A method for manufacturing integrated circuits; particularly, a method to alter heat flow on a localized basis, when heating wafers to elevated temperatures, to achieve different processing temperatures by altering the material properties, such as emissivity, absorptivity and reflectivity, of a portion of a surface by the application of thin films of various materials.
|
1. A method of manufacturing an integrated circuit comprising:
a. providing a wafer having a surface; b. altering material properties of at least one selected portion of said surface, said at least one portion comprising in total less than all of said surface, to alter heat flow in said portion by depositing at least one layer of film on said portion; c. heating said wafer to an elevated temperature to initiate a reaction at said portion; d. monitoring said temperature of said wafer to control said heating and terminating said heating when a predetermined period of time has expired.
19. A method of manufacturing an integrated circuit comprising:
a. providing a wafer having a surface and at least one portion of titanium metal and a section of silicon adjacent to said portion on said surface; b. altering material properties of said portion to alter heat flow in said portion by depositing at least one layer of oxide film of about 1000 Å on said portion, whereby said heat flow increases a temperature at said portion by about 20°C; c. placing said wafer in a rapid thermal annealer having at least one heating lamp and a processing chamber; d. heating said wafer with said heating lamp at a temperature of about 650°C to produce a chemical reaction between at least a portion of said titanium metal and said silicon to form TiSi2 ; e. monitoring a temperature of said wafer with a closed loop temperature control system, wherein a pyrometer senses an average wafer temperature in said rapid thermal annealer; and f. providing a temperature feedback from said temperature control system to control said heating lamp.
2. The method of
3. The method of
4. The method of
7. The method of
9. The method of
10. The method of
stripping said residual photoresist from said wafer; and etching said unreacted product from said wafer.
11. The method of
14. The method of
15. The method of
16. The method of
17. The method of
|
1. Field of the Invention
This invention relates to a method of manufacturing semiconductor integrated circuit interconnect structures. The invention relates more particularly to a method to alter heat flow on a localized basis when heating wafers to elevated temperatures to achieve different processing temperatures by altering the material properties, such as emissivity, absorptivity, and reflectivity, of a portion of a surface by the application of thin films of specified materials.
2. Background of the Invention
A. Field of the Invention
This invention relates to a method for fabricating semiconductor integrated circuit devices, specifically with a method for fabricating semiconductor integrated circuit devices enabling the creation of temperature differentials.
B. Description of the Related Art.
Semiconductor integrated circuit devices typically comprise silicon and multiple layers of vertically stacked metal interconnect layers with dielectric materials disposed between them. The fabrication of such devices typically involves the repeated deposition or growth, patterning, and etching of thin films of semiconductor, metal, and dielectric materials.
A substantial part of integrated device manufacture involves heating the wafers to elevated temperatures to promote a particular chemical reaction or to anneal the structure to achieve a desired metallurgical effect.
Typically, batch furnaces are used to heat silicon-based semiconductors during thermal fabrication steps. The furnaces heat primarily by radiation such that the wafers are in thermal equilibrium with the furnace surroundings. For example, as shown in FIG. 1, a batch furnace 10 may include a quartz tube 1 inserted into the core 2 of a furnace 3 that is heated resistively, where gas flows through the tube 1. Wafers 4 are placed inside the tube 1 and pushed into the core 2, where a uniform temperature is maintained. The heating elements 5 heat the core 2 and the wafers 4 with long-wavelength thermal radiation. Many wafers may be processed simultaneously and the cost of operation is divided among the number of wafers in the batch. A problem with using a furnace is that the wafers are susceptible to contamination from the hot processing in the core 2 on which deposited films may accumulate and flake off or through which impurities may diffuse and contaminate wafers 4.
