A method for manufacturing integrated circuits; particularly, a method to alter heat flow on a localized basis, when heating wafers to elevated temperatures, to achieve different processing temperatures by altering the material properties, such as emissivity, absorptivity and reflectivity, of a portion of a surface by the application of thin films of various materials.

Patent
   6245692
Priority
Nov 23 1999
Filed
Nov 23 1999
Issued
Jun 12 2001
Expiry
Nov 23 2019
Assg.orig
Entity
Large
92
8
all paid
1. A method of manufacturing an integrated circuit comprising:
a. providing a wafer having a surface;
b. altering material properties of at least one selected portion of said surface, said at least one portion comprising in total less than all of said surface, to alter heat flow in said portion by depositing at least one layer of film on said portion;
c. heating said wafer to an elevated temperature to initiate a reaction at said portion;
d. monitoring said temperature of said wafer to control said heating and terminating said heating when a predetermined period of time has expired.
19. A method of manufacturing an integrated circuit comprising:
a. providing a wafer having a surface and at least one portion of titanium metal and a section of silicon adjacent to said portion on said surface;
b. altering material properties of said portion to alter heat flow in said portion by depositing at least one layer of oxide film of about 1000 Å on said portion, whereby said heat flow increases a temperature at said portion by about 20°C;
c. placing said wafer in a rapid thermal annealer having at least one heating lamp and a processing chamber;
d. heating said wafer with said heating lamp at a temperature of about 650°C to produce a chemical reaction between at least a portion of said titanium metal and said silicon to form TiSi2 ;
e. monitoring a temperature of said wafer with a closed loop temperature control system, wherein a pyrometer senses an average wafer temperature in said rapid thermal annealer; and
f. providing a temperature feedback from said temperature control system to control said heating lamp.
2. The method of claim 1 wherein said altering material properties causes a temperature differential between a temperature of said portion heated with said film and a temperature of said portion heated without said film.
3. The method of claim 1 wherein said film is deposited by a process selected from the group consisting of low pressure chemical vapor deposition, plasma-enhanced chemical vapor deposition, rapid thermal chemical vapor deposition, sputtering, spin-on-glass, molecular beam epitaxy, physical vapor deposition, and combinations thereof.
4. The method of claim 1 wherein said film comprises at least one material selected from the group consisting of nitrides, oxides, metals, silicon, carbon, silicon carbide, and mixtures thereof.
5. The method of claim 1 wherein said heating step is performed with a rapid thermal processor.
6. The method of claim 1 wherein said heating step is performed with a rapid thermal annealer.
7. The method of claim 1 wherein said heating step is performed with a furnace.
8. The method of claim 1 further comprising:
e. removing said film from said surface.
9. The method of claim 1 wherein a residual photoresist is formed and an unreacted product remains on said wafer during said heating step.
10. The method of claim 9 further comprising:
stripping said residual photoresist from said wafer; and
etching said unreacted product from said wafer.
11. The method of claim 1 wherein said reaction comprises a chemical reaction between a plurality of reactants.
12. The method of claim 1 wherein said reaction comprises a physical reaction.
13. The method of claim 1 wherein said reaction comprises annealing at least one selected layer.
14. The method of claim 1 wherein said reaction comprises sintering at least one selected particle with another selected particle.
15. The method of claim 1 wherein said reaction comprises diffusing preferentially at least one selected atom.
16. The method of claim 1 wherein said material properties comprise at least one property selected from the group consisting of emissivity, absorptivity, reflectivity, and combinations thereof.
17. The method of claim 1 wherein said heat flow in said selected portion of said surface is altered relative to remaining portions of said surface.
18. The method of claim 1 wherein a product of said reaction comprises TiSi2.
20. The method of claim 19 further comprising:
g. etching any remaining titanium with a wet etch.

1. Field of the Invention

This invention relates to a method of manufacturing semiconductor integrated circuit interconnect structures. The invention relates more particularly to a method to alter heat flow on a localized basis when heating wafers to elevated temperatures to achieve different processing temperatures by altering the material properties, such as emissivity, absorptivity, and reflectivity, of a portion of a surface by the application of thin films of specified materials.

2. Background of the Invention

A. Field of the Invention

This invention relates to a method for fabricating semiconductor integrated circuit devices, specifically with a method for fabricating semiconductor integrated circuit devices enabling the creation of temperature differentials.

