A wire grid polarizing beam splitter has a generally parallel arrangement of thin, elongated elements which interact with electromagnetic waves of a source light beam to generally transmit or pass light of one polarization, and reflect light of the other polarization. The arrangement of elements has a throughput greater than approximately 50%, and an extinction greater than approximately 100. In addition, the arrangement of elements has a period less than approximately 0.21 μm, and a width to period ratio of between approximately 0.25 to 0.76. The elements have a thickness of between approximately 0.05 to 0.5 μm.

Patent
   6243199
Priority
Sep 07 1999
Filed
Sep 07 1999
Issued
Jun 05 2001
Expiry
Sep 07 2019
Assg.orig
Entity
Large
150
108
all paid
41. A method for designing a broad band wire grid polarizing beam splitter operable over a desired range of incidence angles and operable over substantially the entire visible spectrum and having a predetermined extinction, the method comprising:
determining the transmission efficiency for the predetermined upper and lower limits of the incidence angles at various element thicknesses using a lower limit of the visible spectrum;
selecting other parameters including at least the period and the width to period ratio;
determining the element thickness at which the transmission efficiency for the upper and lower limits of the incidence angles is the same;
determining the extinction for the determined element thickness at both the upper and lower limits of the incidence angles; and
repeating the above steps while varying at least one of the parameters until the predetermined extinction is reached.
44. A wire grid polarizing beam splitter, comprising:
a generally parallel arrangement of thin, elongated elements configured to be disposed in visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% defined by the product of the fractional amount of one polarization of reflected light with respect to the total reflected light and the fractional amount of another polarization of transmitted light with respect to the total transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50 in either reflection or transmission; and
wherein at least some of the elements have a rounded top.
45. A wire grid polarizing beam splitter, comprising:
a generally parallel arrangement of thin, elongated elements configured to be disposed in visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% defined by the product of the fractional amount of one polarization of reflected light with respect to the total reflected light and the fractional amount of another polarization of transmitted light with respect to the total transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50 in either reflection or transmission; and
wherein at least some of the elements have a sinusoidal-shaped cross-section.
29. A broad band wire grid polarizing beam splitter for efficiently reflecting one polarization of visible light and transmitting another polarization, the beam splitter comprising:
a light source for emitting a source light beam having a wavelength in a range between approximately 0.4 to 0.7 microns;
a generally parallel arrangement of thin, elongated elements disposed in the source light beam, the arrangement being configured and the elements being sized to interact with electromagnetic waves of the source light beam over substantially the entire visible spectrum to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a period less than approximately 0.21 μm;
wherein the elements have a thickness of between approximately 0.05 to 0.5 μm; and
wherein the elements have a width to period ratio of between approximately 0.25 to 0.76.
1. A broad band wire grid polarizing beam splitter for efficiently reflecting one polarization of visible light and transmitting another polarization, the beam splitter comprising:
a generally parallel arrangement of thin, elongated elements disposed in the visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of the visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% over substantially the entire visible spectrum, the throughput being defined by the product of the fractional amount of one polarization of reflected light with respect to the total reflected light and the fractional amount of another polarization of transmitted light with respect to the total transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50 in either reflection or transmission.
43. A wire grid polarizing beam splitter, comprising:
a generally parallel arrangement of thin, elongated elements configured to be disposed in visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% defined by the product of the fractional amount of one polarization of reflected light with respect to the total reflected light and the fractional amount of another polarization of transmitted light with respect to the total transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50 in either reflection or transmission; and
wherein at least some of the elements have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and
wherein the sides form different angles with respect to the base.
16. A broad band wire grid polarizing beam splitter for efficiently reflecting one polarization of visible light and transmitting another polarization, the beam splitter comprising:
a generally parallel arrangement of thin, elongated elements disposed in the visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of the visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% over substantially the entire visible spectrum, the throughput being defined by the product of the fractional amount of one polarization of reflected light with respect to the total amount of reflected light and the fractional amount of another polarization of transmitted light with respect to the total amount of transmitted light;
wherein the arrangement of elements has an extinction greater than approximately 50; and
wherein the arrangement of elements has a period less than approximately 0.21 μm.
46. A wire grid polarizing beam splitter, comprising:
a generally parallel arrangement of thin, elongated elements configured to be disposed in visible light, the arrangement being configured and the elements being sized to interact with electromagnetic waves of visible light to generally (i) transmit light having a polarization oriented perpendicular to a plane that includes at least one of the elements and the direction of the incident light beam, and (ii) reflect light having a polarization oriented in the plane that includes at least one of the elements and the direction of the incident light beam; and
wherein the arrangement of elements has a throughput greater than approximately 50% defined by the product of the fractional amount of one polarization of reflected light with respect to the total reflected light and the fractional amount of another polarization of transmitted light with respect to the total transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50 in either reflection or transmission; and
wherein the elements are formed of silver having optical constant n which is greater than approximately 80 percent of 0.144 at a wavelength of 459.2 nm, greater than approximately 80 percent of 0.120 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 0.140 at a wavelength of 652.6 nm; and
wherein the elements are formed of silver having optical constant k which is greater than approximately 80 percent of 2.56 at a wavelength of 459.2 nm, greater than approximately 80 percent of 3.45 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 4.15 at a wavelength of 652.6 nm.
2. The beam splitter of claim 1, wherein the arrangement of elements reflects at least 67% of one polarization.
3. The beam splitter of claim 1, wherein the arrangement of elements transmits at least 67% of one polarization.
4. The beam splitter of claim 1, wherein the arrangement of elements is oriented at an incident angle between approximately 0 to 80 degrees.
5. The beam splitter of claim 1, wherein the arrangement of elements has a period less than approximately 0.21 μm.
6. The beam splitter of claim 1, wherein the elements have a thickness of between approximately 0.05 to 0.5 μm.
7. The beam splitter of claim 1, wherein the elements have a width to period ratio of between approximately 0.25 to 0.76.
8. The beam splitter of claim 1, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form an angle with respect to the base of between approximately 68 to 112 degrees.
9. The beam splitter of claim 1, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form different angles with respect to the base.
10. The beam splitter of claim 1, wherein the elements each have a rounded top.
11. The beam splitter of claim 1, wherein the elements each have a sinusoidal-shaped cross-section.
12. The beam splitter of claim 1, wherein the elements are formed of aluminum having optical constant n which is greater than approximately 50 percent of 0.618 at a wavelength of 450 nm, greater than approximately 50 percent of 0.958 at a wavelength of 550 nm, and greater than approximately 50 percent of 1.47 at a wavelength of 650 nm.
13. The beam splitter of claim 1, wherein the elements are formed of aluminum having optical constant k which is greater than approximately 50 percent of 5.47 at a wavelength of 450 nm, greater than approximately 50 percent of 6.69 at a wavelength of 550 nm, and greater than approximately 50 percent of 7.79 at a wavelength of 650 nm.
14. The beam splitter of claim 1, wherein the elements are formed of silver having optical constant n which is greater than approximately 80 percent of 0.144 at a wavelength of 459.2 nm, greater than approximately 80 percent of 0.120 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 0.140 at a wavelength of 652.6 nm.
15. The beam splitter of claim 1, wherein the elements are formed of silver having optical constant k which is greater than approximately 80 percent of 2.56 at a wavelength of 459.2 nm, greater than approximately 80 percent of 3.45 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 4.15 at a wavelength of 652.6 nm.
17. The beam splitter of claim 16, wherein the elements have a thickness of between approximately 0.05 to 0.5 μm.
18. The beam splitter of claim 16, wherein the elements have a width to period ratio of between approximately 0.25 to 0.76.
19. The beam splitter of claim 16, wherein the arrangement of elements reflects at least 67% of one polarization.
20. The beam splitter of claim 16, wherein the arrangement of elements transmits at least 67% of one polarization.
21. The beam splitter of claim 16, wherein the arrangement of elements are oriented at an incident angle between approximately 0 to 80 degrees.
22. The beam splitter of claim 16, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form an angle with respect to the base of between approximately 68 to 112 degrees.
23. The beam splitter of claim 16, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form different angles with respect to the base.
24. The beam splitter of claim 16, wherein the elements each have a rounded top.
25. The beam splitter of claim 16, wherein the elements each have a sinusoidal-shaped cross-section.
26. The beam splitter of claim 16, wherein the elements are formed of aluminum having optical constant n which is greater than approximately 50 percent of 0.618 at a wavelength of 450 nm, greater than approximately 50 percent of 0.958 at a wavelength of 550 nm, and greater than approximately 50 percent of 1.47 at a wavelength of 650 nm.
27. The beam splitter of claim 16, wherein the elements are formed of aluminum having optical constant k which is greater than approximately 50 percent of 5.47 at a wavelength of 450 nm, greater than approximately 50 percent of 6.69 at a wavelength of 550 nm, and greater than approximately 50 percent of 7.79 at a wavelength of 650 nm.
28. The beam splitter of claim 16, wherein the elements are formed of silver having optical constants n and k; wherein n is greater than approximately 80 percent of 0.144 at a wavelength of 459.2 nm, greater than approximately 80 percent of 0.120 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 0.140 at a wavelength of 652.6 nm; and wherein k is greater than approximately 80 percent of 2.56 at a wavelength of 459.2 nm, greater than approximately 80 percent of 3.45 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 4.15 at a wavelength of 652.6 nm.
30. The beam splitter of claim 29,
wherein the arrangement of elements has a throughput greater than approximately 50% over substantially the entire visible spectrum, the throughput being defined by the fractional amount of the percent of one polarization of reflected light with respect to the total amount of reflected light and the fractional amount of another polarization of transmitted light with respect to the total amount of transmitted light; and
wherein the arrangement of elements has an extinction greater than approximately 50.
31. The beam splitter of claim 29, wherein the arrangement of elements reflects at least 67% of one polarization.
32. The beam splitter of claim 29, wherein the arrangement of elements transmits at least 67% of one polarization.
33. The beam splitter of claim 29, wherein the arrangement of elements are oriented at an incident angle between approximately 0 to 80 degrees.
34. The beam splitter of claim 29, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form an angle with respect to the base of between approximately 68 to 112 degrees.
35. The beam splitter of claim 29, wherein the elements each have a trapezoidal-shaped cross-section with a base, a top opposite the base, and opposite left and right sides; and wherein the sides form different angles with respect to the base.
36. The beam splitter of claim 29, wherein the elements each have a rounded top.
37. The beam splitter of claim 29, wherein the elements each have a sinusoidal-shaped cross-section.
38. The beam splitter of claim 29, wherein the elements are formed of aluminum having optical constants n and k; wherein n is greater than approximately 50 percent of 0.618 at a wavelength of 450 nm, greater than approximately 50 percent of 0.958 at a wavelength of 550 nm, and greater than approximately 50 percent of 1.47 at a wavelength of 650 nm; and wherein k is greater than approximately 50 percent of 5.47 at a wavelength of 450 nm, greater than approximately 50 percent of 6.69 at a wavelength of 550 nm, and greater than approximately 50 percent of 7.79 at a wavelength of 650 nm.
39. The beam splitter of claim 29, wherein the elements are formed of silver having optical constant n which is greater than approximately 80 percent of 0.144 at a wavelength of 459.2 nm, greater than approximately 80 percent of 0.120 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 0.140 at a wavelength of 652.6 nm.
40. The beam splitter of claim 29, wherein the elements are formed of silver having optical constant k which is greater than approximately 80 percent of 2.56 at a wavelength of 459.2 nm, greater than approximately 80 percent of 3.45 at a wavelength of 563.6 nm, and greater than approximately 80 percent of 4.15 at a wavelength of 652.6 nm.
42. The method of claim 41, further comprising:
determining the transmission efficiency for various different incidence angles within the desired range and for various wavelengths within the visible spectrum; and
repeating the above steps while varying at least one of the parameters until the transmission efficiency is at least 80% and generally similar over the visible spectrum.