Microprocessing environments for single wafers are now being used since control of contamination, process parameters, and reduced manufacturing costs are desired. In particular, rapid thermal processing (RTP) using transient lamp heating allows thermal processing to occur in a closed microenvironment. A rapid thermal processor 20 is shown in FIG. 2. A single wafer 11 is heated quickly under atmospheric conditions or at low pressure. The processing chamber 12 is either made of quartz, silicon carbide, stainless steel, or aluminum and has quartz windows 13 through which the optical radiation passes to illuminate the wafer 11. The wafer 11 is held, usually on thin quartz pins 18, in thermal isolation inside chamber 12. An ambient atmosphere inside chamber 12 is controlled by gas flow through chamber 12. Gas flows into the chamber 12 at gas inlet 14. Lamps 15 heat the wafer 11 through windows 13, aided by reflectors 17 above the lamps 15. A measurement system is placed in a control loop to set wafer temperature. Typically, an optical pyrometer 16 determines the temperature from radiated infrared energy on the back ofthe wafer 11, but thermocouples can also be used. The RTP system is interfaced with a gas-handling system and a computer that controls system operation.
The transfer of heat between objects is a function of their emissivity and absorptivity. For example, a perfect radiator or absorber has an emissivity of 1.0, whereas metals have much lower values around 0.1. Heat flow and emissivity are related by the following equation:
Q=εσT4
where Q is total heat flow in W/m2, ε is emissivity, σ is the Stefan Boltzmann radiation constant of 5.67×10-8 W/m2° K4, and T is the temperature in ° K.
In many cases, there are competing reactions occurring and it is desirable for these reactions to occur at different temperatures. Thus, to the extent the emissivity of a surface can be altered on a localized basis, a temperature differential can be achieved.
A method is known to apply a thin film on a surface to control reflectivity and emissivity. This film is applied to a wafer in a rapid thermal processor to alter the energy exchange. This method does not address selective application of film on the wafer to alter the temperature.
Another method is known for applying a film onto a substrate of a semiconductor, heating the substrate, and removing the layer. This method is used for reducing the effects of semiconductor deformities and does not address temperature differences in heating the wafer.
As a result, it is desirable to have a method that alters emissivity of selected portions of a surface to achieve a temperature differential.
The invention is a method of manufacturing an integrated circuit including the steps of: (1) providing a wafer having a surface; (2) altering material properties, such as emissivity, absorptivity, and reflectivity, of at least one selected portion of the surface to alter heat flow in the portion by depositing at least one layer of film on the portion; (3) heating the wafer to an elevated temperature to initiate a reaction at the portion; and (4) monitoring the temperature of the wafer and terminating the heating when a predetermined period of time has expired.
FIG. 1 is a schematic cross-sectional view of a batch-furnace system used to heat wafers.
FIG. 2 is a schematic cross-sectional view of a rapid thermal processing system used to heat a single wafer.
FIG. 3 is a cross-sectional view of a portion of an integrated circuit.
FIG. 4 is a schematic cross-sectional view of a portion ofthe integrated circuit shown in FIG. 3 manufactured in accordance with the method of the invention.
FIG. 5 is a graph of wafer temperature versus time for a wafer with a deposited film (a) and a wafer without a deposited film (b).
FIG. 6 is a schematic cross-sectional view of a portion of the integrated circuit shown in FIG. 3 where the unreacted product is etched.
The invention will be understood more fully from the detailed description given below, which however, should not be taken to limit the invention to a specific embodiment, but is for explanation and understanding only.
FIGS. 3 and 4 illustrate aportion of an integrated circuit, which is manufactured in accordance with the method of invention. As shown in FIG. 3, the components of an integrated circuit include a wafer 30 having a surface 31 and selected portions 32 of the surface 31, where a chemical reaction or physical reaction, such as annealing, sintering, or diffusion, may occur in a rapid thermal processor (RTP), or other type of heater. In FIG. 4, the wafer 30 has layers of film 33 deposited on the selected portions 32.
The method of the invention includes manufacturing an integrated circuit including the steps of; (1) providing a wafer 30 having a surface 31, as shown in FIG. 3; (2) altering material properties, such as emissivity, absorptivity, and reflectivity, of at least one selected portion 32 of the surface 31 to alter heat flow in the portion 32 by depositing at least one layer of film 33 on the portion 32, as shown in FIG. 4; (3) heating the wafer 30 to an elevated temperature to initiate a reaction at the portion 32; and (4) monitoring the temperature of the wafer 30 to control the heating and terminating the heating when a predetermined period of time has expired.
