devices and methods for rendering an intravascular stent radioactive in-situ, after stent placement. A stent is provided having a tubular body and a first substance immobilized on body. The first substance preferably has a high and selective affinity for a second substance which can be radioactive, cytotoxic or thrombolytic. The first substance can also have an affinity for growth factors or thrombolytic, chemolytic or cytotoxic agents. The stent can be placed across a stenosed blood vessel region, preferably after dilation by angioplasty or atherectomy. After stent placement within the vessel, the second substance can be injected into the blood stream of a patient. With each pass through the stent, the second substance is increasingly bound to the first substance on the stent. Suitable complementary substance pairs include avidin and radio-labeled biotin, protamine and radioactive heparin, and protein and anti-protein antibody.
|
28. A system for inhibiting restenosis in blood vessels comprising:
a radioactive substance suitable for injection into the human blood stream; and a stent including a tubular body, and means for binding said radioactive substance when said radioactive substance is intravascularly injected, said binding means being immobilized on said tubular body. 21. A kit for inhibiting restenois in blood vessels comprising:
a stent including a tubular body, and a first substance immobilized on said tubular body; and a second substance adapted to bind to said first substance when said second substance is intravascularly injected, said second substance being radioactive, said substance being suitable for injection into the human blood stream.
1. A medical device adapted for placement at an intravascular treatment site to inhibit restenosis, the device comprising:
a device surface; a first substance immobilized on said device surface; and a radioactive second substance suitable for intravascular injection, wherein said first substance is adapted to bind said radioactive second substance when said second substance is intravascularly injected.
13. A medical device adapted for placement at an intravascular treatment site to inhibit restenosis, the device comprising:
a device surface; a first substance immobilized on said device surface; and a radioactive second substance suitable for intravascular injection, wherein said first substance is adapted to bind said radioactive second substance when said second substance is intravascularly injected, said second substance being selectively and strongly bound to said first substance.
36. A medical device adapted for intravascular placement comprising:
a device surface; a first substance immobilized on said surface; and a second substance suitable for intravascular injection, wherein said first substance is adapted to bind said second substance strongly and selectively when said second substance is intravascularly injected, and wherein said second substance is selected from the group consisting of cytotoxic substances, growth factors, thrombolytic agents and anti-thrombogenic agents.
29. A method for inhibiting restenosis in a stenosed blood vessel region of a patient comprising the steps:
providing a radioactive substance suitable for injection into the human blood stream; providing a medical device having a surface and means for binding said radioactive substance, said binding means connected to said surface; placing said device across said stenosed region; injecting said radioactive substance into the blood stream, such that said radioactive substance is bound to said binding means.
32. A method for inhibiting restenosis in a stenosed blood vessel region of a patient comprising the steps:
providing a medical device having a surface and a first substance immobilized on said surface; providing a second substance suitable for injection into the human blood stream, said second substance being radioactive; placing said medical device at said stenosed region; injecting said second substance into the blood stream, such that said second substance is substantially bound to said first substance.
37. A method for inhibiting restenosis in a stenosed blood vessel region of a patient comprising the steps:
providing a medical device having a surface and a first substance immobilized on said surface; providing a second substance suitable for injection into the human blood stream, wherein said second substance is selected from the group consisting of cytotoxic substances, growth factors, thrombolytic agents and anti-thrombogenic agents; placing said medical device at said stenosed region; and injecting said second substance into said blood stream, such that said second substance is bound to said first substance.
2. A medical device as recited in
3. A medical device as recited in
4. A medical device as recited in
5. A medical device as recited in
6. A medical device as recited in
7. A medical device as recited in
8. A medical device as recited in
9. A medical device as recited in
10. A medical device as recited in
11. A medical device as recited in
12. A medical device as recited in
14. A medical device as recited in
15. A medical device as recited in
16. A medical device as recited in
17. A medical device as recited in
18. A medical device as recited in
19. A medical device as recited in
20. A medical device as recited in
22. A kit as recited in
23. A kit as recited in
24. A kit as recited in
25. A kit as recited in
26. A kit as recited in
27. A kit as recited in
30. A method for inhibiting restenosis as recited in
31. A method for inhibiting restenosis as recited in
33. A method for inhibiting restenosis as recited in
34. A method for inhibiting restenosis as recited in
35. A method for inhibiting restenosis as recited in
39. A medical device as in
41. A medical device as in
46. A method for inhibiting restenosis as in
providing a third substance suitable for injection into the human blood stream, said third substance being non-radioactive and adapted to bind to said first substance; injecting said third substance into the blood stream such that said third substance is substantially bound to said first substance.
47. A method for inhibiting restenosis as in
providing a third substance suitable for injection into the human blood stream, said third substance being radioactive and adapted to bind to said first substance; injecting said third substance into the blood stream such that said third substance is substantially bound to said first substance.
|
The present invention is related to intra-vascular stents. More specifically, the present invention is related to a non-radioactive stent capable of being made radioactive in-situ, after placement within a blood vessel. The stent can be used to inhibit restenosis of blood vessels.
Coronary arteries provide blood and nutrients to the heart muscle. The arteries are subject to atherosclerosis or hardening of the arteries. Vascular regions have plaques formed within, resulting in stenosed regions having reduced cross-sectional area. The reduced area causes a reduction in transport of blood, oxygen, and nutrients which can result in angina, myocardial infarction and death.
A commonly used method for treating atherosclerosis is Percutaneous Transluminal Coronary Angioplasty (PTCA). PTCA includes insertion of a balloon catheter through an incision in the femoral artery near the groin, advancement of the balloon over the aortic arch, further advancement within the selected coronary artery, continuing until the balloon portion is placed across the stenosed region. The balloon is inflated, widening the narrowed vessel region.