1. Field of the Invention

The present invention relates to a beam splitter operable in the visible spectrum which reflects one linear polarization and transmits the other. More particularly, the present invention relates to such a beam splitter which utilizes a wire grid polarizer as the operative optical element. In addition, the present invention relates to the key parameters of the beam splitter to obtain desirable function throughout the visible spectrum.

2. Prior Art

Wire grid polarizers (WGPs) have been used in polarizing optical systems but have not been effectively applied in beam splitters. For example, wire grid polarizers have been developed which operate in the infrared and longer wavelengths.1 Structures with grid spacings or periods as fine as 0.115 μm have been reported.2 Many concepts which enhance the performance of wire grid polarizers have been taught. For example, Garvin3 and Keilmann3 teach ways of improving the performance of wire grid polarizers operating in the infrared at normal incidence. As another example, Tamada teaches the concept of using resonance effects in grating structures to produce a narrow spectral band polarizing element that does not require that the grid spacing be much less than the wavelength of the incident light.5 But a wire grid polarizer that operates over a broad spectral band, e.g. the visible spectrum, requires that the grid spacing be much less than the wavelength of the incident light. One disadvantage with Tamada is that he does not teach a polarizing beam splitter which operates at a given angle and with a given ratio of intensity between the split beams. Tamada, like others, only discusses structures operating near normal incidence.

The concept of using infrared wire grid polarizers at large angles of incidence is occasionally discussed in the literature. For example, Stenkamp measured the transmission of a wire grid polarizer with a period of 100 nm at an angle of incidence of 80°. Stenkamp observed an increase in the extinction ratio at a wavelength of 670 nm. Stenkamp, however, did not measure the reflected radiation intensity, and the data are for only one wavelength.6 As another example, Bird stated that qualitative tests of the effect of oblique incidence showed that the transmittance of the wire grid was nearly independent of oblique incidence up to 30° off-normal,7 in agreement with a careful study by Pursley.8

The Handbook of Optics states that wire grid polarizers can be used in optical systems with high numerical apertures.9 Specifically, Young is cited as finding no decrease in the percent of polarization for a mid-IR (12 μm) polarizer used at angles of incidence from 0° to 45° while transmittance decreased by more than 30% (0.55 to less than 0.40).10

Key grid parameters that can be used to design polarizing beam splitters include period (p), line width (w), line depth or thickness (t), properties (e.g., index of refraction) of the grating material, properties of the substrate material (e.g., index of refraction), angle of incidence, the wavelength of the incident radiation and grating resonance effects, e.g. the Rayleigh resonance. For example, Haggans studied the effect of these parameters on optical beams reflected from the wire grid.11 It appears that most of Haggans calculations are for a 45° angle of incidence and transmission is not considered. As another example, Schnable states that changing the metal material is not very useful since there are only a few exceptions where one can increase the polarization effect compared with chromium for a certain wavelength range.12

In addition, Haidner describes a polarizing reflection grating polarizer that works only at normal incidence and one wavelength (10.6 μm).13

It is desirable to have a wire grid polarizing beam splitter with a high and uniform transmission efficiency across the visible spectrum; a high and uniform reflection efficiency across the visible spectrum; a high transmission and/or reflection extinction across the visible spectrum, a large numerical aperture, e.g., transmission and reflection efficiencies and extinctions must be maintained across an appreciable light cone; and work well with a light cone whose cone angle is as large as 20 to 30°. In order to meet these criteria, a practical design that has uniform performance across the entire visible spectrum must account for and control grating resonance effects such as the Rayleigh resonance. As indicated above, some references discuss some aspects of the grid parameters that affect performance of wire grid polarizers at oblique angles, while other references reveal confusion about the role of these same parameters. None of the references, however, bring together the key concepts necessary to the design of a useful wire grid polarizing beam splitter for imaging applications in the visible spectrum.

The key concepts or physical parameters that must be interrelated and addressed collectively to ensure the desired degree of functionality for a wire grid polarizing beam splitter include: the structure and shape of the grid profile; the height or thickness of the wires or grid elements; orientation of the grid with respect to the polarizations of light; the grid materials; incidence angle; convergence, divergence or cone angle; and the effects of phenomena such as Rayleigh resonance. These concepts must be understood in order to obtain the desired functionality of an effective wire grid polarizing beam splitter.

Therefore, it would be advantageous to develop a beam splitter using a wire grid polarizer for efficiently reflecting one linear polarization and transmitting the other over a broad spectral range. It would also be advantageous to develop such a beam splitter capable of being positioned at a variety of incidence angles so that significant design constraints are not imposed on the optical system, but substantial design flexibility is permitted. It would also be advantageous to develop such a beam splitter which accounts for various important design concepts or parameters, such as wire grid profile, wire grid dimensions, wire grid material, wire grid orientation, wavelength range, incidence angle, cone angle, Rayleigh resonance effects, etc. It would also be advantageous to develop such a beam splitter with a large acceptance angle capable of accepting relatively divergent light.

1. H. Hertz, Electric Waves (Macmillan and Company, Ltd., London, 1893) p.177.; G. R. Bird and M. Parrish, Jr., "The Wire Grid as a Near-Infrared Polarizer," J. Opt. Soc. Am. 50, pp.886-891, 1960.