B. Description of the Related Art.

Semiconductor integrated circuit devices typically comprise silicon and multiple layers of vertically stacked metal interconnect layers with dielectric materials disposed between them. The fabrication of such devices typically involves the repeated deposition or growth, patterning, and etching of thin films of semiconductor, metal, and dielectric materials.

A substantial part of integrated device manufacture involves heating the wafers to elevated temperatures to promote a particular chemical reaction or to anneal the structure to achieve a desired metallurgical effect.

Typically, batch furnaces are used to heat silicon-based semiconductors during thermal fabrication steps. The furnaces heat primarily by radiation such that the wafers are in thermal equilibrium with the furnace surroundings. For example, as shown in FIG. 1, a batch furnace 10 may include a quartz tube 1 inserted into the core 2 of a furnace 3 that is heated resistively, where gas flows through the tube 1. Wafers 4 are placed inside the tube 1 and pushed into the core 2, where a uniform temperature is maintained. The heating elements 5 heat the core 2 and the wafers 4 with long-wavelength thermal radiation. Many wafers may be processed simultaneously and the cost of operation is divided among the number of wafers in the batch. A problem with using a furnace is that the wafers are susceptible to contamination from the hot processing in the core 2 on which deposited films may accumulate and flake off or through which impurities may diffuse and contaminate wafers 4.

Microprocessing environments for single wafers are now being used since control of contamination, process parameters, and reduced manufacturing costs are desired. In particular, rapid thermal processing (RTP) using transient lamp heating allows thermal processing to occur in a closed microenvironment. A rapid thermal processor 20 is shown in FIG. 2. A single wafer 11 is heated quickly under atmospheric conditions or at low pressure. The processing chamber 12 is either made of quartz, silicon carbide, stainless steel, or aluminum and has quartz windows 13 through which the optical radiation passes to illuminate the wafer 11. The wafer 11 is held, usually on thin quartz pins 18, in thermal isolation inside chamber 12. An ambient atmosphere inside chamber 12 is controlled by gas flow through chamber 12. Gas flows into the chamber 12 at gas inlet 14. Lamps 15 heat the wafer 11 through windows 13, aided by reflectors 17 above the lamps 15. A measurement system is placed in a control loop to set wafer temperature. Typically, an optical pyrometer 16 determines the temperature from radiated infrared energy on the back ofthe wafer 11, but thermocouples can also be used. The RTP system is interfaced with a gas-handling system and a computer that controls system operation.

The transfer of heat between objects is a function of their emissivity and absorptivity. For example, a perfect radiator or absorber has an emissivity of 1.0, whereas metals have much lower values around 0.1. Heat flow and emissivity are related by the following equation:

Q=εσT4

where Q is total heat flow in W/m2, ε is emissivity, σ is the Stefan Boltzmann radiation constant of 5.67×10-8 W/m2° K4, and T is the temperature in ° K.

In many cases, there are competing reactions occurring and it is desirable for these reactions to occur at different temperatures. Thus, to the extent the emissivity of a surface can be altered on a localized basis, a temperature differential can be achieved.

A method is known to apply a thin film on a surface to control reflectivity and emissivity. This film is applied to a wafer in a rapid thermal processor to alter the energy exchange. This method does not address selective application of film on the wafer to alter the temperature.

Another method is known for applying a film onto a substrate of a semiconductor, heating the substrate, and removing the layer. This method is used for reducing the effects of semiconductor deformities and does not address temperature differences in heating the wafer.

As a result, it is desirable to have a method that alters emissivity of selected portions of a surface to achieve a temperature differential.

The invention is a method of manufacturing an integrated circuit including the steps of: (1) providing a wafer having a surface; (2) altering material properties, such as emissivity, absorptivity, and reflectivity, of at least one selected portion of the surface to alter heat flow in the portion by depositing at least one layer of film on the portion; (3) heating the wafer to an elevated temperature to initiate a reaction at the portion; and (4) monitoring the temperature of the wafer and terminating the heating when a predetermined period of time has expired.

FIG. 1 is a schematic cross-sectional view of a batch-furnace system used to heat wafers.

FIG. 2 is a schematic cross-sectional view of a rapid thermal processing system used to heat a single wafer.

FIG. 3 is a cross-sectional view of a portion of an integrated circuit.

FIG. 4 is a schematic cross-sectional view of a portion ofthe integrated circuit shown in FIG. 3 manufactured in accordance with the method of the invention.

FIG. 5 is a graph of wafer temperature versus time for a wafer with a deposited film (a) and a wafer without a deposited film (b).