After catheter withdrawal, significant vessel reclosure may develop. The reclosure may occur within hours or days of dilation, an "abrupt reclosure." When reclosure does occur, however, it more commonly occurs progressively, within six months of the angioplasty. The gradual reclosure is referred to as "restenosis", and largely negates the dilatation treatment. More highly stenosed vessel regions have a greater chance of becoming restenosed.
One approach to dealing with restenosis utilizes stents which are short tubular sections having a lumen therethrough, placed across the recently dilated vessel region. Stents can be either self-expanding or balloon-expandable. Stents are normally left in place indefinitely.
Use of radiation to kill and inhibit growth of cancerous cells is well known. The use of radiation to inhibit restenosis has been proposed. Use of a catheter having a radioactive source on the distal end has been proposed in U.S. Pat. No. 5,199,939 (Dake et al.). The catheter must be held in place during the entire therapy, which is considerably shorter than the months long period over which restenosis is believed to occur. Any radiation delivered must be delivered within the short period the catheter tip is in place. U.S. Pat. No. 5,059,166 (Fischell et al.) proposes using a radioactive stent. As a stent can be left in place indefinitely, the radiation exposure period more closely matches the time period over which restenosis can occur.
Use of a radioactive stent can present drawbacks. A radioactive stent can require shielding both during storage and during placement within the patient. During stent placement, the stent is normally mounted within a delivery device and inserted into the vasculature of the patient. A common entry site is an incision in the femoral artery near the groin. The stent placement procedure is typically performed with several medical personnel present who require shielding if the radiation source is sufficiently strong.
Radioactive stents can have a shelf-life limitation, especially when the radioisotope has a half-life on the same order as the expected shelf life. For example, a stent made radioactive with an isotope having a half-life of about a month will lose half its radioactivity in a month on the shelf. This can present a variation in radiation strength dependent upon the time a stent resides in a warehouse or sits unused in a hospital. The half-life of a radioisotope, if sufficiently small, can preclude its use with stent technology if a significant portion of radioactivity is lost during stent manufacture, shipping and storage. Another limitation with current stent technology is that the stent radioactivity must be decided at the time of manufacture rather than treatment.
What remains to be provided is a method for delivering concentrated radiation at a dilated, stented site without requiring placement of a radioactive stent. What remains to be provided is a device allowing placement of a non-radioactive stent within the vasculature which can be made radioactive in-situ, after placement.
The present invention includes devices and methods for inhibiting restenosis of blood vessels using stents. The stents are non-radioactive when placed within the blood vessel and are made radioactive in-situ, after placement within the vessel. Stents according to the present invention are adapted to bind a radioactive substance which is preferably injected into the blood stream after stent placement. The stent preferably has a strong and selective affinity for binding the radioactive substance. A preferred stent attains the binding affinity by having a first substance immobilized on the stent surface, where the first substance is adapted to bind the later-to-be injected radioactive substance. The injected radioactive substance is bound to, and is collected at, the stent, thereby concentrating radiation over the stent.
A preferred stent is tubular in shape and has a stent body, with the first substance immobilized on the stent body. In one embodiment, the first substance is avidin and the second substance is radioactive or radio-labeled biotin. In another embodiment, the first substance is protamine and the second substance is radio-labeled heparin. Protamines are strongly basic proteins of relatively low molecular weight. Heparin is an acid mucopolysaccharide. Protamine and heparin also exhibit a highly selective affinity for each other. Other complementary pairs within the scope of the invention include proteins/antibodies, ligands/anti-ligands, and proteins/monoclonal antibodies.
In use, the stent, either self-expanding or expandable, can be put into place using well known devices such as pusher tubes or stent delivery balloon catheters. Stents are preferably put into position after a stenosis dilation procedure such as angioplasty or atherectomy. A preferred use of the stents is the inhibition of restenosis in coronary arteries after angioplasty. After the stent expands into position across a stenosed vessel region, the stent delivery equipment can be removed from the patient. If desired, the patient can be removed from the site of the dilation procedure.
The second, radioactive substance can then be provided, preferably in shielded form. In one method, a shielded hypodermic syringe is provided. In another method, the radioactive substance is injected into an I.V. bag. The radioactive substance can be injected into the blood stream of the patient using any suitable injection means and body site. The radiation exposure can thus be limited to a short time period and a small, easily shielded area. The number of people exposed to the radiation and possibly requiring shielding can be much more limited during an injection than during a stent placement procedure in an operating room. In particular, only radiation medicine personnel need be present during injection.
After injection, the radioactive substance circulates through the blood stream of the patient, with a portion passing through a stented site such as a coronary artery. With each pass through the stent, a substantial amount of the radioactive substance is bound to the stent. Over time, a substantial portion of the radioactive substance is selectively bound to the stent, thereby rendering the stent radioactive and providing radiation to the vessel and inhibiting restenosis. The remainder of the radioactive substance is processed by the liver and excreted in urine. The present invention can be provided as a stent suitable for later injection of a complementary radioactive substance, or as a kit having both stent and complementary radioactive substance.
In one method, radioactive substance is injected one time after stent implantation. The amount of radiation to be delivered can be decided at the time of injection. In another method, radioactive substance can be injected multiple times, over a longer time period. Thus, both the amount of radioactive dosage and the number of doses can be tailored to a particular treatment situation.