While not completely understood, it is believed that a film will alter the energy or heat flow inside the RTP, dependent upon the physical characteristics of the film or compound with those of the surrounding media. The net heat transfer to the surface is expected to be a function of a material's emissivity (ε), absorptivity (∝), and reflectivity (γ) where ε+γ+∝=1. By careful choice of film properties subject to physical constraints like the above equation, the film 33 can be made to cause the selected portion of the wafer 30 to be relatively hotter or colder than the surrounding portion ofthe wafer during the RTP process. Although, in many cases, the desired result will be selective heating as opposed to selective cooling. For example, the heat flow can be characterized by the equation:
Q=εeσ(Ts4 -Tp4)
where Ts is the source temperature, Tp is the temperature of a portion of the wafer, and εe is the effective emissivity of a system comprised of a heat source of emissivity, ε83 and an emissivity of the portion, εp, and is characterized by the equation: ##EQU1##
It is believed that to the extent εp can be varied on a local basis, localized heating can be obtained.
The temperature differential, shown in FIG. 5 by a graph of temperature versus time, is derived from the above equations.
For example, when a metal film having an emissivity of 0.1 is deposited on a wafer, a silica film having an emissivity of 0.6 is placed selectively on top of the metal film, and the wafer is heated by a heating source at 1600° K, the temperature of the surface with the film at a given time, shown by curve 35, is greater than the temperature of a surface without the film at the same given time, shown by curve 36. After about 20 seconds of heating, the temperature on curve 35 is about 338° K and the corresponding temperature on curve 36 is about 316° K, producing a temperature differential of about 22° K. Thus, the heat flow at the surface with the silica film is greater, and while not completely understood, it is believed that the reaction under the film will occur at a different processing temperature than any reaction occurring on the surface without the film. This result was found to agree with an experiment described below using selected films of titanium on silicon. It is also believed that this heating requires less time to produce higher temperatures at various portions on the surface of the wafer. It should be realized that any practical situation may involve a more elaborate theoretical explanation involving the thickness of applied films and their thermal conductivity.
The film may be deposited by low pressure chemical vapor deposition, plasma-enhanced chemical vapor deposition, sputtering, spin-on-glass, molecular beam epitaxy, physical vapor deposition, or combinations thereof
Preferably, the film is deposited on the front of the wafer. Since most of the heat transfer takes place at relatively long wavelengths characteristic of infrared radiation, the exact thickness of the film is not particularly important. However, if the film is too thick, it may have a reverse effect by decreasing the temperature due to the low thermal conductivity of dielectric film.
The choice of film deposited depends on the cost and ease of the deposition. Particularly preferred are oxide films because they are easily deposited, heated, and patterned and do not have to be removed. Other preferred films are nitrides, metals, silicon, carbon, silicon carbide, or mixtures thereof Carbon and silicon carbide films produce the best emissivity, being close to 1.
Heating may be performed with a rapid thermal processor (RTP), such as a rapid thermal annealer (RTA), or a furnace. An RTP is preferred because it heats in a short time period, where higher temperature differentials may be achieved. In a furnace, over long periods of time, the temperature differential will decrease and eventually reach 0.
These methods may also include the further step of removing the film from the surface. Alternatively, if a residual photoresist and a reacted product are formed on the wafer, the method may include the further steps of stripping the residual photoresist from the wafer; and etching the unreacted product from the wafer. The etched wafer 60 is shown in FIG. 6.
In one experiment, the reaction of Ti and Si forming TiSi2, or self-aligning titanium silicide, was examined. A wafer having exposed surfaces of Si was provided. After deposition of titanium, which is a metal of low emissivity, the titanium was coated with an oxide film of 1000 Åto improve the heat flow. The silicide was selectively formed by a rapid thermal process, in this case, a rapid thermal annealer having a heating lamp and a processing chamber, at a reaction temperature of 650°C A pyrometer of a closed loop temperature control system sensed an average wafer temperature to control the heating lamp. In this process, the temperature must be comparatively high to achieve complete silicidation on silicon, but as low as possible to avoid any reaction with SiO2. The amount of TiSi2 formed with the presence ofthe oxide film indicated a temperature differential of 20°C which is consistent with the prior set of calculations. Typically, this method is followed by etching the titanium with a wet etch.
