed against the patient's sternum and ribs and within the chest cavity. During surgical procedures such as heart surgery, it is desirable to support and stabilize the heart in order to perform coronary artery graph anastomosis or other procedures. The present embodiment provides a means for supporting the heart during surgical procedures. A series of flexible, malleable fingers 92 are displaced along the distal end of the retractor blade. When it is desired to support an area on the heart to perform, an anastomosis or to hold the heart in a displaced position the finger(s) 92 are displaced from resting position and moved into a desired support position, or the finger(s) 92 may be slidably attached to the distal end of the retractor blade. Therefore when it is desired to displace the heart from resting position finger(s) 92 may be moved into a desired position adjacent to the surface of the heart.

The distal end of the fingers may be formed with different geometric shapes, the ends may be blunt, rounded, or a combination of geometric shapes as illustrated in FIG. 17. Fingers have been positioned on a surgical retractor in the past but typically these fingers have been positioned on top of the retractor arm to hold skin away from the surgical field. By attaching fingers 92 at the bottom of the blade 90a the fingers can be used to manipulate the heart's position.

Beating heart bypass surgery is desirable because it can avoid the necessity of placing the patient on a full cardio-pulmonary bypass (CPB) system. This application describes methods and apparatuses to manipulate and stabilize the heart so as to provide surgical access to posterior heart vessels which may be useful for beating heart surgery.

The application "Apparatus And Methods For Beating Heart Bypass Surgery", Ser. No. 09/079836 filed May 15, 1998, which is incorporated herein by reference, describes pump and cannula systems to enable safe beating heart surgery on lateral and posterior blood vessels, as well as anterior blood vessels, without the necessity of using CPB. The systems of that application describe providing support for primarily the right side of the heart by internal cannulation in order to prevent the collapse of the right side of the heart and to maintain adequate pulmonary blood flow from the beating heart. This allows the methods and apparatus of the present invention to manipulate and stabilize the heart so as to provide surgical access to the anterior, lateral and posterior heart vessels during beating heart surgery.

While the present invention has been described with reference to the aforementioned application, this description of the preferred embodiment and method is not meant to be construed in a limiting sense. It should be understood that all aspects of the present invention are not limited to the specific depictions, configurations, or relative proportions set forth herein which depend upon a variety of conditions.

Various modifications in form and detail of the various embodiments of the disclosed invention, as well as other variations of the present invention, will be apparent to a person skilled in the art upon reference to the present disclosure. It is therefore contemplated that all attendant claims shall cover any such modifications or variations of the described embodiments as following within the true spirit and scope of the present invention.