FIG. 1 is a highly diagrammatic view of a stent surface having a ligand immobilized thereon and a radioactive anti-ligand bound to the ligand.
FIG. 1 illustrates in highly diagrammatic form, a stent surface 20 having a first substance or ligand 22 immobilized thereon. Ligand 22 is labelled "X" in FIG. 1. Ligand 22 is immobilized with a bond 24. A second substance or anti-ligand 26 is bound to ligand 22 with a bond 28. Second substance or moiety 26 is radioactive. Anti-ligand 26 is labelled "Y" in FIG. 1. As used herein, ligand/anti-ligand pairs demonstrate specific binding, preferably of relatively high affinity.
Stents preferably have a tubular form. One stent according to the present invention is formed of Nitinol. Another stent is formed of stainless steel. Yet another stent is polymeric. Some tubular stents are formed of wires woven into braids or wound into helixes. Other stents are formed of substantially solid material. Both self expanding and balloon expandable stents are suitable for use with the current invention.
One complementary binding pair of substances suitable for use with the present invention is the avidin/biotin pair. The avidin-biotin complementary pair is commonly used in affinity column chromatography. Avidin is a protein having four identical sub-units, each having a molecular weight of about 70,000. Biotin is a molecule which acts as the prosthetic group in a number of enzymes. Avidin and biotin exhibit a strong and highly selective affinity for each other, having a dissociation constant of about 10-15 M. The avidin-biotin binding is essentially irreversible. In this pair, avidin or streptavidin can be the ligand and biotin the anti-ligand and can be radio-labeled with isotopes such as I131 or Y90. In one embodiment, biotin is the ligand and radio-labeled avidin or streptavidin the anti-ligand. Biotin and methods of biotinylation are known. See for example, Hoffman et al. (1977) Proc. Natl. Acad. Sci. USA 74:2697-2700 or Berman and Basch, (1980) "Amplification of the biotin-avidin immunofluorescence technique", J. Immunol. Meth. 36:335-338, both of which are herein incorporated by reference. Biotin can be immobilized on a metallic stent by chelating agents which have affinity for metals, silanes, or other forms of molecular grafting known by those skilled in the art. Biotin can be immobilized upon a polymeric stent by using crosslinking agents or the above-mentioned metallic stent agents.
Another complementary pair of substances suitable for practicing the present invention is the protamine/heparin pair. Heparin is commonly used in open heart surgery to prevent clotting during the procedure. Protamine is injected into a patient after completion of surgery to bind tightly to the heparin and render it ineffective as an anti-coagulant. In practicing the present invention, protamine is the ligand and radio-labeled heparin is the anti-ligand. Non-radioactive heparin can also be used to prevent clotting on the stent. Protamine can be immobilized on a metallic stent through use of chelating agents having an affinity for the metal and protamine or through plasma deposition.
Other ligand/anti-ligand pairs believed suitable for use with the current invention include zinc finger protein/dsDNA fragment, hapten/antibody, lectin/carbohydrate, chelate/binding pair member, and ligand/receptor. Complementary pairs used in the present invention preferably exhibit very selective binding and have a very low dissociation constant. Preferably, the dissociation constant is less than about 10-12 M, more preferably less than about 10-14 M, most preferably less than about 10-15 M.
Radioisotopes that can be bound to the anti-ligand include I131, Y90, n111, and p32. A preferred radioisotope is I131. Alpha emitting radioisotopes are less preferred than Beta and Gamma emitters, but are within the scope of the invention. The radioisotope can be affixed to the anti-ligand by methods such as iodination via a chloramine-T based system. As used herein, the term "radioactive substance" refers to both a substance having radioactive atoms incorporated therein and to a substance radio-labeled with an additional or substituted radioactive atom not normally found in the native substance.
Other, not necessarily radioactive substances can be bound to the anti-ligand. In one embodiment, cytotoxic or chemolytic substances are bound to the anti-ligand for the purpose of inhibiting restensosis. In another embodiment, growth factors are bound to the anti-ligand. In yet another embodiment, a thrombolytic agent, such as non-radioactive heparin, is bound to the anti-ligand. Thrombolytic agents can dissolve thrombus formed on the stent surface. In still another embodiment, anti-thrombogenic agents are bound to the anti-ligand. Anti-thrombogenic agents can inhibit formation of thrombus on the stent surface. These other substances can be delivered either alone or in conjunction with radioactive substances.
In use, a stent can be prepared by immobilizing a first substance or ligand on the surface using a method as described above. The stent can be mated to a delivery device. Self expanding stents can be compressed within a tubular delivery device while balloon-expandable stents can be mounted upon inflatable balloon catheters. Stent delivery is preferably performed after dilation using a method such as angioplasty or atherectomy. The stent at this point is non-radioactive and requires no special radiation handling or shielding. The stent delivery device can be inserted through the vasculature from an entry point such as an incision in the femoral artery near the groin. The delivery device can be advanced over the aorta and into a coronary artery to a location near the dilated vessel region. The stent can be deployed, either via self-expansion or balloon expansion, until the stent is firmly expanded against the stenosed region walls. The stent delivery device can then be removed.
After stent delivery, in one method, the radioactive anti-ligand or second substance can be immediately prepared and injected into the patient. In a preferred form, the radioactive anti-ligand is prepared in liquid form and enclosed within shielding appropriate for the radiation source. Gamma radiation generally requires heavier shielding than Beta radiation.