2. G. J. Sonek, D. K. Wanger, and J. M. Ballantyne, Appl. Opt. 22, pp. 1270-1272, 1983.

3. Garvin, U.S. Pat. No. 4,289,381

4. Keilmann, U.S. Pat. No. 5,177,635

5. Tamada, U.S. Pat. No. 5,748,368; and H. Tamada, et al., "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band," Optics Letters, 22, No. 6, pp. 410-421, 1996)

6. B. Stenkamp, et al., "Grid polarizer for the visible spectral region," SPIE, 2213, pp. 288-296 (1994)

7. G. R. Bird and M. Parrish, Jr., "The Wire Grid as a Near-Infrared Polarizer," J. Opt. Soc. Am., 50, pp. 886-891 (1960)

8. W. K. Pursley, Doctoral thesis, University of Michigan, (1956).

9. Michael Bass, Editor in Chief, The Handbook of Optics, Volume II, p. 3.34, McGraw-Hill, Inc., New York (1995)

10. J. B. Young, et al., Appl. Opt. 4, pp. 1023-1026 (1965)

11. C. W. Haggans, et al., "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Optics, 40, pp. 675-686 (1993)

12. B. Schnable, et al. "Study on polarizing visible light by subwavelength-period metal-stripe gratings" Opt. Eng. 38(2), pp. 220-226 (1999)

13. H. Haidner, et al., "Polarizing reflection grating beamsplitter for 10.6-μm wavelength," Opt. Eng., 32(8), 1860-1865 (1993)

It is an object of the present invention to provide a beam splitter device operable in the visible spectrum for reflecting one polarization of visible light and transmitting the other.

It is another object of the present invention to provide such a beam splitter device combining various design parameters or concepts, such as wire grid profile, wire grid dimensions, wire grid material, wire grid orientation, wavelength range, incidence angle, cone angle, and Rayleigh resonance effects, in combination to provide for effective and efficient performance.

It is yet another object of the present invention to provide such a beam splitter device capable of being positioned at a variety of incidence angles, permitting increased design flexibility.

It is yet another object of the present invention to provide such a beam splitter device with a large acceptance angle capable of accepting relatively divergent light.

It is a further object of the present invention to provide such a beam splitter device for use in image projection systems, light projection systems, and/or display systems.

These and other objects and advantages of the present invention are realized in a wire-grid polarizing beam splitter having a generally parallel arrangement of thin, elongated elements. The arrangement is configured and the elements are sized to interact with electromagnetic waves of the source light beam to generally transmit or pass light of one polarization, and reflect light of the other polarization. Light having a polarization oriented perpendicular to a plane that includes the elements and the direction of the incident light beam is transmitted, while light having a polarization oriented parallel to the plane that includes at least one of the elements and the direction of the incident light beam is reflected.

The arrangement of elements advantageously has a throughput greater than approximately 50% defined by the product of the fraction of reflected light and the fraction of transmitted light. In addition, the arrangement of elements advantageously has an extinction greater than approximately 50. Thus, the arrangement of elements either reflects at least 67% of one polarization and/or transmits at least 67% of the other polarization. Furthermore, the arrangement of elements advantageously are oriented at an incident angle between approximately 0 to 80 degrees.

The arrangement of elements advantageously has a period less than approximately 0.21 μm, and a width to period ratio of between approximately 0.25 to 0.76. In addition, the elements have a thickness of between approximately 0.04 to 0.5 μm. Furthermore, the elements each have a trapezoidal-shaped cross-section with sides forming an angle with respect to the base between 68 and 112 degrees.

A method for designing and producing a wire grid polarizing beam splitter operable over a desired range of incidence angles with a generally similar performance over the visible spectrum and having a predetermined extinction includes first determining the transmission efficiency for the predetermined upper and lower limits of the incidence angles at various element thicknesses using a lower limit of the visible spectrum. Other critical parameters are selected including at least the period and the width to period ratio. The element thickness is calculated at which the transmission efficiency for the upper and lower limits of the incidence angles is sufficiently the same. The extinction is calculated for the determined element thickness at both the upper and lower limits of the incidence angles. If calculated performance is acceptable, this design is adequate. If calculated performance is not acceptable, the above process is repeated while varying at least one of the parameters until the predetermined extinction is reached. The transmission efficiency may be determined for various different incidence angles within the desired range and for various wavelengths within the visible spectrum. The process may be repeated while varying at least one of the parameters until the desired beam splitter efficiency is achieved, and is generally similar over the visible spectrum.

These and other objects, features, advantages and alternative aspects of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description taken in combination with the accompanying drawings.

FIG. 1 is a schematic view of the general operation of a display apparatus using a wire grid polarizing beam splitter of the present invention.

FIG. 2a is a perspective view of a preferred embodiment of the wire grid polarizing beam splitter of the present invention.

FIG. 2b is a cross sectional side view of a preferred embodiment of the wire grid polarizing beam splitter of the present invention.

FIG. 2c is a cross sectional side view of an alternative embodiment of a wire grid polarizing beam splitter of the present invention.

FIG. 2d is a cross sectional side view of an alternative embodiment of a wire grid polarizing beam splitter of the present invention.

FIG. 3a is a graphical plot showing efficiency of S polarization reflection and P polarization transmission at wavelengths of 450 nm, 550 nm, and 650 nm as a function of the grid period.

FIG. 3b is a graphical plot showing the throughput (Rs Tp) efficiency of the wire-grid beamsplitter as a function of the grid period for 450 nm, 550 nm, and 650 nm.

FIG. 3c is a graphical plot showing the extinction of the wire-grid polarizer as a function of the grid period for 450 nm, 550 nm, and 650 nm.

FIG. 3d is a graphical plot showing the wavelength at which Rayleigh's resonance occurs as a function of the grid period for incidence angles of 0°, 30°, 45°, and 60°.

FIG. 3e is a graphical plot showing the maximum useful period based on the onset of Rayleigh's resonance as a function of the angle of incidence.

FIG. 4a is a graphical plot showing the efficiencies of P polarization transmission and S polarization reflection as a function of the grid element height for 450 nm, 550 nm, and 650 nm incident light.

FIG. 4b is a graphical plot showing the throughput (Rs Tp) as a function of the grid element height.

FIG. 4c is a graphical plot showing the extinction of the wire-grid polarizer as a function of the grid element height.

FIG. 5a is a graphical plot showing the S polarization reflection and the P polarization transmission as a function of the width to period ratio or line-space ratio for wavelengths of 450 nm, 550 nm, and 650 nm.

FIG. 5b is a graphical plot showing the throughput (Rs Tp) as a function of the width to period ratio or line-space ratio for wavelengths of 450 nm, 550 nm, and 650 nm.

FIG. 5c is a graphical plot showing the extinction as a function of the width to period ratio or line-space ratio for wavelengths of 450 nm, 550 nm, and 650 nm.

FIG. 6a is a graphical plot showing the throughput (Rs Tp) as a function of wavelength for a wire-grid polarizer with trapezoidal grid elements.

FIG. 6b is a graphical plot showing the extinction as a function of wavelength for a wire-grid polarizer with trapezoidal grid elements.

FIG. 7a is a graphical plot showing the throughput (Rs Tp) as a function of the upper corner radius for the grid elements at 450 nm, 550 nm, and 650 nm.

FIG. 7b is a graphical plot showing the extinction as a function of the upper corner radius for the grid elements at 450 nm, 550 nm, and 650 nm.

FIG. 7c is a graphical plot showing the throughput (Rs Tp) as a function of wavelength for a grid with elements of sinusoidal cross-section.

FIG. 7d is a graphical plot showing the extinction as a function of wavelength for a grid with elements of sinusoidal cross-section.

FIG. 8a is a graphical plot of P polarization transmission at incident angles of 30° and 60° as a function of the grid element height.

FIG. 8b is a graphical plot of transmission extinction at incident angles of 30° and 60° as a function of the grid element height.

FIG. 8c is a graphical plot of P polarization transmission at incident angles of 30° and 60° as a function of the grid element height.

FIG. 8d is a graphical plot of transmission extinction at incident angles of 30° and 60° as a function of the grid element height.

FIG. 8e is a graphical plot of P polarization transmission of the optimized design.

Reference will now be made to the drawings in which the various elements of the present invention will be given numerical designations and in which the invention will be discussed so as to enable one skilled in the art to make and use the invention.

The preferred embodiment of a wire grid polarizing beam splitter is suitable for use in optical systems, such as that outlined in FIG. 1. As illustrated in FIG. 1, a display optical train of an image projection system, indicated generally at 10, is shown with a wire grid polarizer as the beam splitter, indicated generally at 14. The image projection system 10 may incorporate a light source 20, light gathering optics 22, the wire-grid polarizing beam splitter 14, the projection optics 24, and a display screen of some type 25, the image generation liquid crystal array or light valve 26, and imaging or relay optics 27. It is of course understood that other arrangements incorporating a wire-grid polarizing beam splitter are possible.

For the optical geometry shown in FIG. 1, the wire-grid PBS 14 must have high reflectivity (Rs) for the desired polarization, such as s-polarization, from the light source 20, and it must have high transmissivity (Tp) of the opposite polarization, such as p-polarization, from the liquid crystal array 26. The efficiency of the optical system is proportional to the product of these two, Rs Tp, so deficiency in one factor can be compensated to some extent by improvement in the other, the goal being to produce the largest product Rs Tp, possible. For further discussion, the term throughput will be used to refer to the product Rs Tp.