Kanz, William Russell, Aboul-Hosn, Walid N., Guidera, Michael, Milson, Richard

Patent Priority Assignee Title
10029037, Apr 15 2014 THORATEC LLC; TC1 LLC Sensors for catheter pumps
10039872, May 14 2012 TC1 LLC Impeller for catheter pump
10071192, Mar 15 2013 TC1 LLP Catheter pump assembly including a stator
10086121, Jul 03 2012 TC1 LLC Catheter pump
10105475, Apr 15 2014 TC1 LLC Catheter pump introducer systems and methods
10117980, May 14 2012 THORATEC LLC; TC1 LLC Distal bearing support
10149932, Mar 23 2006 The Penn State Research Foundation; TC1 LLC Heart assist device with expandable impeller pump
10215187, Sep 17 2004 THORATEC LLC; TC1 LLC Expandable impeller pump
10238783, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10279095, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10300185, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10300186, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10322218, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10328191, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10357598, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
10449279, Aug 18 2014 TC1 LLC Guide features for percutaneous catheter pump
10525178, Mar 15 2013 TC1 LLC Catheter pump assembly including a stator
10576192, Apr 15 2014 TC1 LLC Catheter pump with access ports
10576193, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
10583232, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
10632241, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
10709829, Apr 15 2014 TC1 LLC Catheter pump introducer systems and methods
10709830, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
10737005, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
10765789, May 14 2012 TC1 LLC Impeller for catheter pump
10786610, Mar 15 2013 TC1 LLC Catheter pump assembly including a stator
10864308, Apr 15 2014 TC1 LLC Sensors for catheter pumps
10864309, Mar 23 2006 The Penn State Research Foundation; TCI LLC Heart assist device with expandable impeller pump
10960116, Jan 06 2011 TCI LLC; THE PENNS STATE RESEARCH FOUNDATION Percutaneous heart pump
11033728, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
11045638, May 14 2012 TC1 LLC Sheath system for catheter pump
11058865, Jul 03 2012 TC1 LLC Catheter pump
11077294, Mar 13 2013 TC1 LLC Sheath assembly for catheter pump
11160970, Jul 21 2016 TC1 LLC Fluid seals for catheter pump motor assembly
11173297, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
11219756, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
11229786, May 14 2012 TC1 LLC Impeller for catheter pump
11260213, May 14 2012 TC1 LLC Impeller for catheter pump
11311712, May 14 2012 TC1 LLC Impeller for catheter pump
11331470, Apr 15 2014 TC1 LLC Catheter pump with access ports
11357967, May 14 2012 TC1 LLC Impeller for catheter pump
11428236, Sep 17 2004 TC1 LLC; The Penn State Research Foundation Expandable impeller pump
11434921, Sep 17 2004 TC1 LLC; The Penn State Research Foundation Expandable impeller pump
11491322, Jul 21 2016 TC1 LLC Gas-filled chamber for catheter pump motor assembly
11497896, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
11547845, Mar 13 2013 TC1 LLC Fluid handling system
11633586, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
11654276, Jul 03 2012 TC1 LLC Catheter pump
11660441, Jul 03 2012 TC1 LLC Catheter pump
11708833, Mar 23 2006 The Penn State Research Foundation; TC1 LLC Heart assist device with expandable impeller pump
11759612, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
11786720, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
11833342, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
11850414, Mar 13 2013 TC1 LLC Fluid handling system
11911579, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
6558319, Sep 30 1998 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Heart stabilizer apparatus
6685627, Oct 09 1998 Modification of properties and geometry of heart tissue to influence heart function
6695769, Sep 25 2001 The Foundry, LLC Passive ventricular support devices and methods of using them
6709418, Jun 18 1999 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Apparatus and methods for entering cavities of the body
6814713, Apr 25 2001 Boston Scientific Scimed, Inc Systems for performing minimally invasive cardiac medical procedures
6858001, Jul 11 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Single port cardiac support apparatus
6926662, Dec 23 1998 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Left and right side heart support
6935344, Sep 19 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Methods and systems for providing right and/or left heart support during cardiac surgery
6969379, Aug 27 1998 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Intravascular cannulation apparatus and methods of use
6974436, Sep 19 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Integrated pump and cannula system and related methods
6976996, Jul 11 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Transport pump and organ stabilization apparatus including related methods
7022100, Sep 03 1999 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Guidable intravascular blood pump and related methods
7060023, Sep 25 2001 The Foundry, LLC Pericardium reinforcing devices and methods of using them
7090659, Jul 11 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Apparatus and methods for entering cavities of the body
7182727, Jul 11 1997 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Single port cardiac support apparatus
7354396, Sep 25 2001 The Foundry, LLC Passive ventricular support devices and methods of using them
7381179, May 15 1998 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Pulmonary and circulatory blood flow support devices and methods for heart surgery procedures