FIG. 6 is a schematic cross-sectional view of a portion of the integrated circuit shown in FIG. 3 where the unreacted product is etched.

The invention will be understood more fully from the detailed description given below, which however, should not be taken to limit the invention to a specific embodiment, but is for explanation and understanding only.

FIGS. 3 and 4 illustrate aportion of an integrated circuit, which is manufactured in accordance with the method of invention. As shown in FIG. 3, the components of an integrated circuit include a wafer 30 having a surface 31 and selected portions 32 of the surface 31, where a chemical reaction or physical reaction, such as annealing, sintering, or diffusion, may occur in a rapid thermal processor (RTP), or other type of heater. In FIG. 4, the wafer 30 has layers of film 33 deposited on the selected portions 32.

The method of the invention includes manufacturing an integrated circuit including the steps of; (1) providing a wafer 30 having a surface 31, as shown in FIG. 3; (2) altering material properties, such as emissivity, absorptivity, and reflectivity, of at least one selected portion 32 of the surface 31 to alter heat flow in the portion 32 by depositing at least one layer of film 33 on the portion 32, as shown in FIG. 4; (3) heating the wafer 30 to an elevated temperature to initiate a reaction at the portion 32; and (4) monitoring the temperature of the wafer 30 to control the heating and terminating the heating when a predetermined period of time has expired.

While not completely understood, it is believed that a film will alter the energy or heat flow inside the RTP, dependent upon the physical characteristics of the film or compound with those of the surrounding media. The net heat transfer to the surface is expected to be a function of a material's emissivity (ε), absorptivity (∝), and reflectivity (γ) where ε+γ+∝=1. By careful choice of film properties subject to physical constraints like the above equation, the film 33 can be made to cause the selected portion of the wafer 30 to be relatively hotter or colder than the surrounding portion ofthe wafer during the RTP process. Although, in many cases, the desired result will be selective heating as opposed to selective cooling. For example, the heat flow can be characterized by the equation:

Q=εeσ(Ts4 -Tp4)

where Ts is the source temperature, Tp is the temperature of a portion of the wafer, and εe is the effective emissivity of a system comprised of a heat source of emissivity, ε83 and an emissivity of the portion, εp, and is characterized by the equation: ##EQU1##

It is believed that to the extent εp can be varied on a local basis, localized heating can be obtained.

The temperature differential, shown in FIG. 5 by a graph of temperature versus time, is derived from the above equations.

For example, when a metal film having an emissivity of 0.1 is deposited on a wafer, a silica film having an emissivity of 0.6 is placed selectively on top of the metal film, and the wafer is heated by a heating source at 1600° K, the temperature of the surface with the film at a given time, shown by curve 35, is greater than the temperature of a surface without the film at the same given time, shown by curve 36. After about 20 seconds of heating, the temperature on curve 35 is about 338° K and the corresponding temperature on curve 36 is about 316° K, producing a temperature differential of about 22° K. Thus, the heat flow at the surface with the silica film is greater, and while not completely understood, it is believed that the reaction under the film will occur at a different processing temperature than any reaction occurring on the surface without the film. This result was found to agree with an experiment described below using selected films of titanium on silicon. It is also believed that this heating requires less time to produce higher temperatures at various portions on the surface of the wafer. It should be realized that any practical situation may involve a more elaborate theoretical explanation involving the thickness of applied films and their thermal conductivity.

The film may be deposited by low pressure chemical vapor deposition, plasma-enhanced chemical vapor deposition, sputtering, spin-on-glass, molecular beam epitaxy, physical vapor deposition, or combinations thereof

Preferably, the film is deposited on the front of the wafer. Since most of the heat transfer takes place at relatively long wavelengths characteristic of infrared radiation, the exact thickness of the film is not particularly important. However, if the film is too thick, it may have a reverse effect by decreasing the temperature due to the low thermal conductivity of dielectric film.

The choice of film deposited depends on the cost and ease of the deposition. Particularly preferred are oxide films because they are easily deposited, heated, and patterned and do not have to be removed. Other preferred films are nitrides, metals, silicon, carbon, silicon carbide, or mixtures thereof Carbon and silicon carbide films produce the best emissivity, being close to 1.

Heating may be performed with a rapid thermal processor (RTP), such as a rapid thermal annealer (RTA), or a furnace. An RTP is preferred because it heats in a short time period, where higher temperature differentials may be achieved. In a furnace, over long periods of time, the temperature differential will decrease and eventually reach 0.