The above steps may be repeated any number of times.
While the invention has been described with specificity, additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. For example, different layers of film may be applied to different areas to produce different reactions, or other different processes, at different times, or during one single heating process.
Pearce, Charles Walter, Billig, Michael Steven
Patent | Priority | Assignee | Title |
10267848, | Nov 21 2008 | FormFactor, Inc | Method of electrically contacting a bond pad of a device under test with a probe |
6596604, | Jul 22 2002 | Atmel Corporation | Method of preventing shift of alignment marks during rapid thermal processing |
6599831, | Apr 30 2002 | Advanced Micro Devices, Inc. | Metal gate electrode using silicidation and method of formation thereof |
6873030, | Apr 30 2002 | Advanced Micro Devices, Inc. | Metal gate electrode using silicidation and method of formation thereof |
7138810, | Nov 08 2002 | Cascade Microtech, Inc. | Probe station with low noise characteristics |
7138813, | Jun 30 1999 | Cascade Microtech, Inc. | Probe station thermal chuck with shielding for capacitive current |
7164279, | Apr 14 1995 | Cascade Microtech, Inc. | System for evaluating probing networks |
7176705, | Jun 07 2004 | FormFactor, Inc | Thermal optical chuck |
7190181, | Jun 06 1997 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
7221146, | Dec 13 2002 | FORMFACTOR BEAVERTON, INC | Guarded tub enclosure |
7221172, | May 06 2003 | CASCADE MICROTECH INC | Switched suspended conductor and connection |
7250626, | Oct 22 2003 | FormFactor, Inc | Probe testing structure |
7250779, | Nov 25 2002 | FormFactor, Inc | Probe station with low inductance path |
7268533, | Aug 06 2004 | FORMFACTOR BEAVERTON, INC | Optical testing device |
7292057, | Jun 30 1999 | FORMFACTOR BEAVERTON, INC | Probe station thermal chuck with shielding for capacitive current |
7295025, | Nov 08 2002 | Cascade Microtech, Inc. | Probe station with low noise characteristics |
7304488, | May 23 2002 | FormFactor, Inc | Shielded probe for high-frequency testing of a device under test |
7321233, | Apr 14 1995 | Cascade Microtech, Inc. | System for evaluating probing networks |
7330023, | Jun 11 1992 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
7330041, | Jun 14 2004 | FORMFACTOR BEAVERTON, INC | Localizing a temperature of a device for testing |
7348787, | Jun 11 1992 | Cascade Microtech, Inc. | Wafer probe station having environment control enclosure |
7352168, | Sep 05 2000 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7355420, | Aug 21 2001 | FORMFACTOR BEAVERTON, INC | Membrane probing system |
7362115, | Dec 24 2003 | Cascade Microtech, INC | Chuck with integrated wafer support |
7368925, | Jan 25 2002 | Cascade Microtech, Inc. | Probe station with two platens |
7368927, | Jul 07 2004 | FormFactor, Inc | Probe head having a membrane suspended probe |
7403025, | Feb 25 2000 | FORMFACTOR BEAVERTON, INC | Membrane probing system |
7403028, | Jun 12 2006 | Cascade Microtech, Inc. | Test structure and probe for differential signals |
7417446, | Nov 13 2002 | Cascade Microtech, Inc. | Probe for combined signals |
7420381, | Sep 13 2004 | Cascade Microtech, INC | Double sided probing structures |
7423419, | Sep 05 2000 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7436170, | Jun 06 1997 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
7436194, | May 23 2002 | FormFactor, Inc | Shielded probe with low contact resistance for testing a device under test |
7443186, | Jun 12 2006 | FORMFACTOR BEAVERTON, INC | On-wafer test structures for differential signals |
7449899, | Jun 08 2005 | FormFactor, Inc | Probe for high frequency signals |
7453276, | Nov 13 2002 | Cascade Microtech, Inc. | Probe for combined signals |
7456646, | Dec 04 2000 | Cascade Microtech, Inc. | Wafer probe |
7468609, | May 06 2003 | Cascade Microtech, Inc. | Switched suspended conductor and connection |
7482823, | May 23 2002 | FORMFACTOR BEAVERTON, INC | Shielded probe for testing a device under test |
7489149, | May 23 2002 | FormFactor, Inc | Shielded probe for testing a device under test |