7390293, Oct 09 1998 Modification of properties and geometry of heart tissue to influence function
7720266, Aug 26 2005 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasound image enhancement and speckle mitigation method
7731675, Sep 03 1999 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Guidable intravascular blood pump and related methods
7785246, Dec 23 1998 MAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATION Left and right side heart support
7840054, Aug 26 2005 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasound image enhancement and speckle mitigation method
7844093, Aug 26 2005 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasound image enhancement and speckle mitigation method
7961929, Aug 26 2005 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasound image enhancement and speckle mitigation method
8376707, Sep 17 2004 TC1 LLC; THORATEC LLC Expandable impeller pump
8485961, Jan 05 2011 THORATEC LLC; TC1 LLC Impeller housing for percutaneous heart pump
8535211, Jul 01 2009 THORATEC LLC; TC1 LLC Blood pump with expandable cannula
8540615, Dec 23 1998 MAQUET CARDIOVASCULAR LLC Left and right side heart support
8591393, Jan 06 2011 THORATEC LLC; TC1 LLC Catheter pump
8597170, Jan 05 2011 THORATEC LLC; TC1 LLC Catheter pump
8684904, Jul 01 2009 Thoratec Corporation; The Penn State Research Foundation Blood pump with expandable cannula
8715156, Oct 09 1998 Modification of properties and geometry of heart tissue to influence function
8721517, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
8834344, Dec 23 1998 MAQUET CARDIOVASCULAR LLC Left and right side heart support
8888728, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
8992163, Sep 17 2004 Thoratec Corporation; The Penn State Research Foundation Expandable impeller pump
9067007, Jul 03 2012 Thoratec Corporation Motor assembly for catheter pump
9138518, Jan 06 2011 Tubemaster, Inc Percutaneous heart pump
9308302, Mar 15 2013 THORATEC LLC; TC1 LLC Catheter pump assembly including a stator
9327067, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
9327068, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
9358329, Jul 03 2012 Thoratec Corporation Catheter pump
9364592, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9364593, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9381288, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
9421311, Jul 03 2012 THORATEC LLC; TC1 LLC Motor assembly for catheter pump
9446179, May 14 2012 THORATEC LLC; TC1 LLC Distal bearing support
9545468, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
9561314, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
9597437, Sep 03 1999 MAQUET CARDIOVASCULAR LLC Guidable intravascular blood pump and related methods
9675738, Jan 22 2015 TC1 LLC Attachment mechanisms for motor of catheter pump
9675739, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
9675740, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
9717833, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9770543, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
9789238, Sep 03 1999 Maquet Cardiovascular, LLC Guidable intravascular blood pump and related methods
9827356, Apr 15 2014 THORATEC LLC; TC1 LLC Catheter pump with access ports
9872947, May 14 2012 TC1 LLC Sheath system for catheter pump
9907890, Apr 16 2015 THORATEC LLC; TC1 LLC Catheter pump with positioning brace
9962475, Jan 06 2011 THORATEC LLC; TC1 LLC Percutaneous heart pump
9987404, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
Patent Priority Assignee Title
4492229, Sep 03 1982 Technology Holding Company II Suture guide holder
4536893, Mar 03 1982 Implant device for substaining the activity of the myocardium
4622955, Sep 05 1985 Surgical retractor for dissection of internal mammary artery
4690134, Jul 01 1985 Ventricular assist device
5131905, Jul 16 1990 External cardiac assist device
5167223, Sep 08 1989 Heart valve retractor and sternum spreader surgical instrument
5702343, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
5964699, Jan 22 1999 Rultract, Inc.; RULTRACT, INC Surgical support apparatus with a Z-shape rake plate
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 30 1998A-Med Systems, Inc.(assignment on the face of the patent)
Nov 12 1998KANZ, WILLIAM RUSSELLA-MED SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0096420055 pdf
Nov 13 1998ABOUL-HOSN, WALID N A-MED SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0096420055 pdf
Nov 13 1998GUIDERA, MICHAELA-MED SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0096420055 pdf
Nov 13 1998MILSON, RICHARDA-MED SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0096420055 pdf
Jul 08 2005A-MED SYSTEMS, INC Guidant CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0162740961 pdf
Jan 02 2008GUIDANT CORPORATION, AN INDIANA CORPORATIONMAQUET CARDIOVASCULAR, LLC, A DELAWARE CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0209860839 pdf
Date Maintenance Fee Events
Dec 08 2004REM: Maintenance Fee Reminder Mailed.
May 23 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 22 20044 years fee payment window open
Nov 22 20046 months grace period start (w surcharge)
May 22 2005patent expiry (for year 4)
May 22 20072 years to revive unintentionally abandoned end. (for year 4)
May 22 20088 years fee payment window open
Nov 22 20086 months grace period start (w surcharge)
May 22 2009patent expiry (for year 8)
May 22 20112 years to revive unintentionally abandoned end. (for year 8)
May 22 201212 years fee payment window open
Nov 22 20126 months grace period start (w surcharge)
May 22 2013patent expiry (for year 12)
May 22 20152 years to revive unintentionally abandoned end. (for year 12)