These methods may also include the further step of removing the film from the surface. Alternatively, if a residual photoresist and a reacted product are formed on the wafer, the method may include the further steps of stripping the residual photoresist from the wafer; and etching the unreacted product from the wafer. The etched wafer 60 is shown in FIG. 6.

In one experiment, the reaction of Ti and Si forming TiSi2, or self-aligning titanium silicide, was examined. A wafer having exposed surfaces of Si was provided. After deposition of titanium, which is a metal of low emissivity, the titanium was coated with an oxide film of 1000 Åto improve the heat flow. The silicide was selectively formed by a rapid thermal process, in this case, a rapid thermal annealer having a heating lamp and a processing chamber, at a reaction temperature of 650°C A pyrometer of a closed loop temperature control system sensed an average wafer temperature to control the heating lamp. In this process, the temperature must be comparatively high to achieve complete silicidation on silicon, but as low as possible to avoid any reaction with SiO2. The amount of TiSi2 formed with the presence ofthe oxide film indicated a temperature differential of 20°C which is consistent with the prior set of calculations. Typically, this method is followed by etching the titanium with a wet etch.

The above steps may be repeated any number of times.

While the invention has been described with specificity, additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. For example, different layers of film may be applied to different areas to produce different reactions, or other different processes, at different times, or during one single heating process.

