A high temperature rfid tag is described which has a survival temperature in the range of approximately -40°C to 300°C and an operating temperature in the range of approximately -20°C to 200°C In one embodiment of the invention, the rfid tag comprises a housing comprising a substantially flexible first thermally resistant material and having a base and a top, and a circuit board substrate comprising a substantially flexible second thermally resistant material which is encapsulated within the housing. In an additional embodiment of the invention, the high temperature rfid tag comprises a substrate assembly, the substrate assembly including a substrate having an integrated circuit disposed thereon, the substrate comprising a substantially flexible first thermally resistant material, and a high temperature encapsulant disposed on a first side of the substrate, the substrate assembly having a survival temperature in the range of -40°C to 300°C

Patent
   6255949
Priority
Oct 15 1997
Filed
Sep 01 1999
Issued
Jul 03 2001
Expiry
Oct 15 2017
Assg.orig
Entity
Small
37
3
all paid
13. A high temperature rfid tag, comprising:
a substrate assembly, said substrate assembly including a substrate having an integrated circuit disposed thereon, said substrate comprising a substantially flexible first thermally resistant material, and a high temperature encapsulant disposed on a first side of said substrate,
said substrate assembly having a survival temperature in the range of 220°C to 300°C and an operating temperature range of approximately -18°C to 135°C
7. A high temperature rfid tag, comprising:
a housing having base and a top, said base and said top forming a chamber therein, said housing comprising a substantially flexible first thermally resistant material; and
a circuit board substrate disposed within said chamber, said substrate including an integrated circuit, said substrate comprising a substantially flexible second thermally resistant material;
said housing and said substrate jointly having a survival temperature in the range of approximately 220°C to 300°C
18. A high temperature rfid tag, comprising:
a substrate assembly, said substrate assembly including a substrate having an integrated circuit disposed thereon, said substrate comprising a substantially flexible first thermally resistant material, and a high temperature encapsulant disposed on a first side of said substrate,
said substrate assembly being capable of exposure to cyclic changes in temperature to and between an operating temperature range of approximately -18°C to 135°C and a survival temperature range of approximately 220°C to 300°C without substantially affecting the intended functions of the tag.
1. A rfid tag, comprising:
a housing and substrate assembly,
said housing having base and a top, said base and said top forming a chamber therein, said housing comprising a first thermally resistant material,
said substrate assembly including a substrate having an integrated circuit, said substrate comprising a second thermally resistant material,
said substrate assembly being disposed in said chamber,
said housing and substrate assembly jointly having a survival temperature range of approximately 220°C to 300°C and an operating temperature range of approximately -18°C to 135°C,
said housing and substrate assembly jointly being capable of exposure to cyclic changes in temperature to and between said operating temperature range and said survival temperature range without substantially affecting the intended functions of the tag.
2. The rfid tag of claim 1, wherein said substrate is encapsulated in said housing chamber with a high temperature epoxy.
3. The rfid tag of claim 1, wherein said first thermally resistant material comprises a Ryton® PPS compound.
4. The rfid tag of claim 1, wherein said second thermally resistant material comprises a pre-conditioned polyimid.
5. The rfid tag of claim 1, wherein said second thermally resistant material comprises a ceramic compound.
6. The rfid tag of claim 1, wherein said first and said second thermally resistant materials comprise a substantially flexible polyimid.
8. The rfid tag of claim 7, wherein said tag has an operating temperature is in the range of -18°C to 135°C
9. The rfid tag of claim 7, wherein said circuit board substrate is encapsulated in said housing.
10. The rfid tag of claim 9, wherein a high temperature silicone is employed to encapsulate said circuit board substrate.
11. The rfid tag of claim 7, wherein said housing has a substantially cylindrical shape.
12. The rfid tag of claim 7, wherein said housing has a substantially square shape.
14. The rfid tag of claim 13, wherein said first thermally resistant material comprises a substantially flexible polyimide.
15. The rfid tag of claim 13, wherein said high temperature encapsulant comprises silicone.
16. The rfid tag of claim 13, wherein said substrate assembly has a maximum thickness in the range of 0.020 to 0.040 inches.
17. The rfid tag of claim 13 wherein said substrate assembly further includes a high temperature adhesive disposed on a second side of said substrate.

This Application is a Continuation-In-Part of prior application Ser. No. 08/943,679 filed, Oct. 15, 1997, now U.S. Pat. No. 5,973,599.