Another important performance factor is contrast in the image, as defined by the ratio of intensities of light to dark pixels. This is governed to a large extent by low leakage of the undesired polarization, but in this case the product of the reflection extinction and the transmission extinction is not the important parameter, because the image generating array 26 which lays in sequence after the first encounter with the beam splitter 14, but before the second, also takes part in the production of the image contrast. Therefore, the final system contrast will depend on the light valve performance as well as the polarizer extinction. It has been found that a reflection and transmission extinction of 50 is a reasonably useful minimum for systems such as those in FIG. 1 which do not have additional polarizer elements.

There are two different functions fulfilled by the beam splitter 14. The first is the preparation of the polarized light before it strikes the liquid crystal array 26, or other suitable image generation device. The requirement here is that the light be sufficiently well polarized that any variations in the polarization of the light beam created by the light valve 26 can be adequately detected or analyzed by the beam splitter 14, such that the final image will meet the desired level of performance. Similarly, the second function of the beam splitter 14 is to analyze light which is directed by the light valve 26 back to the beam splitter 14 so that the desired system contrast performance is achieved.

The wire grid polarizing beam splitter 14 of the preferred embodiment is therefore designed to maximize the throughput (Rs Tp) while simultaneously delivering the desired polarization extinction for both the reflected beam R and the transmitted beam T. There are key parameters, or physical characteristics of the invention which are fundamental in achieving this desired performance level, and will be described below with reference to FIGS. 2a and 2b.

Referring to FIGS. 2a and 2b, the polarizing beam splitter 14 has a grid 30, or an array of parallel, conductive elements, disposed on a substrate 40. The polarizing beam splitter 14 is disposed in the light such that the light beam is incident on the grid at an incident angle θ. The key physical parameters of the wire grid beam splitter 14 which must be optimized as a group in order to achieve the level of performance required include: the period p of the wire grid 30, the height or thickness t of the grid elements 30, the width w of the grids elements 30, and the slope of the grid elements sides α.

In addition to producing an array of elongated elements with the proper relationship between these dimensions, it is important to compose the elements of the proper materials with the proper optical properties. For beam splitters which must function across the visible spectrum, aluminum or silver are the preferred materials. It is important that the aluminum or silver used be of the best optical quality. Care must be taken to prepare the aluminum or silver so that it will have optical qualities (such as optical constants n and k) substantially similar to those tabulated in Palik, Handbook of Optical Constants of Solids, Part I, Edward D. Palik, Ed., 1985, pp. 350-357 and 369-406, the original sources cited in Palik, or similar data tables. For example, the desired optical constants for silver are n=0.144 and k=2.56 for a wavelength of 459.2 nm; n=0.120 and k=3.45 for a wavelength of 563.6 nm; and n=0.140 and k=4.15 for a wavelength of 652.6 nm. Similarly, for aluminum, appropriate values are n=0.618 and k=5.47 for a wavelength of 450 nm; n=0.958 and k=6.69 for a wavelength of 550 nm; and n=1.47 and k=7.79 for a wavelength of 650 nm. We have found that aluminum is preferred over silver because of its significantly higher k-values. In particular, we have found that the use of aluminum with either or both of n and k that are not above about 50% of these values will significantly increase the difficulty of producing a beam splitter which will function adequately. If silver is used, either or both of the n and k values must be greater than approximately 80% of the values shown above.

It will be noted in examining FIG. 2b that the general cross-section of the grid elements 30 is trapezoidal or rectangular in nature. This general shape is also a feature of the polarizing beam splitter 14 of the preferred embodiment, but allowance is made for the natural small variations due to manufacturing processes, such as the rounding of corners 50 at the top of the grid elements 30, and fillets 54 at the base of the grid elements 30.

It should be noted that the slope of the grid element sides may be different because introducing a different slope on the left side, versus the right side, of the grid element 30 can be used to advantage to help tune the angular performance of the grid 30 by introducing a directional anisotropy into the grid structure. However, this appears to be a secondary effect.

Alternatively, the general cross-section of the grid elements 30 may be smoothly curved, as shown in FIG. 2c, or sinusoidal in nature, as shown in FIG. 2d. For example, the cross-section of the elements 30 may be similar to a portion of a sine curve, as shown in FIG. 2d. Such a curved or sinusoidal cross-section may be formed by extreme rounding of the corners and fillets at the base of the elements. As another example, the top of the elements may be broadly curved, or the corners extremely rounded, as shown in FIG. 2c.

It should also be noted that the period p of the wire grid 30 must be regular in order to achieve the specular reflection performance required to meet the imaging fidelity requirements of the beam splitter 14 of the preferred embodiment. While it is better to have the grid 30 completely regular and uniform, some applications may have relaxed requirements in which this is not as critical. It is believed, however, that a variation in period p of less than 10% across a meaningful dimension in the image, such as the size of a single character in a textual display, or a few pixels in an image, is required to achieve the necessary performance. Of course, non-imaging applications of wire-grid polarizing beam splitters may have a large tolerance for variation in the period p.

Similarly, reasonable variations across the beam splitter 14 in the other parameters described, such as the width w of the grid elements 30, the grid element height t, the slopes α of the sides, or even the corner 50 rounding RC, and the fillet 54 rounding RF, are also possible without materially affecting the display performance, especially if the beam splitter 14 is not at an image plane, as will often be the case. These variations may even be visible in the finished beam splitter 14 as fringes, variations in transmission efficiency, reflection efficiency, color uniformity, etc. and still provide a useful part for specific applications.

The design goals which must be met by the optimization of these parameters is to produce the best throughput Rs Tp possible, while meeting the contrast requirements of the application. As stated above, the minimum extinction required of the polarizing beam splitter 14 is on the order of 50. It has been found that the minimum required throughput (Rs Tp)of the beam splitter 14 in order to have a valuable product is approximately 50%, which means either or both of Rs and Tp must be above about 67%. Of course, higher performance in both the throughput and the extinction of the beam splitter will be of value and provide a better product. In order to understand how these parameters affect the performance of the wire grid beam splitter, it is necessary to examine the variation in performance produced by each parameter.

Referring to FIGS. 3a-3e, the performance of the wire grid beam splitter 14 is shown with respect to the period p. The grating consists of an array of aluminum wire grid elements with optical constants taken from Paliks on a BK7 glass substrate. The height or thickness t of each aluminum wire grid element is 1,000 Å or 100 nm. The angle of incidence θ is 30°, and the linewidth to period ratio is 0.45. FIG. 3a shows the reflection efficiency of the S-polarization and the transmission efficiency of the P-polarization at wavelengths of 450 nm, 550 nm, and 650 nm as a function of the grating period p.

FIG. 3b shows throughput (Rs Tp)as a function of period p at wavelengths of 450 nm, 550 nm, and 650 nm. The data displayed in FIG. 3b indicates that the period p can be as large as 0.21 μm and still yield a throughput of 50%.

FIG. 3c gives extinction as a function of period p. For the worst case, i.e. the wavelength λ=450 nm, the extinction is greater than 100 with the period p as large as 0.21 μm.

FIG. 3d plots the Rayleigh wavelength, i.e. the wavelength at which a grating resonance occurs (λ=p[ns±sin θ] with ns =1.525) as a function of period p. Again for an incidence angle θ of 30° and a wavelength λ=450 nm, the period p can be as large as 0.21 μm.

FIG. 3e shows the allowable period p as a function of the angle of incidence θ. The maximum useful period is based on the onset of Rayleigh's resonance based on the angle of incidence with a wavelength of 450 nm. The curve indicates that the wire grid polarizer can operate at a large angle of incidence with a period of 0.21 μm or less.

Therefore, FIGS. 3a-3e indicate that a wire grid polarizer as defined by the above parameters must have a period p of less than 0.21 μm to produce a beam splitter which has reasonable performance throughout the visible spectrum. It is of course understood that a larger period beam splitter would be useful in systems which are expected to display less than the full visible spectrum, such as just red, red and green, etc.

Referring now to FIGS. 4a-4c, the performance of the wire grid beam splitter 14 is shown with respect to the element height or thickness t. The polarizer is an array of aluminum wire grid elements with optical properties taken from Paliks on a BK7 glass substrate. The period is 0.15 μm, the line-space ratio is 0.5, and the angle of incidence θ is 60°. FIG. 4a is a plot of the reflection efficiency of the S-polarization and the transmission efficiency of the P-polarization as a function of the element height or thickness t at wavelengths of 450 nm, 550 nm, and 650 nm. Thin film effects are apparent in FIG. 4a, but the P-transmission efficiency remains above 60% for all practical element heights, namely 200 Å to 0.5 μm and above. Of course, different results will occur for materials other than aluminum with different optical properties.

FIG. 4b shows throughput as a function of element height or thickness t at wavelengths of 450 nm, 550 nm, and 650 nm. The throughput is greater than 50% for all practical element heights between 200 Å to 0.5 μm, or 20 nm to 500 nm.