Pearce, Charles Walter, Billig, Michael Steven

Patent Priority Assignee Title
10267848, Nov 21 2008 FormFactor, Inc Method of electrically contacting a bond pad of a device under test with a probe
6596604, Jul 22 2002 Atmel Corporation Method of preventing shift of alignment marks during rapid thermal processing
6599831, Apr 30 2002 Advanced Micro Devices, Inc. Metal gate electrode using silicidation and method of formation thereof
6873030, Apr 30 2002 Advanced Micro Devices, Inc. Metal gate electrode using silicidation and method of formation thereof
7138810, Nov 08 2002 Cascade Microtech, Inc. Probe station with low noise characteristics
7138813, Jun 30 1999 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
7164279, Apr 14 1995 Cascade Microtech, Inc. System for evaluating probing networks
7176705, Jun 07 2004 FormFactor, Inc Thermal optical chuck
7190181, Jun 06 1997 Cascade Microtech, Inc. Probe station having multiple enclosures
7221146, Dec 13 2002 FORMFACTOR BEAVERTON, INC Guarded tub enclosure
7221172, May 06 2003 CASCADE MICROTECH INC Switched suspended conductor and connection
7250626, Oct 22 2003 FormFactor, Inc Probe testing structure
7250779, Nov 25 2002 FormFactor, Inc Probe station with low inductance path
7268533, Aug 06 2004 FORMFACTOR BEAVERTON, INC Optical testing device
7292057, Jun 30 1999 FORMFACTOR BEAVERTON, INC Probe station thermal chuck with shielding for capacitive current
7295025, Nov 08 2002 Cascade Microtech, Inc. Probe station with low noise characteristics
7304488, May 23 2002 FormFactor, Inc Shielded probe for high-frequency testing of a device under test
7321233, Apr 14 1995 Cascade Microtech, Inc. System for evaluating probing networks
7330023, Jun 11 1992 Cascade Microtech, Inc. Wafer probe station having a skirting component
7330041, Jun 14 2004 FORMFACTOR BEAVERTON, INC Localizing a temperature of a device for testing
7348787, Jun 11 1992 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
7352168, Sep 05 2000 Cascade Microtech, Inc. Chuck for holding a device under test
7355420, Aug 21 2001 FORMFACTOR BEAVERTON, INC Membrane probing system
7362115, Dec 24 2003 Cascade Microtech, INC Chuck with integrated wafer support
7368925, Jan 25 2002 Cascade Microtech, Inc. Probe station with two platens
7368927, Jul 07 2004 FormFactor, Inc Probe head having a membrane suspended probe
7403025, Feb 25 2000 FORMFACTOR BEAVERTON, INC Membrane probing system
7403028, Jun 12 2006 Cascade Microtech, Inc. Test structure and probe for differential signals
7417446, Nov 13 2002 Cascade Microtech, Inc. Probe for combined signals
7420381, Sep 13 2004 Cascade Microtech, INC Double sided probing structures
7423419, Sep 05 2000 Cascade Microtech, Inc. Chuck for holding a device under test
7436170, Jun 06 1997 Cascade Microtech, Inc. Probe station having multiple enclosures
7436194, May 23 2002 FormFactor, Inc Shielded probe with low contact resistance for testing a device under test
7443186, Jun 12 2006 FORMFACTOR BEAVERTON, INC On-wafer test structures for differential signals
7449899, Jun 08 2005 FormFactor, Inc Probe for high frequency signals
7453276, Nov 13 2002 Cascade Microtech, Inc. Probe for combined signals
7456646, Dec 04 2000 Cascade Microtech, Inc. Wafer probe
7468609, May 06 2003 Cascade Microtech, Inc. Switched suspended conductor and connection
7482823, May 23 2002 FORMFACTOR BEAVERTON, INC Shielded probe for testing a device under test
7489149, May 23 2002 FormFactor, Inc Shielded probe for testing a device under test
7492147, Jun 11 1992 Cascade Microtech, Inc. Wafer probe station having a skirting component
7492172, May 23 2003 Cascade Microtech, INC Chuck for holding a device under test
7492175, Aug 21 2001 FORMFACTOR BEAVERTON, INC Membrane probing system
7495461, Dec 04 2000 Cascade Microtech, Inc. Wafer probe
7498828, Nov 25 2002 FORMFACTOR BEAVERTON, INC Probe station with low inductance path
7498829, May 23 2003 Cascade Microtech, Inc. Shielded probe for testing a device under test
7501810, Sep 05 2000 Cascade Microtech, Inc. Chuck for holding a device under test
7501842, May 23 2003 Cascade Microtech, Inc. Shielded probe for testing a device under test
7504823, Jun 07 2004 Cascade Microtech, Inc. Thermal optical chuck
7504842, May 28 1997 Cascade Microtech, Inc. Probe holder for testing of a test device
7514915, Sep 05 2000 Cascade Microtech, Inc. Chuck for holding a device under test
7514944, Jul 07 2004 FORMFACTOR BEAVERTON, INC Probe head having a membrane suspended probe
7518358, Sep 05 2000 Cascade Microtech, Inc. Chuck for holding a device under test
7518387, May 23 2002 FormFactor, Inc Shielded probe for testing a device under test
7533462, Jun 04 1999 FORMFACTOR BEAVERTON, INC Method of constructing a membrane probe
7535247, Jan 31 2005 FormFactor, Inc Interface for testing semiconductors
7541821, Aug 08 1996 Cascade Microtech, Inc. Membrane probing system with local contact scrub
7550984, Nov 08 2002 Cascade Microtech, Inc. Probe station with low noise characteristics
7554322, Sep 05 2000 FORMFACTOR BEAVERTON, INC Probe station
7589518, Jun 11 1992 Cascade Microtech, Inc. Wafer probe station having a skirting component
7595632, Jun 11 1992 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
7609077, Jun 09 2006 Cascade Microtech, INC Differential signal probe with integral balun
7616017, Jun 30 1999 FORMFACTOR BEAVERTON, INC Probe station thermal chuck with shielding for capacitive current
7619419, Jun 13 2005 FORMFACTOR BEAVERTON, INC Wideband active-passive differential signal probe
7626379, Jun 06 1997 Cascade Microtech, Inc. Probe station having multiple enclosures
7639003, Dec 13 2002 FORMFACTOR BEAVERTON, INC Guarded tub enclosure
7656172, Jan 31 2005 FormFactor, Inc System for testing semiconductors
7681312, Jul 14 1998 Cascade Microtech, Inc. Membrane probing system
7688062, Sep 05 2000 Cascade Microtech, Inc. Probe station