7492147, | Jun 11 1992 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
7492172, | May 23 2003 | Cascade Microtech, INC | Chuck for holding a device under test |
7492175, | Aug 21 2001 | FORMFACTOR BEAVERTON, INC | Membrane probing system |
7495461, | Dec 04 2000 | Cascade Microtech, Inc. | Wafer probe |
7498828, | Nov 25 2002 | FORMFACTOR BEAVERTON, INC | Probe station with low inductance path |
7498829, | May 23 2003 | Cascade Microtech, Inc. | Shielded probe for testing a device under test |
7501810, | Sep 05 2000 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7501842, | May 23 2003 | Cascade Microtech, Inc. | Shielded probe for testing a device under test |
7504823, | Jun 07 2004 | Cascade Microtech, Inc. | Thermal optical chuck |
7504842, | May 28 1997 | Cascade Microtech, Inc. | Probe holder for testing of a test device |
7514915, | Sep 05 2000 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7514944, | Jul 07 2004 | FORMFACTOR BEAVERTON, INC | Probe head having a membrane suspended probe |
7518358, | Sep 05 2000 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7518387, | May 23 2002 | FormFactor, Inc | Shielded probe for testing a device under test |
7533462, | Jun 04 1999 | FORMFACTOR BEAVERTON, INC | Method of constructing a membrane probe |
7535247, | Jan 31 2005 | FormFactor, Inc | Interface for testing semiconductors |
7541821, | Aug 08 1996 | Cascade Microtech, Inc. | Membrane probing system with local contact scrub |
7550984, | Nov 08 2002 | Cascade Microtech, Inc. | Probe station with low noise characteristics |
7554322, | Sep 05 2000 | FORMFACTOR BEAVERTON, INC | Probe station |
7589518, | Jun 11 1992 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
7595632, | Jun 11 1992 | Cascade Microtech, Inc. | Wafer probe station having environment control enclosure |
7609077, | Jun 09 2006 | Cascade Microtech, INC | Differential signal probe with integral balun |
7616017, | Jun 30 1999 | FORMFACTOR BEAVERTON, INC | Probe station thermal chuck with shielding for capacitive current |
7619419, | Jun 13 2005 | FORMFACTOR BEAVERTON, INC | Wideband active-passive differential signal probe |
7626379, | Jun 06 1997 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
7639003, | Dec 13 2002 | FORMFACTOR BEAVERTON, INC | Guarded tub enclosure |
7656172, | Jan 31 2005 | FormFactor, Inc | System for testing semiconductors |
7681312, | Jul 14 1998 | Cascade Microtech, Inc. | Membrane probing system |
7688062, | Sep 05 2000 | Cascade Microtech, Inc. | Probe station |
7688091, | Dec 24 2003 | Cascade Microtech, INC | Chuck with integrated wafer support |
7688097, | Dec 04 2000 | FORMFACTOR BEAVERTON, INC | Wafer probe |
7723999, | Jun 12 2006 | Cascade Microtech, Inc. | Calibration structures for differential signal probing |
7750652, | Jun 12 2006 | Cascade Microtech, Inc. | Test structure and probe for differential signals |
7759953, | Dec 24 2003 | Cascade Microtech, Inc. | Active wafer probe |
7761983, | Dec 04 2000 | Cascade Microtech, Inc. | Method of assembling a wafer probe |
7761986, | Jul 14 1998 | FORMFACTOR BEAVERTON, INC | Membrane probing method using improved contact |
7764072, | Jun 12 2006 | Cascade Microtech, Inc. | Differential signal probing system |
7876114, | Aug 08 2007 | Cascade Microtech, INC | Differential waveguide probe |
7876115, | May 23 2003 | Cascade Microtech, Inc. | Chuck for holding a device under test |
7888957, | Oct 06 2008 | FormFactor, Inc | Probing apparatus with impedance optimized interface |
7893704, | Aug 08 1996 | Cascade Microtech, Inc. | Membrane probing structure with laterally scrubbing contacts |
7898273, | May 23 2003 | Cascade Microtech, Inc. | Probe for testing a device under test |
7898281, | Jan 31 2005 | FormFactor, Inc | Interface for testing semiconductors |
7940069, | Jan 31 2005 | FormFactor, Inc | System for testing semiconductors |
7969173, | Sep 05 2000 | FORMFACTOR BEAVERTON, INC | Chuck for holding a device under test |
8013623, | Sep 13 2004 | FORMFACTOR BEAVERTON, INC | Double sided probing structures |
8069491, | Oct 22 2003 | Cascade Microtech, Inc. | Probe testing structure |