FIG. 4c shows extinction as a function of element height at wavelengths of 450 nm, 550 nm, and 650 nm. An extinction of 50 requires an element height t of at least 500 Å, or 50 nm.

Therefore, FIGS. 4a-4c show that the wire-grid element height t must fall between the ranges of 500 Å and 0.5 μm in order to provide the required performance.

Referring now to FIGS. 5a-5c, the performance of the wire grid beam splitter 14 is shown with respect to the line-space ratio. The polarizer is an array of aluminum wire grid elements with optical properties taken from Paliks on a BK7 glass substrate. The period p is 0.16 μm; the aluminum element height t is 0.13 μm, and the angle of incidence θ is 60°.

FIG. 5a is a plot of the reflection efficiency of the S-polarization and the transmission efficiency of the P-polarization as a function of the linewidth to period ratio (w/p) at wavelengths of 450 nm, 550 nm, and 650 nm. The P-transmission efficiency remains high for a line-space ratio between 0.16 and 0.76.

FIG. 5b shows throughput as a function of linewidth to period ratio for wavelengths of 450 nm, 550 nm, and 650 nm. Good throughput performance is achieved for a linewidth to period ratio between 0.16 and 0.76.

FIG. 5c gives extinction as a function of linewidth to period ratio for wavelengths of 450 nm, 550 nm, and 650 nm. An extinction of 50 throughout the visible spectrum requires this ratio to be at least 0.25. Of course, a beam splitter to be used over larger wavelengths only (red, red-green) may have a ratio less than 0.20.

Therefore, FIGS. 5a-5c indicate that the linewidth to period ratio (w/p) must fall between the ranges of 0.25 and 0.76 in order to provide the required performance.

Referring now to FIGS. 6a and 6b, the performance of the wire grid beam splitter 14 is shown with respect to the cross sectional shape of the elements, namely a trapezoidal cross-section. The polarizer represented in these figures is an array of aluminum wire grid elements with optical properties taken from Palik on a BK7 glass substrate. The period p is 0.16 μm, the angle of incidence θ is 45°, and the height t of the trapezoidal elements are 1,000 Å. The cross sectional area of the wire grid element is the same as for a rectangular wire grid element with a line-space ratio of 0.45.

FIG. 6a shows the throughput for a wire grid array consisting of elements with a trapezoidal cross-section with side walls which make an angle of 68° with respect to the substrate as a function of wavelength λ. Throughput greater than 50% will occur for all wavelengths λ greater than or equal to 415 nm.

FIG. 6b gives extinction for a wire grid array consisting of element with a trapezoidal cross-section with side walls which make an angle of 68° with respect to the substrate as a function of wavelength λ. All wavelengths greater than or equal to 390 nm will have an extinction greater than 50.

Therefore, as shown in FIGS. 6a and 6b, a wire grid element with a trapezoidal cross-section that has a slope angle as low as 68° will provide the required performance. The angle can be from 112°, through 90° (rectangle), to 68° without degrading performance substantially from that shown in FIGS. 6a and 6b.

Referring now to FIGS. 7a and 7b, the performance of the wire grid beam splitter 14 is shown with respect to the radius rc of the corners 50. The polarizer is an array of aluminum wire grid elements with optical properties taken from Palik on a 1737F glass substrate. The period p is 0.16 μm, the aluminum element height t is 0.115 μm, and the angle of incidence θ is 45°.

FIG. 7a shows throughput (Rs Tp) as a function of corner radius for wavelengths of 450 nm, 550 nm, and 650 nm. Good throughput performance, i.e. greater than 50%, is achieved for all radii.

FIG. 7b gives extinction as a function of corner radius for wavelengths of 450 nm, 550 nm, and 650 nm. An extinction greater than 100 is possible for all corner radii.

Referring now to FIGS. 7c and 7d, the performance of the wire grid beam splitter 14 is shown with respect to the cross sectional shape of the elements, namely a sinusoidal cross-section. The polarizer is an array of aluminum wire grid elements with optical properties taken from Palik on a BK7 glass substrate. The wire grid elements have a sinusoidal cross-section with a height t of 0.15 μm. The other parameters are the same as used for 7a, and 7b.

FIG. 7c shows throughput (Rs Tp) as a function of wavelength λ for the sinusoidal cross-section. Good throughput performance, i.e. greater than 50%, is achieved for wavelengths greater than 400 nm.

FIG. 7d gives extinction as a function of wavelength λ for the sinusoidal cross-section. An extinction greater than 50 is possible for wavelengths greater than 400 nm.

Therefore, FIGS. 7a-7d show that the corners of the wire grid element may be rounded, and may even be sinusoidal, if desired, or for ease of manufacture, etc.

The above information has defined in broad terms what the required ranges are for all the parameters of the wire grid beam splitter 14, but it has not defined ways in which these parameters are chosen together to achieve the desired beam splitter performance. The issues of concern are to balance the color performance over angle, the transmission over angle, the extinction over angle, etc. In addition to the broad ranges given above, it is also important to choose what particular parameters from the ranges defined are appropriate for particular applications, and to define some general rules governing how these parameters are chosen.

Referring to FIGS. 8a-8d, a design example is illustrated. The goal is to produce a wire grid polarizing beam splitter that works over an angle of incidence θ ranging from 30° to 60° with a roughly flat response over the visible wavelengths, 450 nm to 650 nm, with an extinction of at least 200 and efficiency or throughput of at least 70%. The design is done by iteration. First, P-transmission as a function of wire grid element height t is calculated for angles of incidence of 30° and 60° using a wavelength of 450 nm. The short wavelength of 450 nm will give the worst case, while longer wavelengths will give better results. From FIG. 5b it is clear that a selection of 0.5 for the width to period ratio will be close to optimum, and that the period should be as small as practical considering other issues such as cost and manufacturing yield. The two calculations are plotted on the same graph. The wire grid element height t at which the two curves cross is found. The extinction as a function of wire grid element height t is now calculated for both angles, and the extinction at the crossover height t is found. If the performance is not satisfactory, one of the critical parameters is changed and the design process repeated. To find the best design, response surface methods, such as those described in A. I. Khuri and J. A. Cornell, Response Surfaces: Design and Analysis, 2nd Ed., Marcel Dekker Inc., NY 1996, may be calculated. When extinction performance is satisfactory, the P-transmission as a function of angle of incidence θ is calculated for three different wavelengths 450 nm, 550 nm, and 650 nm. If the transmission is around 80% and fairly flat across the specified angular range, then the design is complete.

For example, FIG. 8a shows P-transmission as a function of wire grid element height t for a polarizer which is an array of aluminum wire grid elements with optical properties taken from Palik on a BK7 glass substrate. The period p is 0.16 μm, the linewidth to period ration is 0.45, the angle of incidence θ is 30° and 60°, and the wavelength λ is 450 nm. The crossover is about 0.09 μm.

FIG. 8b shows extinction as a function of wire grid element height t for these parameters. At the crossover value of 0.09 μm, the extinction is 86 and 161, respectively, at 30° and 60°. Thus, the performance is not satisfactory. The process is repeated with a line-space ratio of 0.50.

FIG. 8c is the same as FIG. 8a, except that the line-space ratio is changed to 0.5. The crossover is now about 0.10 μm.

FIG. 8d shows extinction as a function of wire grid element height t for the parameters used in FIG. 8c. At the crossover value of 0.10 μm, the extinction is 258 and 484, respectively, at 30° and 60°. Thus, the performance of the polarizer is satisfactory. The results are now checked by calculating the P-transmission as a function of angle of incidence θ for three different wavelengths λ, 450 nm, 550 nm, and 650 nm, using the same parameters used in FIGS. 8c and 8d with a wire grid element height t of 0.100 μm, as shown in FIG. 8e. The transmission is flat over the angular range for 450 nm, while at 550 nm and 650 nm the transmission rises from 80% at 30° to 88% at 60°.

Although efficiency is not shown, it will rise as the angle increases. Thus, referring to FIGS. 8a-8e, a demonstration of a method for designing a wire grid polarizer that has good performance in the visible spectrum is illustrated.

It is to be understood that the described embodiments of the invention are illustrative only, and that modifications thereof may occur to those skilled in the art. For example, the inclusion of the wire grid beam splitter on a substrate with optical power, such that the grid beam splitter is combined with other elements to shrink the number of optics required, reduce the system weight, the system volume, or to achieve other desirable functions. Other alterations will surely occur to those skilled in the art given the significant increase in design flexibility over the prior art that is achieved by the present invention. Accordingly, this invention is not to be regarded as limited to the embodiments disclosed, but is to be limited only as defined by the appended claims herein.