7688091, Dec 24 2003 Cascade Microtech, INC Chuck with integrated wafer support
7688097, Dec 04 2000 FORMFACTOR BEAVERTON, INC Wafer probe
7723999, Jun 12 2006 Cascade Microtech, Inc. Calibration structures for differential signal probing
7750652, Jun 12 2006 Cascade Microtech, Inc. Test structure and probe for differential signals
7759953, Dec 24 2003 Cascade Microtech, Inc. Active wafer probe
7761983, Dec 04 2000 Cascade Microtech, Inc. Method of assembling a wafer probe
7761986, Jul 14 1998 FORMFACTOR BEAVERTON, INC Membrane probing method using improved contact
7764072, Jun 12 2006 Cascade Microtech, Inc. Differential signal probing system
7876114, Aug 08 2007 Cascade Microtech, INC Differential waveguide probe
7876115, May 23 2003 Cascade Microtech, Inc. Chuck for holding a device under test
7888957, Oct 06 2008 FormFactor, Inc Probing apparatus with impedance optimized interface
7893704, Aug 08 1996 Cascade Microtech, Inc. Membrane probing structure with laterally scrubbing contacts
7898273, May 23 2003 Cascade Microtech, Inc. Probe for testing a device under test
7898281, Jan 31 2005 FormFactor, Inc Interface for testing semiconductors
7940069, Jan 31 2005 FormFactor, Inc System for testing semiconductors
7969173, Sep 05 2000 FORMFACTOR BEAVERTON, INC Chuck for holding a device under test
8013623, Sep 13 2004 FORMFACTOR BEAVERTON, INC Double sided probing structures
8069491, Oct 22 2003 Cascade Microtech, Inc. Probe testing structure
8198628, Mar 30 2007 Soitec Doped substrate to be heated
8319503, Nov 24 2008 FormFactor, Inc Test apparatus for measuring a characteristic of a device under test
8410806, Nov 21 2008 FormFactor, Inc Replaceable coupon for a probing apparatus
8451017, Jul 14 1998 FORMFACTOR BEAVERTON, INC Membrane probing method using improved contact
9429638, Nov 21 2008 FormFactor, Inc Method of replacing an existing contact of a wafer probing assembly
Patent Priority Assignee Title
3836745,
5382551, Apr 09 1993 Micron Technology, Inc Method for reducing the effects of semiconductor substrate deformities
5508934, May 17 1991 Texas Instruments Incorporated Multi-point semiconductor wafer fabrication process temperature control system
5561612, May 18 1994 Micron Technology, Inc Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine
5654904, May 18 1994 Micron Technology, Inc. Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine
5851929, Jan 04 1996 Micron Technology, Inc. Controlling semiconductor structural warpage in rapid thermal processing by selective and dynamic control of a heating source
5861609, Oct 02 1995 AST elektronik GmbH Method and apparatus for rapid thermal processing
6074087, Sep 04 1997 National Security Council Non-contact method for measuring the surface temperature distribution of a melt during growth of ionic crystals
//////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 19 1999BILLIG, MICHAEL STEVENLucent Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104190974 pdf
Nov 19 1999PEARCE, CHARLES WALTERLucent Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104190974 pdf
Nov 23 1999Agere Systems Guardian Corp.(assignment on the face of the patent)
May 06 2014LSI CorporationDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0328560031 pdf
May 06 2014Agere Systems LLCDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0328560031 pdf
Aug 04 2014Agere Systems LLCAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0353650634 pdf
Feb 01 2016DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTLSI CorporationTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 0376840039 pdf
Feb 01 2016AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD BANK OF AMERICA, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0378080001 pdf
Feb 01 2016DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTAgere Systems LLCTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 0376840039 pdf
Jan 19 2017BANK OF AMERICA, N A , AS COLLATERAL AGENTAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS0417100001 pdf
Dec 08 2017Broadcom CorporationBell Semiconductor, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0448860608 pdf
Dec 08 2017AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Bell Semiconductor, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0448860608 pdf
Jan 24 2018HILCO PATENT ACQUISITION 56, LLCCORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0452160020 pdf
Jan 24 2018Bell Semiconductor, LLCCORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0452160020 pdf
Jan 24 2018Bell Northern Research, LLCCORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0452160020 pdf
Apr 01 2022CORTLAND CAPITAL MARKET SERVICES LLCHILCO PATENT ACQUISITION 56, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0597200719 pdf
Apr 01 2022CORTLAND CAPITAL MARKET SERVICES LLCBell Semiconductor, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0597200719 pdf
Apr 01 2022CORTLAND CAPITAL MARKET SERVICES LLCBell Northern Research, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0597200719 pdf
Date Maintenance Fee Events
Dec 10 2004M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 22 2004ASPN: Payor Number Assigned.
Dec 11 2008M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 01 2012M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 12 20044 years fee payment window open
Dec 12 20046 months grace period start (w surcharge)
Jun 12 2005patent expiry (for year 4)
Jun 12 20072 years to revive unintentionally abandoned end. (for year 4)
Jun 12 20088 years fee payment window open
Dec 12 20086 months grace period start (w surcharge)
Jun 12 2009patent expiry (for year 8)
Jun 12 20112 years to revive unintentionally abandoned end. (for year 8)
Jun 12 201212 years fee payment window open
Dec 12 20126 months grace period start (w surcharge)
Jun 12 2013patent expiry (for year 12)
Jun 12 20152 years to revive unintentionally abandoned end. (for year 12)