The radioactive liquid can be brought to the patient and injected, at any suitable location, into the blood stream of the patient. In one embodiment, the radiation source is shielded during injection, with only an injection needle extending outside the shielding. The injection can be carried out more quickly and easily relative to the more difficult and lengthier procedure of placing a stent. In another embodiment, the radioactive substance is injected into an I.V. bag. In yet another embodiment, the radioactive substance is interposed between an incoming saline line and an outgoing I.V. line to the patient. In this embodiment, the radioactive substance can be contained in a vial such that the vial is flushed by saline. In one method the patient is removed to a different room for injection of the radioactive anti-ligand. In a preferred method, injection of the radioactive anti-ligand takes place within 120 hours of angioplasty or atherectomy. Radioactive injection should take place within this time period as a significant portion of the inhibition of restenosis by radiation is believed to take place within this time period. The radioactive anti-ligand or second substance may also be injected up to several months later.
After injection, the radioactive anti-ligand is circulated through the blood stream, passing the ligand carrying stent. A portion of the radioactive anti-ligand is bound to the ligand sites on the stent with each pass through the coronary arteries of the heart. While only a small portion of blood passes through the coronary arteries with each trip through the heart, that portion is randomly selected and eventually a substantial portion of the radioactive anti-ligand is bound to the stent. The stent has thereby been made radioactive in-situ. Due to tight binding between ligand and anti-ligand, the radioactive substance remains localized at the stent. The now radioactive stent can provide radiation to the stenosed region, thereby inhibiting restenosis.
Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the invention. The inventions's scope is, of course, defined in the language in which the appended claims are expressed.
Patent | Priority | Assignee | Title |
10159850, | Jan 06 2016 | Covidien LP | Brachytherapy clip and applicator |
10293553, | Oct 15 2009 | Covidien LP | Buttress brachytherapy and integrated staple line markers for margin identification |
10576298, | Oct 15 2009 | Covidien LP | Buttress brachytherapy and integrated staple line markers for margin identification |
10926105, | Jan 06 2016 | Covidien LP | Brachytherapy clip and applicator |
11224761, | Nov 19 2019 | Pointsource Technologies, LLC | Radioactive therapeutic device |
11660469, | Jan 06 2016 | Covidien LP | Brachytherapy clip and applicator |
6398709, | Oct 19 1999 | Boston Scientific Scimed, Inc | Elongated member for intravascular delivery of radiation |
6416457, | Mar 09 2000 | Boston Scientific Scimed, Inc | System and method for intravascular ionizing tandem radiation therapy |
6416492, | Sep 28 2000 | Boston Scientific Scimed, Inc | Radiation delivery system utilizing intravascular ultrasound |
6461666, | Dec 24 1997 | Korea Atomic Energy Research Institute | Radioactive balloon for dilation catheter system and process for preparation thereof |
6471671, | Aug 23 2000 | Affymetrix, Inc | Preloaded gas inflation device for balloon catheter |
6514191, | Jul 01 1993 | Schneider (Europe) A.G. | Medical appliances for the treatment of blood vessels by means of ionizing radiation |
6582352, | Jun 10 1994 | Schneider (Europe) A.G. | Medical appliance for treatment by ionizing radiation |
6582353, | Feb 29 1996 | Boston Scientific Scimed, Inc | Intravascular radiation delivery system |
6616629, | Jun 24 1994 | Schneider (Europe) A.G. | Medical appliance with centering balloon |
7273445, | Apr 30 2003 | The Board of Trustees of the University of Illinois | Intraocular brachytherapy device and method |
8430804, | Jan 07 2008 | SALUTARIS MEDICAL DEVICES, INC. | Methods and devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye |
8529929, | Dec 25 2007 | YAMAGUCHI UNIVERSITY; OSAKA UNIVERSITY | Drug delivery system |
8597169, | Jan 07 2008 | SALUTARIS MEDICAL DEVICES, INC | Methods and devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye |
8608632, | Jul 03 2009 | SALUTARIS MEDICAL DEVICES, INC | Methods and devices for minimally-invasive extraocular delivery of radiation and/or pharmaceutics to the posterior portion of the eye |
9901663, | May 06 2013 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Hollow stent filled with a therapeutic agent formulation |
Patent | Priority | Assignee | Title |
2546761, | |||
2862108, | |||
2955208, | |||
3060924, | |||
3147383, | |||
3324847, | |||
3505991, | |||
3643096, | |||
3669093, | |||
3674006, | |||
3750653, | |||
3811426, | |||
3861380, | |||
3866050, | |||
3927325, | |||
4096862, | May 17 1976 | Locating of tubes in the human body | |
4220864, | Jun 16 1977 | ISOTOPEN-TECHNIK DR SAUERWEIN GMBH | Radiographic apparatus |
4225790, | Nov 27 1978 | Aea Technology PLC | Storage reel assembly |