Perkins, Raymond T., Hansen, Douglas P., Gardner, Eric

Patent Priority Assignee Title
10061129, Mar 15 2015 Kessler Optics and Photonics Solutions Ltd. Birefringent ocular for augmented reality imaging
10176961, Feb 08 2016 The Arizona Board of Regents on behalf of the University of Arizona Small portable night vision system
10203511, May 09 2007 CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT Polarization conversion system and method for projecting polarization encoded imagery
10261326, Jan 24 2012 The Arizona Board of Regents on behalf of the University of Arizona; AUGMENTED VISION INC. Compact eye-tracked head-mounted display
10281723, Apr 30 2010 CITIBANK, N A Wide angle and high resolution tiled head-mounted display device
10310321, Jun 21 2012 MAXELL HOLDINGS, LTD ; MAXELL, LTD Optical element, manufacturing method of optical element, and optical device
10319745, Dec 19 2014 Samsung Display Co., Ltd. Display panel having improved brightness and method for fabricating the same
10394036, Oct 18 2012 Arizona Board of Regents on Behalf of the University of Arizona Stereoscopic displays with addressable focus cues
10416452, Apr 20 2009 The Arizona Board of Regents on behalf of the University of Arizona; Beijing Institute of Technology Optical see-through free-form head-mounted display
10469833, Mar 05 2014 The Arizona Board of Regents on behalf of the University of Arizona; The University of Connecticut Wearable 3D augmented reality display with variable focus and/or object recognition
10495859, Jan 22 2008 The Arizona Board of Regents on behalf of the University of Arizona Head-mounted projection display using reflective microdisplays
10593507, Feb 09 2015 Arizona Board of Regents on Behalf of the University of Arizona Small portable night vision system
10598939, Jan 24 2012 Arizona Board of Regents on Behalf of the University of Arizona; AUGMENTED VISION, INC Compact eye-tracked head-mounted display
10598946, Oct 18 2012 The Arizona Board of Regents on behalf of the University of Arizona Stereoscopic displays with addressable focus cues
10606080, Jan 24 2012 The Arizona Board of Regents on behalf of the University of Arizona; AUGMENTED VISION INC. Compact eye-tracked head-mounted display
10739578, Aug 12 2016 The Arizona Board of Regents on behalf of the University of Arizona High-resolution freeform eyepiece design with a large exit pupil
10739611, May 09 2007 RealD Inc. 3D projection system
10805598, Mar 05 2014 The Arizona Board of Regents on behalf of the University of Arizona; The University of Connecticut Wearable 3D lightfield augmented reality display
10809533, Apr 30 2010 Arizona Board of Regents on Behalf of the University of Arizona; Beijing Institute of Technology Wide angle and high resolution tiled head-mounted display device
10926564, Jul 19 2016 Samsung Display Co., Ltd. Method of manufacturing imprint stamp and display apparatus manufactured using the imprint stamp
10935795, Jan 24 2012 Arizona Board of Regents on Behalf of the University of Arizona; AUGMENTED VISION, INC. Compact eye-tracked head-mounted display
10969592, Jan 24 2012 Arizona Board of Regents on Behalf of the University of Arizona; AUGMENTED VISION, INC. Compact eye-tracked head-mounted display
11079596, Sep 14 2009 The Arizona Board of Regents on behalf of the University of Arizona 3-dimensional electro-optical see-through displays
11143948, Sep 29 2006 CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT Polarization conversion systems for stereoscopic projection
11150449, Jan 22 2008 Arizona Board of Regents on Behalf of the University of Arizona Head-mounted projection display using reflective microdisplays
11181746, Jan 24 2012 Arizona Board of Regents on Behalf of the University of Arizona; AUGMENTED VISION, INC Compact eye-tracked head-mounted display
11205556, Feb 09 2015 M S TECHNOLOGIES, L L C Small portable night vision system
11300790, Apr 20 2009 Arizona Board of Regents on Behalf of the University of Arizona; Beijing Institute of Technology Optical see-through free-form head-mounted display
11347036, Oct 18 2012 The Arizona Board of Regents on behalf of the University of Arizona Stereoscopic displays with addressable focus cues
11350079, Mar 05 2014 Arizona Board of Regents on Behalf of the University of Arizona; The University of Connecticut Wearable 3D augmented reality display
11435512, Jul 17 2019 Moxtek, Inc. High index, curved cap wire grid polarizer
11513271, Jul 17 2019 Moxtek, Inc. Reflective wire grid polarizer with transparent cap
11546575, Mar 22 2018 Arizona Board of Regents on Behalf of the University of Arizona Methods of rendering light field images for integral-imaging-based light field display
11592650, Jan 22 2008 Arizona Board of Regents on Behalf of the University of Arizona Head-mounted projection display using reflective microdisplays
11609430, Apr 30 2010 The Arizona Board of Regents on behalf of the University of Arizona; Beijing Institute of Technology Wide angle and high resolution tiled head-mounted display device
11803059, Sep 14 2009 The Arizona Board of Regents on behalf of the University of Arizona 3-dimensional electro-optical see-through displays
6532111, Mar 05 2001 Moxtek, Inc Wire grid polarizer
6563582, Oct 07 1998 Achromatic retarder array for polarization imaging
6585378, Mar 20 2001 Sony Corporation Digital cinema projector
6590695, Feb 26 2002 Eastman Kodak Company Micro-mechanical polarization-based modulator
6665119, Oct 15 2002 Moxtek, Inc Wire grid polarizer
6688750, Jan 22 2002 Nitto Denko Corporation Optical member
6693749, Jan 31 2001 MIND FUSION, LLC Low-observability, wide-field-of-view, situation awareness viewing device
6707595, Feb 26 2002 Eastman Kodak Company Micro-mechanical polarization-based modulator
6714350, Oct 15 2001 Moxtek, Inc Double sided wire grid polarizer
6738127, Apr 24 2003 Eastman Kodak Company LCD-based printing apparatus for printing onto high contrast photosensitive medium
6758565, Mar 20 2003 Eastman Kodak Company Projection apparatus using telecentric optics
6764181, May 18 2001 3M Innovative Properties Company Polarization arrangement
6788461, Oct 15 2002 Moxtek, Inc Wire grid polarizer
6805445, Jun 05 2002 Sony Corporation Projection display using a wire grid polarization beamsplitter with compensator
6812047, Mar 08 2000 Applied Materials, Inc Evaluating a geometric or material property of a multilayered structure
6833953, Mar 29 2001 Seiko Epson Corporation Polarizer and optical device using the polarizer
6839181, Jun 25 2003 Eastman Kodak Company Display apparatus
6844913, Apr 24 2003 Nitto Denko Corporation Optical exposure apparatus for forming an alignment layer
6844971, Oct 15 2001 Moxtek, Inc Double sided wire grid polarizer
6850329, Oct 15 2002 Mitutoyo Corporation Interferometer using integrated imaging array and high-density polarizer array
6877859, Mar 20 2003 Eastman Kodak Company Projection apparatus using telecentric optics
6897926, Jan 07 2002 Sony Corporation Modulation optical system including a compensator conditioning oblique and skew rays
6900866, Jan 07 2002 Sony Corporation Modulation optical system with compensator
6902277, Jan 06 2004 Eastman Kodak Company Housing for a spatial light modulator
6909473, Jan 07 2002 Sony Corporation Display apparatus and method
6911349, Feb 16 2001 Applied Materials, Inc Evaluating sidewall coverage in a semiconductor wafer
6954245, Jan 07 2002 Sony Corporation Display apparatus with two polarization compensators
6982773, Jan 07 2002 Sony Corporation Exposure system for creating a patterned polarization compensator
6988811, Jul 12 2002 Nitto Denko Corporation Optical exposure apparatus and method for aligning a substrate
6992778, Aug 08 2003 Mitutoyo Corporation Method and apparatus for self-calibration of a tunable-source phase shifting interferometer
7023512, Jan 07 2002 Sony Corporation Spatially patterned polarization compensator
7046442, Dec 05 2003 Enplas Corporation Wire grid polarizer
7057737, Aug 29 2003 ONTO INNOVATION, INC Common optical-path testing of high-numerical-aperture wavefronts
7061561, Jan 07 2002 Sony Corporation System for creating a patterned polarization compensator
7064822, Mar 01 2002 Applied Materials, Inc. Evaluating a multi-layered structure for voids
7085051, Mar 29 2001 Seiko Epson Corporation Polarizer and optical device using the polarizer
7088444, Mar 01 2002 Applied Materials, Inc Evaluating a multi-layered structure for voids
7130055, Mar 05 2001 SEMICONDUCTOR PHYSICS LABORATORY, INC Use of coefficient of a power curve to evaluate a semiconductor wafer
7131737, Jun 05 2002 Sony Corporation Housing for mounting a beamsplitter and a spatial light modulator with an output optical path
7184115, Jan 07 2002 Sony Corporation Display apparatus with two polarization compensators
7221420, Jan 07 2002 Sony Corporation Display with a wire grid polarizing beamsplitter
7230717, Aug 28 2003 ONTO INNOVATION, INC Pixelated phase-mask interferometer