8198628, | Mar 30 2007 | Soitec | Doped substrate to be heated |
8319503, | Nov 24 2008 | FormFactor, Inc | Test apparatus for measuring a characteristic of a device under test |
8410806, | Nov 21 2008 | FormFactor, Inc | Replaceable coupon for a probing apparatus |
8451017, | Jul 14 1998 | FORMFACTOR BEAVERTON, INC | Membrane probing method using improved contact |
9429638, | Nov 21 2008 | FormFactor, Inc | Method of replacing an existing contact of a wafer probing assembly |
Patent | Priority | Assignee | Title |
3836745, | |||
5382551, | Apr 09 1993 | Micron Technology, Inc | Method for reducing the effects of semiconductor substrate deformities |
5508934, | May 17 1991 | Texas Instruments Incorporated | Multi-point semiconductor wafer fabrication process temperature control system |
5561612, | May 18 1994 | Micron Technology, Inc | Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine |
5654904, | May 18 1994 | Micron Technology, Inc. | Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine |
5851929, | Jan 04 1996 | Micron Technology, Inc. | Controlling semiconductor structural warpage in rapid thermal processing by selective and dynamic control of a heating source |
5861609, | Oct 02 1995 | AST elektronik GmbH | Method and apparatus for rapid thermal processing |
6074087, | Sep 04 1997 | National Security Council | Non-contact method for measuring the surface temperature distribution of a melt during growth of ionic crystals |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 19 1999 | BILLIG, MICHAEL STEVEN | Lucent Technologies, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010419 | /0974 | |
Nov 19 1999 | PEARCE, CHARLES WALTER | Lucent Technologies, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010419 | /0974 | |
Nov 23 1999 | Agere Systems Guardian Corp. | (assignment on the face of the patent) | / | |||
May 06 2014 | LSI Corporation | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
May 06 2014 | Agere Systems LLC | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
Aug 04 2014 | Agere Systems LLC | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035365 | /0634 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | LSI Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Feb 01 2016 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | BANK OF AMERICA, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 037808 | /0001 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Agere Systems LLC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Jan 19 2017 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 041710 | /0001 | |
Dec 08 2017 | Broadcom Corporation | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044886 | /0608 | |
Dec 08 2017 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044886 | /0608 | |
Jan 24 2018 | HILCO PATENT ACQUISITION 56, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Semiconductor, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Northern Research, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | HILCO PATENT ACQUISITION 56, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Semiconductor, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Northern Research, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 |
Date | Maintenance Fee Events |
Dec 10 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 22 2004 | ASPN: Payor Number Assigned. |
Dec 11 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 01 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 12 2004 | 4 years fee payment window open |
Dec 12 2004 | 6 months grace period start (w surcharge) |
Jun 12 2005 | patent expiry (for year 4) |
Jun 12 2007 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 12 2008 | 8 years fee payment window open |
Dec 12 2008 | 6 months grace period start (w surcharge) |
Jun 12 2009 | patent expiry (for year 8) |
Jun 12 2011 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 12 2012 | 12 years fee payment window open |
Dec 12 2012 | 6 months grace period start (w surcharge) |
Jun 12 2013 | patent expiry (for year 12) |
Jun 12 2015 | 2 years to revive unintentionally abandoned end. (for year 12) |