4244357, | Jan 05 1979 | Method and apparatus for homogeneously irradiating the vaginal mucosa with a linear source uterovaginal applicator | |
4281252, | Nov 27 1978 | Aea Technology PLC | Coupling apparatus for portable radiography systems |
4314157, | Jun 21 1979 | Industrial Nuclear Company, Inc. | Safety lock for radiography exposure device |
4364376, | Dec 26 1979 | Method and device for injecting a bolus of material into a body | |
4584991, | Dec 15 1983 | Medical device for applying therapeutic radiation | |
4588395, | Mar 10 1978 | Catheter and method | |
4631415, | Sep 30 1983 | ISOTOPEN-TECHNIK DR SAUERWEIN GESELLSCHAFT MIT BESCHRANKTER HAFTUNG, BERGISCHE STRASSE 16, 5657 HAAN RHEINLAND 1 | Radiation treatment apparatus |
4702228, | Jan 24 1985 | Theragenics Corporation | X-ray-emitting interstitial implants |
4706652, | Dec 30 1985 | BRUCE S HOROWITZ, 494 N W 165TH STREET, APT #C302, MIAMI, FLORIDA 33167 | Temporary radiation therapy |
4763642, | Apr 07 1986 | BRUCE S HOROWITZ, 494 N W 165TH STREET, APT #C302, MIAMI, FLORIDA 33167 | Intracavitational brachytherapy |
4763671, | Dec 27 1983 | Stanford University | Method of treating tumors using selective application of heat and radiation |
4782834, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc.; ADVANCED CARDIOVASCULAR SYSTEMS, INC , A CORP OF CA | Dual lumen dilatation catheter and method of manufacturing the same |
4784116, | Jan 24 1985 | Theragenics Corporation | Capsule for interstitial implants |
4815449, | Nov 21 1984 | BRUCE S HOROWITZ, 494 N W 165TH STREET, APT #C302, MIAMI, FLORIDA 33167 | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
4819618, | Aug 18 1986 | Interventional Therapies, LLC | Iridium/platinum implant, method of encapsulation, and method of implantation |
4851694, | Jan 28 1987 | Compagnie Oris Industrie | Device for driving and positioning a source holder in an applicator used in radiotherapy |
4861520, | Oct 28 1988 | NUCLETRON B V | Capsule for radioactive source |
4881937, | Jul 10 1986 | NUCLETRON B V | Method of treating a part of the body with radioactive material and a trolley for use therein |
4897076, | Nov 23 1984 | Detachable and remote controllable afterloading device for radiation | |
4936823, | May 04 1988 | PYRAMID TECHNOLOGIES INTERNATIONAL, INC | Transendoscopic implant capsule |
4963128, | Mar 21 1989 | University of Virginia Alumni Patents Foundation | Chest tube and catheter grid for intrathoracic afterload radiotherapy |
4969863, | Oct 28 1988 | NUCLETRON B V | Adaptor for remote after-loading apparatus for radiotherapy |
4976266, | Aug 29 1986 | Sandia Corporation | Methods of in vivo radiation measurement |
4976680, | Oct 07 1988 | Advanced Cardiovascular Systems, INC | Apparatus for in situ radiotherapy |
4976690, | Aug 16 1985 | Boston Scientific Scimed, Inc | Variable stiffness angioplasty catheter |
5030194, | Jul 10 1986 | NUCLETRON B V | Method and apparatus for effecting radioactive therapy in an animal body |
5032113, | Apr 13 1989 | Boston Scientific Scimed, Inc | Innerless catheter |
5057313, | Feb 25 1986 | CENTER FOR MOLECULAR MEDICINE AND IMMUNOLOGY, THE | Diagnostic and therapeutic antibody conjugates |
5059166, | Dec 11 1989 | MEDICAL INNOVATIVE TECHNOLOGIES R & D LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF MD | Intra-arterial stent with the capability to inhibit intimal hyperplasia |
5084001, | Jul 10 1986 | NUCLETRON B V | Method and apparatus for effecting radioactive therapy in an animal body |
5084002, | Aug 04 1988 | Advanced Cardiovascular Systems, INC | Ultra-thin high dose iridium source for remote afterloader |
5092834, | Oct 12 1990 | Advanced Cardiovascular Systems, INC | Apparatus and method for the remote handling of highly radioactive sources in the treatment of cancer |
5103395, | Oct 07 1988 | Advanced Cardiovascular Systems, INC | System for remote positioning of a radioactive source into a patient including means for protection against improper patient exposure to radiation |
5106360, | Sep 17 1987 | Olympus Optical Co., Ltd. | Thermotherapeutic apparatus |
5120973, | Sep 08 1990 | Isotopen-Technik Dr. Sauerwein GmbH | Method and device for inserting a radioactive radiation source into an applicator and withdrawing it therefrom |
5139473, | Oct 12 1990 | Advanced Cardiovascular Systems, INC | Apparatus and method for the remote handling of highly radioactive sources in the treatment of cancer |
5141487, | Sep 20 1985 | Interventional Therapies, LLC | Attachment of radioactive source and guidewire in a branchy therapy source wire |
5147282, | May 04 1989 | Irradiation loading apparatus | |
5163896, | Jul 28 1988 | Cordis Corporation | Pellet for a radioactive seed |
5176617, | Dec 11 1989 | MEDICAL INNOVATIVE TECHNOLOGIES | Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct |
5183455, | Oct 07 1988 | Advanced Cardiovascular Systems, INC | Apparatus for in situ radiotherapy |
5199939, | Feb 23 1990 | Radioactive catheter | |
5213561, | Sep 06 1990 | WEINSTEIN, JOSEPH S ; MARTIN, H FRANK, JR | Method and devices for preventing restenosis after angioplasty |
5267960, | Mar 19 1990 | Advanced Cardiovascular Systems, INC | Tissue engaging catheter for a radioactive source wire |