7230762, Dec 28 2005 Enplas Corporation Polarization phase difference plate
7241015, Mar 27 2003 Hitachi Ltd Optical unit and projection type image display unit using it
7252424, Jul 06 2004 AU Optronics Corp. Backlight module capable of interchanging polarized states of light
7301619, Mar 01 2002 Applied Materials, Inc. Evaluating a multi-layered structure for voids
7306338, Sep 09 2003 Moxtek, Inc Image projection system with a polarizing beam splitter
7339734, Dec 22 2004 Seiko Epson Corporation Polarization control element, manufacturing method of polarization control element, design method of polarization control element, and electronic equipment
7351346, Nov 30 2004 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
7404756, Oct 29 2004 3M Innovative Properties Company Process for manufacturing optical and semiconductor elements
7414784, Sep 23 2004 SKC HI-TECH & MARKETING CO , LTD COMPANY REGISTRATION NO 161511-0225312 Low fill factor wire grid polarizer and method of use
7460248, May 15 2006 Carestream Dental Technology Topco Limited Tissue imaging system
7463418, Oct 28 2004 Ushio Denki Kabushiki Kaisha Polarization element unit and polarization light emitting apparatus
7465591, Mar 08 2000 Applied Materials, Inc Evaluating a geometric or material property of a multilayered structure
7480017, Sep 17 2004 Radiant Images, Inc. Microdisplay
7561332, May 04 2005 AGOURA TECHNOLOGIES, INC Applications and fabrication techniques for large scale wire grid polarizers
7608474, Feb 21 2005 Seiko Epson Corporation Method for manufacturing optical element
7619816, Dec 15 2004 API TECHNOLOGIES CORP Structures for polarization and beam control
7630133, Dec 06 2004 Moxtek, Inc Inorganic, dielectric, grid polarizer and non-zero order diffraction grating
7666468, Feb 10 2005 Seiko Epson Corporation Method for manufacturing optical element
7670758, Apr 15 2004 Ushio Denki Kabushiki Kaisha Optical films and methods of making the same
7789515, May 17 2007 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
7800823, Dec 06 2004 Moxtek, Inc Polarization device to polarize and further control light
7813039, Dec 06 2004 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
7817225, May 18 2005 Cheil Industries, Inc Polarizer with first and second patterns of wires where the first pattern of wires is positioned repeatedly and randomly among the second pattern of wires
7867692, Aug 25 2004 Seiko Epson Corporation Method for manufacturing a microstructure, exposure device, and electronic apparatus
7961393, Dec 06 2004 Moxtek, Inc Selectively absorptive wire-grid polarizer
8014050, Apr 02 2007 Vuzix Corporation Agile holographic optical phased array device and applications
8027087, Dec 06 2004 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
8139103, Nov 11 2006 Vuzix Corporation Traveling lens for video display
8248696, Jun 25 2009 Moxtek, Inc Nano fractal diffuser
8305683, Nov 13 2008 Canon Kabushiki Kaisha Polarizer
8319915, Aug 03 2009 XI AN YISHEN OPTOELECTRONICS TECHNOLOGY CO , LTD Liquid crystal on silicon imager
8354682, Aug 11 2006 OSRAM Opto Semiconductors GmbH Radiation emitting element
8467016, Oct 04 2005 LG DISPLAY CO , LTD Liquid crystal display panel with polarization wire grid and method for fabricating the same
8467128, Nov 19 2008 XI AN YISHEN OPTOELECTRONICS TECHNOLOGY CO , LTD Polarizing cube and method of fabricating the same
8511827, Jan 22 2008 THE ARIZONIA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONIA; The Arizona Board of Regents on behalf of the University of Arizona Head-mounted projection display using reflective microdisplays
8611007, Sep 21 2010 Moxtek, Inc Fine pitch wire grid polarizer
8662687, Nov 19 2008 3M Innovative Properties Company Brewster angle film for light management in luminaires and other lighting systems
8699137, Apr 02 2007 Vuzix Corporation Agile optical phased array device and applications
8755113, Aug 31 2006 Moxtek, Inc Durable, inorganic, absorptive, ultra-violet, grid polarizer
8765360, Apr 15 2004 Ushio Denki Kabushiki Kaisha Optical films and methods of making the same
8873144, May 17 2011 Moxtek, Inc Wire grid polarizer with multiple functionality sections
8913320, May 17 2011 Moxtek, Inc Wire grid polarizer with bordered sections
8913321, Sep 21 2010 Moxtek, Inc Fine pitch grid polarizer
8917448, Nov 19 2008 3M Innovative Properties Company Reflective film combinations with output confinement in both polar and azimuthal directions and related constructions
8922890, Mar 21 2012 Moxtek, Inc Polarizer edge rib modification
8947772, Aug 31 2006 Moxtek, Inc Durable, inorganic, absorptive, ultra-violet, grid polarizer
8988776, Nov 19 2008 3M Innovative Properties Company Multilayer optical film with output confinement in both polar and azimuthal directions and related constructions
9195093, Oct 08 2012 Samsung Display Co., Ltd. Polarizer, liquid crystal display, and manufacturing method thereof
9207443, Apr 20 2009 Beijing Institute of Technology; The Arizona Board of Regents on behalf of the University of Arizona Optical see-through free-form head-mounted display
9239453, Apr 20 2009 The Arizona Board of Regents on behalf of the University of Arizona Optical see-through free-form head-mounted display
9244277, Apr 30 2010 Beijing Institute of Technology; The Arizona Board of Regents on behalf of the University of Arizona Wide angle and high resolution tiled head-mounted display device
9310591, Jan 22 2008 The Arizona Board of Regents on behalf of the University of Arizona Head-mounted projection display using reflective microdisplays
9329316, Aug 27 2013 Samsung Electronics Co., Ltd.; Samsung Display Co., Ltd. Wire grid polarizer and liquid crystal display panel and liquid crystal display device having the same
9335582, May 29 2013 Samsung Electronics Co., Ltd.; Samsung Display Co., Ltd. Wire grid polarizer, and liquid crystal display panel and liquid crystal display device including the same
9348076, Oct 24 2013 Moxtek, Inc Polarizer with variable inter-wire distance
9354374, Oct 24 2013 Moxtek, Inc Polarizer with wire pair over rib
9423646, Apr 18 2013 Samsung Display Co., Ltd. Display device
9523805, Sep 21 2010 Moxtek, Inc. Fine pitch wire grid polarizer
9557462, Mar 28 2013 MAXELL HOLDINGS, LTD ; MAXELL, LTD Optical element and optical apparatus
9594298, Sep 29 2006 CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT Polarization conversion systems for stereoscopic projection
9632223, Oct 24 2013 Moxtek, Inc Wire grid polarizer with side region
9645456, Jan 08 2015 TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO , LTD Liquid crystal display
9651727, Jul 04 2013 Samsung Display Co., Ltd. Polarizer, polarized light illuminating apparatus having the same and method of manufacturing the same
9720232, Jan 24 2012 AUGMENTED VISION INC Compact eye-tracked head-mounted display
9740016, May 09 2007 CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT Polarization conversion system and method for projecting polarization encoded imagery
9772178, Aug 26 2015 Hitachi-LG Data Storage, Inc. Optical measuring device
9835899, Jan 13 2014 Samsung Display Co., Ltd. Display device containing multiple optical conversion layers
9846341, Dec 03 2014 Samsung Display Co., Ltd. Display device
9874760, Oct 18 2012 The Arizona Board of Regents on behalf of the University of Arizona Stereoscopic displays with addressable focus cues
9927691, Sep 29 2006 CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT Polarization conversion systems for stereoscopic projection
9933553, Jun 21 2012 MAXELL HOLDINGS, LTD ; MAXELL, LTD Optical element and optical device
9988724, Aug 22 2014 Dexerials Corporation Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
Patent Priority Assignee Title
2224214,
2287598,
2748659,
2887566,
3046839,
3436143,
3479168,
3536373,
3566099,
3631288,
3857627,
3876285,
3912369,
3969545, Mar 01 1973 Texas Instruments Incorporated Light polarizing material method and apparatus
4009933, May 07 1975 RCA Corporation Polarization-selective laser mirror
4025164, Mar 17 1975 ASULAB S A Liquid crystal display device for colored display of information with a selective polarizer
4025688, Aug 01 1974 Polaroid Corporation Polarizer lamination
4049944, Feb 28 1973 Hughes Aircraft Company Process for fabricating small geometry semiconductive devices including integrated components
4073571, May 05 1976 Victor Company of Japan, LTD Circularly polarized light source
4181756, Oct 05 1977 Process for increasing display brightness of liquid crystal displays by bleaching polarizers using screen-printing techniques
4220705, Jul 26 1978 Sanritsu Denki Kabushikikaisha Process for manufacturing a multi-colored display polarizer
4221464, Oct 17 1978 Hughes Aircraft Company Hybrid Brewster's angle wire grid infrared polarizer
4268127, Sep 29 1978 NITTO ELECTRIC INDUSTRIAL CO , LTD Light transmitting and reflecting polarizer
4289381, Jul 02 1979 Hughes Electronics Corporation High selectivity thin film polarizer