The present invention relates in general to radio frequency identification (RFID) devices, and more particularly to a high temperature RFID tag.

RFID systems are well known in the art. Such systems include relatively large packages containing battery powered transmission/receiving circuitry, such as the identification system disclosed in U.S. Pat. No. 4,274,083, to passive systems in which the transceiver receives its power from the base station or interrogator, such as the identification system disclosed in U.S. Pat. No. 4,654,658.

A typical RFID system is made up of reusable tags fixed to or embedded in product carriers, antennas that interrogate the tags via a RF link and a controller. The host (or computer) system interfaces with the controller and directs the interrogation of the tags.

RFID tags provide effective means of identifying, monitoring and controlling materials in a closed loop process. In the factory, tags are employed as the transport mechanism between "islands of automation," providing a record of each process which can be acted upon immediately or downloaded later for analysis.

The tags can be powered by an internal battery (i.e., an "active" tag) or by inductive coupling (i.e., a "passive" tag). Passive tags have zero maintenance and virtually unlimited life. The life span of an active tag is, however, limited by the lifetime of the battery, although some tags offer replaceable batteries.

RFID tags are packaged in a variety of forms and are fastened by a multitude of means. The tags are typically encapsulated for durability against shock, fluids, dust or dirt. Although such tags are immune to most environmental factors , they can, and in many instances will be, adversely affected by high temperature environments.

It is, therefore, an object of the present invention to provide a RFID tag having the capability of operating over a broad range of temperatures.

It is another object of the invention to provide a substantially flexible RFID tag which is capable of operation in harsh, high temperature factory environments.

The high temperature RFID tag of the present invention has a substantially enhanced survival temperature in the range of -40°C to 300°C The tag also has a unique operating temperature in the range of -18°C to 135°C

In accordance with the objects and advantages of the present invention, the high temperature RFID tag comprises a housing and substrate assembly, the housing having a base and a top, the base and the top forming a chamber therein, the housing comprising a first thermally resistant material; the substrate assembly including a substrate comprising a second thermally resistant material, the substrate including an integrated circuit, the substrate assembly being disposed in the chamber; the housing and substrate assembly jointly having a survival temperature range of approximately 220°C to 300°C and an operating temperature range of approximately -18°C to 135°C; the housing and substrate assembly being capable of exposure to cyclic changes in temperature to and between the operating temperature range and the survival temperature range without substantially affecting the intended functions of the tag. According to the invention, the first and second thermally resistant materials can also comprise substantially flexible thermal resistant materials.

In an additional embodiment of the invention, the high temperature RFID tag comprises a substrate assembly, the substrate assembly including a substrate having an integrated circuit disposed thereon, the substrate comprising a substantially flexible first thermally resistant material, and a high temperature encapsulant disposed on a first side of the substrate, the substrate assembly having a survival temperature in the range of -40°C to 300°C

Further features and advantages will become apparent from the following and more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawings, and in which like referenced characters generally refer to the same parts or elements throughout the views, and in which:

FIG. 1 is a schematic illustration of a typical RFID system;

FIG. 2. is a perspective view of one embodiment of a high temperature RFID tag, according to the invention;

FIG. 3 is an exploded perspective view of the high temperature RFID tag shown in FIG. 2;

FIG. 4 is a perspective view of an additional embodiment of a high temperature RFID tag, according to the invention;

FIG. 5 is a perspective view of a further embodiment of a high temperature RFID tag, according to the invention; and

FIG. 6 is a cross-sectional view of the high temperature RFID tag shown in FIG. 5.

The high temperature RFID tags of the present invention substantially reduce or eliminate the disadvantages and shortcomings associated with prior art RFID tags. In one embodiment of the invention, a thermally resistant (i.e., high temperature) housing having a base and top, and a thermally resistant circuit board substrate having an integrated circuit (IC) thereon is provided to achieve the unique survival temperatures and high temperature operating capabilities of the tag. In a further embodiment of the invention, the housing and circuit board substrate comprise substantially flexible thermally resistant materials.

In yet another embodiment of the invention, the RFID tag comprises a substrate assembly. The substrate assembly includes a substrate comprising a substantially flexible thermally resistant material. The substrate includes an integrated circuit and a high temperature encapsulant disposed on one side thereof.