5282781, | Oct 25 1990 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Source wire for localized radiation treatment of tumors |
5302168, | Sep 05 1991 | United States Surgical Corporation | Method and apparatus for restenosis treatment |
5308356, | Feb 25 1993 | Passive perfusion angioplasty catheter | |
5344383, | Aug 17 1991 | Apparatus for radioactive treatment inside the human body and the method using the same | |
5354257, | Jan 29 1991 | Cook Medical Technologies LLC | Minimally invasive medical device for providing a radiation treatment |
5370685, | Jul 16 1991 | Heartport, Inc | Endovascular aortic valve replacement |
5391139, | Sep 03 1992 | WILLIAM BEAUMONT HOSPITAL | Real time radiation treatment planning system |
5395300, | Jun 07 1991 | Advanced Cardiovascular Systems, INC | High dosage radioactive source |
5405309, | Apr 28 1993 | Theragenics Corporation | X-ray emitting interstitial implants |
5409015, | May 11 1993 | Target Therapeutics, Inc | Deformable tip super elastic guidewire |
5411466, | Sep 05 1991 | PROGRESSIVE ANGIOPLASTY SYSTEMS, INC | Apparatus for restenosis treatment |
5425720, | Jan 27 1993 | Medical needle unit | |
5429582, | Jun 14 1991 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Tumor treatment |
5482698, | Apr 22 1993 | Immunomedics, Inc. | Detection and therapy of lesions with biotin/avidin polymer conjugates |
5482867, | Nov 13 1989 | AFFYMETRIX INC , A CORP OF DE | Spatially-addressable immobilization of anti-ligands on surfaces |
5482923, | Feb 16 1990 | Repligen Corporation | Heparin neutralization with platelet factor 4 fragments |
5484384, | Jan 29 1991 | Cook Medical Technologies LLC | Minimally invasive medical device for providing a radiation treatment |
5498227, | Sep 15 1993 | MRKR L L C | Retrievable, shielded radiotherapy implant |
5503613, | Jan 21 1994 | TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE | Apparatus and method to reduce restenosis after arterial intervention |
5503614, | Jun 08 1994 | Interventional Therapies, LLC | Flexible source wire for radiation treatment of diseases |
5518882, | Dec 21 1993 | CYTOVAX BIOTECHNOLOGIES INC | Immunological methods of component selection and recovery |
5532122, | Oct 12 1993 | BIOTRACES, INC | Quantitation of gamma and x-ray emitting isotopes |
5538494, | Mar 17 1994 | Hitachi, Ltd. | Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration |
5540659, | Jul 15 1993 | Cordis Corporation | Irradiation catheter and method of use |
5545132, | Dec 21 1993 | Medtronic Ave, Inc | Helically grooved balloon for dilatation catheter and method of using |
5556389, | Mar 31 1994 | Interventional Therapies, LLC | Method and apparatus for treating stenosis or other constriction in a bodily conduit |
5556982, | Jan 14 1985 | NeoRx Corporation | Metal radionuclide labeled proteins for diagnosis and therapy |
5575749, | Aug 04 1988 | Advanced Cardiovascular Systems, INC | Ultra-thin high dose radioactive source wire |
5580962, | Jun 20 1991 | Immuno Aktiengesellschaft | Parenterally administrable drug having thrombolytic activity and containing protein C |
5588962, | Mar 29 1994 | Boston Scientific Scimed, Inc | Drug treatment of diseased sites deep within the body |
5605530, | Mar 23 1995 | ISOSTENT, LLC | System for safe implantation of radioisotope stents |
5607659, | Feb 02 1993 | ALETHEON PHARMACEUTICALS, INC | Directed biodistribution of radiolabelled biotin using carbohydrate polymers |
5611767, | Jun 14 1991 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Radiation treatment of tumors using inflatable devices |
5616114, | Dec 08 1994 | Neocardia, LLC | Intravascular radiotherapy employing a liquid-suspended source |
5618266, | Mar 31 1994 | Interventional Therapies, LLC | Catheter for maneuvering radioactive source wire to site of treatment |
5624372, | Oct 25 1990 | Advanced Cardiovascular Systems, INC | Source wire for localized internal irradiation of tissue |
5637759, | Jul 30 1992 | Regents of the University of California, The | Metal-ligating amino acid derivatives for MRI and for peptide synthesis |
5639727, | Mar 12 1993 | XOMA Corporation | Therapeutic uses of bactericidal/permeability increasing protein products |
5643171, | May 04 1993 | Neocardia, LLC | Method and apparatus for uniform radiation treatment of vascular lumens |
5649924, | Jun 10 1988 | CATHETER ABLATION SOLUTIONS LLC | Medical device for irradiation of tissue |
5653683, | Feb 28 1995 | B THERAPY LLC | Intracavitary catheter for use in therapeutic radiation procedures |
5662580, | Dec 08 1994 | Neocardia, LLC | Combined angioplasty and intravascular radiotherapy method and apparatus |
5674177, | May 06 1993 | Kernforschungszentrum Karlsruhe GmbH | Vascular implant |
5683345, | Oct 27 1994 | BEST VASCULAR, INC | Method and apparatus for treating a desired area in the vascular system of a patient |
5688220, | Jun 10 1994 | Boston Scientific Corporation | Medical appliance for treatment by ionizing radiation |
5707332, | Jan 21 1994 | TRUSTEES OF COLUMBIA UNIVERSITY , THE | Apparatus and method to reduce restenosis after arterial intervention |