4456515, Apr 25 1978 Siemens Aktiengesellschaft Method for making polarizers comprising a multiplicity of parallel electrically conductive strips on a glass carrier
4466704, Jul 20 1981 3M Innovative Properties Company Patterned polarizer having differently dyed areas
4512638, Aug 31 1982 ROSEMOUNT ANALYTICAL INC , A CORP OF DE Wire grid polarizer
4514479, Jul 01 1980 The United States of America as represented by the Secretary of the Navy Method of making near infrared polarizers
4515441, Oct 13 1982 Westinghouse Electric Corp. Dielectric polarizer for high average and high peak power operation
4688897, Jun 17 1985 Victor Company of Japan, Limited Liquid crystal device
4711530, Sep 27 1985 ALPS Electric Co., Ltd. Liquid crystal device having birefringent plate next to polarizer
4743092, Nov 26 1986 The United States of America as represented by the Secretary of the Army Polarizing grids for far-infrared and method for making same
4759611, Dec 19 1986 Senshin Capital, LLC Liquid crystal display having silylated light polarizers
4759612, Aug 02 1985 Hitachi, Ltd. Twisted nematic type liquid crystal display device having a color polarizer to provide an achromatic or colorless background
4799776, Jun 27 1986 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Ferroelectric liquid crystal display device having a single polarizer
4818076, Dec 02 1982 Merck Patent Gesellschaft Mit Beschrankter Haftung Color-selective circular polarizer and its use
4865670, Feb 05 1988 STEINFELD, NED Method of making a high quality polarizer
4895769, Aug 09 1988 3M Innovative Properties Company Method for preparing light polarizer
4913529, Dec 27 1988 North American Philips Corp. Illumination system for an LCD display system
4946231, May 19 1989 The United States of America as represented by the Secretary of the Army Polarizer produced via photographic image of polarizing grid
4966438, Apr 08 1988 Societe Anonyme dite: Alcatel Cit Dielectric layer polarizer
4991937, Jun 29 1988 NEC Corporation Birefringence diffraction grating type polarizer
5029988, Jun 29 1988 NEC Corporation Birefringence diffraction grating type polarizer
5061050, Oct 18 1989 Matsushita Electric Industrial Co., Ltd. Polarizer
5087985, Jul 12 1988 Toray Industries, Inc. Polarizer for visible light
5113285, Sep 28 1990 HONEYWELL INC , A CORP OF DE Full color three-dimensional flat panel display
5122887, Mar 05 1991 Sayett Group, Inc. Color display utilizing twisted nematic LCDs and selective polarizers
5122907, Jul 03 1991 Polatomic, Inc. Light polarizer and method of manufacture
5139340, Dec 08 1989 Seiko Epson Corporation Single polarizer, reflective type liquid crystal display device with high brightness and contrast ratio
5157526, Jul 06 1990 Hitachi, Ltd. Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
5177635, Sep 07 1989 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. Polarizer for infrared radiation
5225920, Apr 06 1990 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Liquid crystal modulator including a diffuser with plural phase shifting regions
5235443, Jul 10 1989 STATE SCIENTIFIC CENTER OF THE RUSSIAN FEDERATION NIOPIK Polarizer device
5235449, Mar 02 1990 Hitachi, Ltd. Polarizer with patterned diacetylene layer, method for producing the same, and liquid crystal display device including such polarizer
5239322, Jun 16 1990 Victor Company of Japan, LTD Display apparatus
5245471, Jun 14 1991 TDK Corporation Polarizers, polarizer-equipped optical elements, and method of manufacturing the same
5295009, Jul 10 1989 STATE SCIENTIFIC CENTER OF THE RUSSIAN FEDERATION NIOPIK Polarizer device
5305143, Aug 09 1990 Kabushiki Kaisha Toyota Chuo Kenkyusho Inorganic thin film polarizer
5325218, Dec 31 1992 Minnesota Mining and Manufacturing Company Cholesteric polarizer for liquid crystal display and overhead projector
5333072, Dec 31 1992 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AMD MANUFACTURING COMPANY Reflective liquid crystal display overhead projection system using a reflective linear polarizer and a fresnel lens
5357370, May 29 1991 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Polarizer and light valve image projector having the polarizer
5383053, Apr 07 1992 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
5422756, May 18 1992 MINNESOTA MINING AND MANUFACTURING COMPANY A CORP OF DELAWARE Backlighting system using a retroreflecting polarizer
5436761, Feb 10 1992 Renesas Electronics Corporation Projection exposure apparatus and polarizer
5486935, Jun 29 1993 Innolux Corporation High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
5486949, Jun 20 1989 3M Innovative Properties Company Birefringent interference polarizer
5490003, Jun 28 1991 U.S. Philips Corporation Reflective liquid crystal display device with twist angle between 50° and 68° and the polarizer at the bisectrix
5506704, Jan 11 1993 U.S. Philips Corporation Cholesteric polarizer and the manufacture thereof
5508830, Jun 30 1992 CITIZEN HOLDINGS CO , LTD Liquid crystal display unit having an enclosed space between the liquid crystal cell and at least one polarizer
5513023, Oct 03 1994 OL SECURITY LIMITED LIABILITY COMPANY Polarizing beamsplitter for reflective light valve displays having opposing readout beams onto two opposing surfaces of the polarizer
5513035, May 29 1991 Matsushita Electric Industrial Co., Ltd. Infrared polarizer
5517356, Dec 15 1993 Corning Incorporated Glass polarizer for visible light
5557343, Jan 28 1994 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Optical system including a reflecting polarizer for a rear projection picture display apparatus
5559634, Jun 13 1991 Minnesota Mining and Manufacturing Company Retroreflecting polarizer
5570215, Nov 09 1992 Matsushita Electric Industrial Co., Ltd. Liquid crystal display apparatus and projection displaying apparatus having a rotatable phase difference plate and polarizer
5574580, Oct 01 1993 Raytheon Company LCD with integral light confinement having a pair of afocal lenslets positioned between liquid crystal cells and color polarizers
5579138, Apr 01 1993 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Polarizer having a glass substrate with films on either side with different wavelength characteristics and projection display using same
5594561, Mar 31 1993 PALOMAR DISPLAY PRODUCTS INC , A CORPORATION OF DELAWARE Flat panel display with elliptical diffuser and fiber optic plate
5612820, Jun 20 1989 3M Innovative Properties Company Birefringent interference polarizer
5619356, Sep 16 1993 Sharp Kabushiki Kaisha Reflective liquid crystal display device having a compensator with a retardation value between 0.15 μm and 0.38 μm and a single polarizer
5626408, Dec 17 1993 U S PHILIPS CORPORATION Illumination system for a color projection device and circular polarizer suitable for use in such an illumination system, and color image projection device comprising such an illumination system and circular polarizer
5748368, Dec 29 1994 Sony Corporation Polarization optical element
5748369, Oct 29 1992 Canon Kabushiki Kaisha Polarizing beam splitter and an illuminating device provided with the same
5833360, Oct 17 1996 LG Electronics Inc High efficiency lamp apparatus for producing a beam of polarized light
6081376, Jul 16 1998 Moxtek Reflective optical polarizer device with controlled light distribution and liquid crystal display incorporating the same
DE296391,
DE3707984A1,
DE416157,
EP317910A1,
EP336334B1,
EP349144B1,
EP349309B1,
EP357946B1,
EP407830A2,
EP407830B1,
EP416157A1,
EP488544A1,
EP507445A2,
EP518111A1,
EP521591B1,
EP543061A1,
EP588937B1,
EP606940A2,
EP634674A2,
EP670506A1,
EP744634A2,
JP84502,
SU1781659A1,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 24 1999HANSEN, DOUGLAS P MoxtexASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0103070531 pdf
Aug 24 1999PERKINS, RAYMOND T MoxtexASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0103070531 pdf
Aug 24 1999GARDNER, ERICMoxtexASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0103070531 pdf
Sep 07 1999Moxtek(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 03 2004M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 16 2004R2551: Refund - Payment of Maintenance Fee, 4th Yr, Small Entity.
Dec 16 2004STOL: Pat Hldr no Longer Claims Small Ent Stat
Dec 05 2008M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 28 2012M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 05 20044 years fee payment window open
Dec 05 20046 months grace period start (w surcharge)
Jun 05 2005patent expiry (for year 4)
Jun 05 20072 years to revive unintentionally abandoned end. (for year 4)
Jun 05 20088 years fee payment window open
Dec 05 20086 months grace period start (w surcharge)
Jun 05 2009patent expiry (for year 8)
Jun 05 20112 years to revive unintentionally abandoned end. (for year 8)
Jun 05 201212 years fee payment window open
Dec 05 20126 months grace period start (w surcharge)
Jun 05 2013patent expiry (for year 12)
Jun 05 20152 years to revive unintentionally abandoned end. (for year 12)