As discussed in detail below, the RFID tags of the invention have an operating temperature in the range of approximately -20°C to 200°C, preferably -18°C to 135°C, and a survival temperature in the range of approximately -40°C to 300°C The RFID tags are also capable of exposure to cyclic changes in temperature to and between the operating temperature range and survival temperature range without adversely affecting the intended functions of the tags.

By the term "operating temperature", as used herein, it is meant to mean the temperature (and/or range thereof) at which a tag can perform the intended functions. The intended functions include read, write and fill functions.

By the term "survival temperature", it is meant to mean the temperature (and/or range thereof) at which a tag can be exposed without adversely affecting the performance characteristics of the tag upon returning to an operating temperature.

Referring first to FIG. 1, there is shown a simple read/write RFID system. The system typically comprises one or more tags (or transponders) 10, containing some data in memory, at least one antenna 12 to communicate with the tags 10, and a controller 14 for managing the communication interface. The host system 16 interfaces with the controller 14 and directs the interrogation of the tags 10 disposed on or embedded in the product carriers 11 and any following action via parallel, serial or bus communications 18.

Referring now to FIG. 2, there is shown a perspective view of one embodiment of the high temperature RFID tag 20 of the present invention. In the noted embodiment, the tag 20 comprises a passive read/write tag. However, as will be appreciated by one having ordinary skill in the art, the concepts of the illustrated embodiment can be incorporated into fabricated active systems.

As illustrated in FIG. 2, the tag 20 preferably has a substantially cylindrical shape, with a diameter in the range of approximately 0.25 in. to 5.0 in., preferably approximately 1.0 in. The tag 20 is thus capable of being attached to or embedded in various surface configurations and limited surface areas.

In additional envisioned embodiments of the invention, the tag has a substantially square shape. In accordance with this embodiment, the surface dimension of the tag is preferably in the range of 0.25 in. to 3 in. (i.e., 1 in.×1 in., 2 in.×2 in., 3 in.×3 in.).

As will be appreciated by one having ordinary skill in the art, the high temperature tag of the present invention can comprise various shapes. The tags can also include various conventional attachment means.

According to the invention, the tag housing 21 preferably includes a housing base 24 and top 22 (see FIG. 3). In additional envisioned embodiments of the invention, not shown, the housing 21 can also comprise a one piece, molded unit.

As illustrated in FIG. 3, the base 24 comprises a substantially cylindrical bottom portion 25 with a circumferential wall 28 disposed on the outer edge, defining a tag chamber 30 therein. The wall 28 preferably includes a cap seat 29 which is adapted to position the housing cap 22.

As illustrated in FIGS. 2 and 3, the housing top 22 has a correspondingly similar substantially cylindrical shape. The top 22 is provided with a lower engagement portion 27 which is adapted to slideably engage the inside surface of the cap seat 29.

A key feature of the present invention is the unique high temperature resistance of the housing 21. According to the invention, the housing 21 comprises a high thermally resistant material, such as Teflon® or a Ryton® PPS compound, which can be exposed to high temperatures without materially affecting the material's properties and/or characteristics. In a preferred embodiment, the housing 21 comprises the Ryton® PPS compound, R-4 02XT. The noted thermally resistant materials exhibit a deflection temperature in a range of 287°C to 320°C

Disposed in the tag chamber 30 is the circuit board substrate 26. The substrate 26 includes an IC circuit 28 preferably disposed on one surface thereof.

As illustrated in FIG. 3, the circuit board substrate 26 is similarly substantially cylindrically shaped and is adapted to be positioned within the tag chamber 30. According to the invention, the IC circuit 28 comprises copper or other like material and is clad to the circuit board 26 by conventional means.

In a preferred embodiment, the IC circuit 28 is die bonded to the circuit board 26 via a gold brazing material and is encapsulated using a thermally resistant material, such as Eccobond® "104", a high temperature epoxy, or a high temperature substantially flexible silicone. The noted materials exhibit excellent performance characteristics over a broad range of temperatures and, hence, protect the circuit 28 at elevated temperatures.