5713828, | Nov 27 1995 | INTERNATIONAL BRACHYTHERAPY S A | Hollow-tube brachytherapy device |
5720717, | Feb 28 1995 | B THERAPY LLC | Intracavitary catheter for use in therapeutic radiation procedures |
5722984, | Jan 16 1996 | ISOSTENT, INC | Antithrombogenic radioactive coating for an intravascular stent |
5728042, | Jun 22 1995 | Boston Scientific Corporation | Medical appliance for ionizing radiation treatment having radiopaque markers |
5730698, | May 09 1995 | Balloon expandable temporary radioisotope stent system | |
5782740, | Aug 29 1996 | Advanced Cardiovascular Systems, INC | Radiation dose delivery catheter with reinforcing mandrel |
5782742, | Jan 31 1997 | CARDIOVASCULAR DYNAMICS, INC | Radiation delivery balloon |
5795286, | Aug 15 1996 | Gaylord Container Corporation | Radioisotope impregnated sheet of biocompatible material for preventing scar tissue formation |
5800333, | Feb 20 1996 | Interventional Therapies, LLC | Afterloader provided with remote control unit |
5803895, | Jul 21 1995 | KABE LABORTECHNIK GMBH | Flexible adaptable plastic elements with equidistantly embedded catheters for radiotherapy |
5807231, | Oct 25 1990 | Advanced Cardiovascular Systems, INC | Source wire for localized internal irradiation of tissue |
5816259, | Jan 13 1997 | Method for the diagnosis and treatment of cancer by the accumulation of radioactive precipitates in targeted cells | |
5816999, | Jul 24 1997 | Flexible catheter for the delivery of ionizing radiation to the interior of a living body | |
5820553, | Aug 16 1996 | Siemens Medical Systems, Inc. | Identification system and method for radiation therapy |
5833593, | Nov 09 1995 | Interventional Therapies, LLC | Flexible source wire for localized internal irradiation of tissue |
5840008, | Nov 13 1995 | LocalMed, Inc. | Radiation emitting sleeve catheter and methods |
5840009, | Dec 05 1995 | ISOSTENT, INC | Radioisotope stent with increased radiation field strength at the ends of the stent |
5840064, | Mar 31 1994 | Interventional Therapies, LLC | Method and apparatus for treating stenosis or other constriction in a bodily conduit |
5843163, | Jun 06 1996 | WALL CARDIOVASCULAR TECHNOLOGIES, LLC | Expandable stent having radioactive treatment means |
5851171, | Nov 04 1997 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
5851172, | May 08 1995 | Advanced Cardiovascular Systems, INC | Afterloader with active force feedback |
5855546, | Feb 29 1996 | Boston Scientific Scimed, Inc | Perfusion balloon and radioactive wire delivery system |
5857956, | Jun 08 1994 | Interventional Therapies, LLC | Flexible source wire for localized internal irradiation of tissue |
5863284, | Nov 13 1995 | Abbott Laboratories | Devices and methods for radiation treatment of an internal body organ |
5863285, | Jan 30 1997 | Cordis Corporation | Balloon catheter with radioactive means |
5865720, | Mar 06 1997 | Boston Scientific Scimed, Inc | Expandable and retrievable radiation delivery system |
5871436, | Jul 19 1996 | Advanced Cardiovascular Systems, Inc. | Radiation therapy method and device |
5871437, | Dec 10 1996 | Boston Scientific Scimed, Inc | Radioactive stent for treating blood vessels to prevent restenosis |
5873811, | Jan 10 1997 | Boston Scientific Scimed, Inc | Composition containing a radioactive component for treatment of vessel wall |
5879282, | Jan 21 1997 | Cordis Corporation | Catheter having an expandable radioactive source |
5882290, | Feb 29 1996 | Boston Scientific Scimed, Inc | Intravascular radiation delivery system |
5882291, | Dec 10 1996 | Neocardia, LLC | Device and method for controlling dose rate during intravascular radiotherapy |
5891091, | Jul 15 1993 | Cordis Corporation | Irradiation catheter and method of use |
5897573, | Apr 26 1996 | ISOTECH, L L C | Radioactive medical suture and method of making the same |
5899882, | Oct 27 1994 | BEST VASCULAR, INC | Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient |
5906573, | Jun 17 1997 | RadioMed Corporation | Radioactive surgical fastening devices and methods of making same |
5910101, | Aug 29 1996 | ADVANCED CARDIOVASCULAR SYSTEMS INC | Device for loading and centering a vascular radiation therapy source |
5910102, | Jan 10 1997 | Boston Scientific Scimed, Inc | Conversion of beta radiation to gamma radiation for intravascular radiation therapy |
5913813, | Jul 24 1997 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Double-wall balloon catheter for treatment of proliferative tissue |
5916143, | Apr 30 1996 | Brachytherapy catheter system | |
5919126, | Jul 07 1997 | Implant Sciences Corporation | Coronary stent with a radioactive, radiopaque coating |
5924973, | Sep 26 1996 | TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE | Method of treating a disease process in a luminal structure |
5924974, | Jan 08 1996 | B.V. Optische Industrie "De Oude Delft" | Elongated radioactive element to be attached to an end of an elongated wire-shaped element |
5938582, | Sep 26 1997 | Medtronic, Inc. | Radiation delivery centering catheter |
5947889, | Jan 17 1995 | Balloon catheter used to prevent re-stenosis after angioplasty and process for producing a balloon catheter | |