According to the invention, the circuit board substrate 26 similarly comprises a high thermally resistant material, such as a pre-conditioned polyimide or a ceramic compound. In a preferred embodiment, the circuit board substrate 26 comprises a pre-conditioned polyimide having a Tg of 300°C

Referring to FIG. 2, the housing top 22 is sealably molded to the housing base 24, encapsulating the circuit board substrate 26 therein. According to the invention, the top 22 is injection molded to the base 24 to provide effective encapsulation. As will be appreciated by one having ordinary skill in the art, various encapsulation methods may be employed within the scope of the invention, such as the one piece, molded housing discussed above.

In additional envisioned embodiments of the invention, the housing base 24, housing top 22 and substrate 26 comprise substantially flexible , high temperature resistant materials. Preferably, the housing base 24, top 22 and substrate 26 comprise a substantially flexible polyimid, such as Kapton™.

Referring now to FIG. 5, there is shown a further embodiment of a high temperature RFID tag 70, according to the invention. As discussed in detail below, in this embodiment the RFID tag 70 primarily comprise s a substantially square, substantially flexible circuit board substrate 72. However, as will be appreciated by one having skill in the art, the substrate 72 (and hence, tag 70) can similarly comprise various shapes, such as substantially circular.

As illustrated in FIG. 5, the substrate 72 similarly includes an IC circuit 74 preferably disposed on the top surface 71 a thereof According to the invention, the circuit 74 comprises copper or other like material and is bonded to or etched on the substrate 72 by conventional means.

The circuit board substrate 26 further includes an integrated circuit (IC) device 76 (e.g., chip) to control the intended functions of the tag 70. According to the invention, the IC device is bonded to the substrate 72 by conventional means.

Referring now to FIG. 6, also disposed on the top surface 71 a of the substrate 72 is a thermally resistant, substantially flexible silicone encapsulant 78. In a preferred embodiment, the silicone encapsulant 78 comprises Stycast™ 4952 (manufactured by Emerson & Cuming Specialty Polymers).

As illustrated in FIG. 6, the substrate 72 further includes a high temperature adhesive 80 disposed on the bottom surface 71b of the substrate 72. In a preferred embodiment, 3M®-9460PC, having a temperature of 500 dF, is employed as the adhesive.

The tag 70, comprising the integrated structure discussed above, thus similarly exhibits the superior thermal and shock resistance of the previous embodiments. The tag 70 is also substantially flexible and has a maximum thickness in the range of 0.020 in. to 0.040 inches.

Applicant's have found that the high temperature RFID tags of the present invention have a survival temperature range of approximately -40° C. to 300°C and exhibit superior performance characteristics over the operating temperature range of approximately -18°C to 135°C The RFID tags can also be cycled to/from the survival temperature to/from the operating temperature range without adversely affecting the performance characteristics of the tags. The tags may thus be employed in various high temperature industrial environments and/or operations, such as painting operations and engine fabrication, which has not been possible with prior art tags.

While preferred embodiments and their technical advantages have been described in the above detailed description and illustrated in the drawings, the present invention is not limited thereto but only by the scope and spirit of the appended claims.