5947924, | Sep 13 1996 | Interventional Therapies, LLC | Dilatation/centering catheter used for the treatment of stenosis or other constriction in a bodily passageway and method thereof |
5947958, | Sep 14 1995 | Bayer HealthCare LLC | Radiation-transmitting sheath and methods for its use |
5957829, | Dec 17 1997 | Advanced Cardiovascular Systems, INC | Apparatus and method for radiotherapy using a radioactive source wire having a magnetic insert |
5961439, | Mar 06 1998 | United States Surgical Corporation | Device and method for radiation therapy |
5967966, | Jul 21 1995 | KABE LABORTECHNIK GMBH | Flexible, adaptable plastic catheter system for inserting catheters for radiotherapy and method of use thereof |
5971909, | Dec 08 1994 | NeoCardia LLC | Combined angioplasty and intravascular radiotherapy method and apparatus |
5976106, | Jun 24 1994 | SCHNEIDER EUROPE A G | Medical appliance with centering balloon |
5997462, | Jan 08 1998 | NUCLETRON B V | Method and apparatus for treating a blood vessel lesion |
5997463, | Mar 26 1998 | North American Scientific | Laser welded brachytherapy source and method of making the same |
6010445, | Sep 11 1997 | Implant Sciences Corporation | Radioactive medical device and process |
6013019, | Apr 06 1998 | ISOSTENT, INC | Temporary radioisotope stent |
6013020, | Sep 23 1996 | BEST VASCULAR, INC | Intraluminal radiation treatment system |
6024690, | Jul 01 1997 | VOLCANO THERAPEUTICS, INC | Radiation source with delivery wire |
6030333, | Oct 24 1997 | RADIO MED CORPORATION | Implantable radiotherapy device |
6033357, | Mar 28 1997 | VOLCANO THERAPEUTICS, INC | Intravascular radiation delivery device |
CA2166915, | |||
DE19526680A1, | |||
DE19724233C1, | |||
DE19754870A1, | |||
DE19758234, | |||
DE19807727, | |||
DE19825563, | |||
DE19825999, | |||
DE19826000, | |||
DE19829447, | |||
DE9102312, | |||
EP433011B1, | |||
EP497495A2, | |||
EP514913A2, | |||
EP593136A1, | |||
EP629380B1, | |||
EP633041A1, | |||
EP686342A1, | |||
EP688580A1, | |||
EP696906B1, | |||
EP749764A1, | |||
EP754472A2, | |||
EP754473A2, | |||
EP778051A1, | |||
EP801961A2, | |||
EP810004, | |||
EP813894A2, | |||
EP865803, | |||
EP904798, | |||
EP904799, | |||
JP10071210, | |||
WO3292, | |||
WO4838, | |||
WO4953, | |||
WO9212, | |||
WO8603124, | |||
WO9304735, | |||
WO9425106, | |||
WO9426205, | |||
WO9507732, | |||
WO9519807, | |||
WO9526681, | |||
WO9606654, | |||
WO9610436, | |||
WO9613303, | |||
WO9614898, | |||
WO9617654, | |||
WO9622121, | |||
WO9629943, | |||
WO9640352, | |||
WO9707740, | |||
WO9709937, | |||
WO9717029, | |||
WO9718012, | |||
WO9719706, | |||
WO9725102, | |||
WO9725103, | |||
WO9740889, | |||
WO9801183, | |||
WO9801184, | |||
WO9801185, | |||
WO9801186, | |||
WO9811936, | |||
WO9816151, | |||
WO9820935, | |||
WO9825674, | |||
WO9829049, | |||
WO9830273, | |||
WO9834681, | |||
WO9836788, | |||
WO9836790, | |||
WO9836796, | |||
WO9839052, | |||
WO9839062, | |||
WO9839063, | |||
WO9840032, | |||
WO9846309, | |||
WO9855179, | |||
WO9857706, | |||
WO9901179, | |||
WO9902219, | |||
WO9904706, | |||
WO9904856, | |||
WO9910045, | |||
WO9921615, | |||
WO9921616, | |||
WO9922774, | |||
WO9922775, | |||
WO9922812, | |||
WO9922815, | |||
WO9924116, | |||
WO9924117, | |||
WO9929354, | |||
WO9929370, | |||
WO9929371, | |||
WO9930779, | |||
WO9934969, | |||
WO9936121, | |||
WO9939628, | |||
WO9940962, | |||
WO9940970, | |||
WO9940971, | |||
WO9940972, | |||
WO9940973, | |||
WO9940974, | |||
WO9942162, | |||
WO9942163, | |||
WO9942177, | |||
WO9944686, | |||
WO9944687, | |||
WO9949935, | |||
WO9956825, | |||
WO9956828, | |||
WO9961107, | |||
WO9962598, | |||
WO9966979, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 01 1996 | MEADOX MEDICALS, INC | MEADOX TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018463 | /0917 | |
Oct 16 1997 | WEADOCK, KEVIN S | MEADOX MEDICALS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008810 | /0553 | |
Nov 03 1997 | Meadox Medicals, Inc. | (assignment on the face of the patent) | / | |||
Dec 31 1997 | MEADOX TECHNOLOGY, INC | SciMed Life Systems, INC | MERGER | 018480 | /0181 | |
Jan 01 2005 | SciMed Life Systems, INC | Boston Scientific Scimed, Inc | CHANGE OF NAME | 018463 | /0593 |
Date | Maintenance Fee Events |
Jan 31 2002 | ASPN: Payor Number Assigned. |
Dec 27 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 19 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 04 2013 | REM: Maintenance Fee Reminder Mailed. |
Jul 24 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 24 2004 | 4 years fee payment window open |
Jan 24 2005 | 6 months grace period start (w surcharge) |
Jul 24 2005 | patent expiry (for year 4) |
Jul 24 2007 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 24 2008 | 8 years fee payment window open |
Jan 24 2009 | 6 months grace period start (w surcharge) |
Jul 24 2009 | patent expiry (for year 8) |
Jul 24 2011 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 24 2012 | 12 years fee payment window open |
Jan 24 2013 | 6 months grace period start (w surcharge) |
Jul 24 2013 | patent expiry (for year 12) |
Jul 24 2015 | 2 years to revive unintentionally abandoned end. (for year 12) |