Monahan, Brian, Nicholson, Mark

Patent Priority Assignee Title
10166707, Dec 19 2016 Securitag Assembly Group Co., Ltd RFID device and method for making the same
11273005, Feb 19 2019 SENOPS TRACKER Medical asset tracking methods and apparatus
6320128, May 25 2000 WILMINGTON TRUST FSB, AS ADMINISTRATIVE AGENT Environmentally-sealed electronic assembly and method of making same
6653936, Apr 29 1999 Bridgestone Americas Tire Operations, LLC Patch and tire monitoring device
6957777, Sep 21 2004 Huang, Sheng-Chang; Supreme Technic Package Co., Ltd. Label to be attached on a plastic product formed in a mold and identifiable by a detecting device
6991175, Sep 21 2004 Label to be attached on a plastic product formed in a mold and identifiable by a detecting device
7059974, Jun 30 1999 TOPGOLF SYSTEMS, LIMITED Golf balls with impact resistant identification device
7213767, Feb 23 2005 Warsaw Orthopedic, Inc Sleeve-type RFID tag
7256699, Mar 24 2005 Warsaw Orthopedic, Inc Button-type RFID tag
7338377, Aug 20 2002 FIGUREFUN LLC Token with built-in IC chip
7342496, Jan 24 2000 NEXTREME, L L C RF-enabled pallet
7636046, Nov 30 2007 CENTRAK, INC Wireless tracking system and method with extreme temperature resistant tag
7701334, Apr 01 2009 CENTRAK, INC Wireless tracking system and method for sterilizable object
7760104, Apr 08 2005 MORGAN STANLEY SENIOR FUNDING, INC Identification tag for fluid containment drum
7847698, Apr 26 2001 Arjo Wiggins Security Sas Cover incorporating a radio frequency identification device
7875227, Dec 01 2006 BPREX HEALTHCARE PACKAGING INC Molded plastic container and preform having insert-molded RFID tag
7918455, Nov 09 2005 NEVADA STATE BANK Chip with insert including an electronic microchip
7940185, Apr 26 2001 Arjowiggins Security SAS Cover incorporating a radiofrequency identification device
7948371, Jan 24 2000 Nextreme LLC Material handling apparatus with a cellular communications device
8033462, Apr 01 2009 CENTRAK, INC Wireless tracking system and method for sterilizable object
8077040, Jan 24 2000 Nextreme, LLC RF-enabled pallet
8120497, Nov 06 2007 VALLOUREC OIL AND GAS FRANCE, S A S RFID transponder enclosure for harsh environments
8186587, Nov 24 2006 BLUECHIIP LIMITED Tagging methods and apparatus
8240549, Jul 29 2009 Macronix International Co., Ltd. IC package tray embedded RFID
8248242, Nov 30 2007 CENTRAK, INC Wireless tracking system and method with extreme temperature resistant tag
8328107, Jan 15 2010 ASSA ABLOY AB High temperature tag
8338722, Jun 23 2008 RFID Mexico, S.A. De C.V. Tag enclosing structure
8464499, Apr 08 2005 MORGAN STANLEY SENIOR FUNDING, INC Method of filling a drum having an RFID identification tag
8600374, Feb 11 2011 CENTRAK, INC Sterilizable wireless tracking and communication device and method for manufacturing
8684705, Feb 26 2010 MORGAN STANLEY SENIOR FUNDING, INC Method and system for controlling operation of a pump based on filter information in a filter information tag
8727744, Feb 26 2010 MORGAN STANLEY SENIOR FUNDING, INC Method and system for optimizing operation of a pump
8753097, Dec 05 2005 MORGAN STANLEY SENIOR FUNDING, INC Method and system for high viscosity pump
9230227, Jan 24 2000 Nextreme, LLC Pallet
9297374, Oct 20 2010 MORGAN STANLEY SENIOR FUNDING, INC Method and system for pump priming
9354637, Feb 26 2010 MORGAN STANLEY SENIOR FUNDING, INC Method and system for controlling operation of a pump based on filter information in a filter information tag
9384441, Oct 29 2012 OPTOSYS SA Transponder for object identification and method for its fabrication
9563834, Apr 10 2013 Honeywell International, Inc. High temperature tolerant RFID tag
Patent Priority Assignee Title
5574470, Sep 30 1994 ASSA ABLOY AB Radio frequency identification transponder apparatus and method
5973599, Oct 15 1997 DATALOGIC AUTOMATION S R L ; DATALOGIC IP TECH S R L High temperature RFID tag
6037879, Oct 02 1997 Round Rock Research, LLC Wireless identification device, RFID device, and method of manufacturing wireless identification device
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 01 1999Escort Memory Systems(assignment on the face of the patent)
May 07 2012Escort Memory SystemsDATALOGIC AUTOMATION S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282250245 pdf
May 07 2012DATALOGIC AUTOMATION S R L DATALOGIC IP TECH S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282380499 pdf
Date Maintenance Fee Events
Dec 16 2004M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Dec 29 2004LTOS: Pat Holder Claims Small Entity Status.
Dec 24 2008M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Nov 01 2012ASPN: Payor Number Assigned.
Dec 12 2012M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jul 03 20044 years fee payment window open
Jan 03 20056 months grace period start (w surcharge)
Jul 03 2005patent expiry (for year 4)
Jul 03 20072 years to revive unintentionally abandoned end. (for year 4)
Jul 03 20088 years fee payment window open
Jan 03 20096 months grace period start (w surcharge)
Jul 03 2009patent expiry (for year 8)
Jul 03 20112 years to revive unintentionally abandoned end. (for year 8)
Jul 03 201212 years fee payment window open
Jan 03 20136 months grace period start (w surcharge)
Jul 03 2013patent expiry (for year 12)
Jul 03 20152 years to revive unintentionally abandoned end. (for year 12)