A mold is disclosed for making rotationally asymmetric contact lenses. The mold comprises a first concave or convex surface that is rotationally asymmetric for forming the surface of the contact lens thereagainst, a second concave or convex surface opposed to the first surface that is also rotationally asymmetric, and a segment of the mold between the first and second surfaces having a substantially uniform thickness.

Patent
   6305661
Priority
Jun 30 1997
Filed
Sep 09 1999
Issued
Oct 23 2001
Expiry
Jun 09 2018
Assg.orig
Entity
Large
19
12
all paid
1. A contact lens mold comprising:
a first concave or convex surface that is rotationally asymmetric for forming a rotationally asymmetric surface of the contact lens thereagainst,
a second convex or concave surface opposed to said first surface that is rotationally asymmetric,
a segment of said mold between said first and second surfaces having a substantially uniform thickness.
6. A contact lens mold assembly comprising first and second contact lens mold sections, at least one of said first and second contact lens mold sections comprising:
a first concave or convex surface that is rotationally asymmetric for forming a rotationally asymmetric surface of the contact lens thereagainst,
a second convex or concave surface opposed to said first surface that is rotationally asymmetric,
a segment of said mold between said first and second surfaces having a substantially uniform thickness.
2. The contact lens mold of claim 1, wherein the first surface is a rotationally asymmetric, concave surface with an optical quality finish for molding an anterior contact lens surface thereagainst, and the second surface is a convex surface that is rotationally asymmetric.
3. The contact lens mold of claim 2, wherein the concave surface is shaped to provide ballast to the anterior surface of a contact lens molded thereagainst.
4. The contact lens mold of claim 1, wherein the first surface is shaped to form a toric contact lens surface molded thereagainst.
5. The contact lens mold of claim 4, wherein the first surface is a convex surface to provide a toric contact lens surface thereagainst, and the second surface is a concave surface.
7. The contact lens mold of claim 6, wherein each of said first and second contact lens mold sections comprise:
a first concave or convex surface that is rotationally asymmetric for forming a rotationally asymmetric surface of the contact lens thereagainst,
a second convex or concave surface opposed to said first surface that is rotationally asymmetric,
a segment of said mold between said first and second surfaces having a substantially uniform thickness.
8. The contact lens mold assembly of claim 7, wherein the first surface of said first mold section is a rotationally asymmetric, concave surface with an optical quality finish for molding an anterior contact lens surface thereagainst, and the second surface is a convex surface that is rotationally asymmetric.
9. The contact lens mold assembly of claim 8, wherein the concave surface is shaped to provide ballast to the anterior surface of a contact lens molded thereagainst.
10. The contact lens mold assembly of claim 9, wherein the convex surface of said second mold section is shaped to provide a toric surface to the posterior surface of a contact lens molded thereagainst.
11. The contact lens mold of claim 1, wherein the thickness of said segment varies no more than 0.2 mm across a profile thereof.
12. The contact lens mold of claim 11, wherein the thickness of said segment varies no more than 0.1 mm across a profile thereof.
13. The contact lens mold of claim 6, wherein the thickness of said segment varies no more than 0.2 mm across a profile thereof.
14. The contact lens mold of claim 13, wherein the thickness of said segment varies no more than 0.1 mm across a profile thereof.

This application is a divisional of Ser. No. 09/095,703, filed on Jun. 9, 1998, now U.S. Pat. No. 5,968,422, which claims the benefit of U.S. Provisional Application No. 60/058,096 filed on Jun. 30, 1997.

This invention relates to a method of injection molding contact lens molds for cast molding contact lenses having a rotationally asymmetric lens surface, and apparatus for carrying out the method.

One method in practice for making contact lenses is cast molding. Cast molding of contact lenses involves depositing a curable mixture of polymerizable monomers in a mold cavity formed by two mold sections, curing the monomer mixture, and disassembling the mold assembly and removing the lens. Other processing steps, for example, hydration in the case of hydrogel lenses, may also be employed. One mold section forms the anterior lens surface (anterior mold section), and the other mold section forms the posterior lens surface (posterior mold section). Prior to the cast molding of the contact lens, each of the mold sections is formed by injection molding a resin in the cavity of an injection molding apparatus. Mounted in the injection molding apparatus are tools for forming the optical surfaces on the mold sections. Whereas the mold sections are typically used only once for casting a lens, the injection molding tools are used to make hundreds of molds.

Several known cast molding methods have the potential to mold a finished contact lens, for example, U.S. Pat. No. 5,271,875 (Appleton et al.). Since these methods avoid time-consuming and labor-intensive operations such as lathing, the methods have been found to offer the potential to reduce production time and cost for the manufacture of spherical contact lenses.

However, various problems have been encountered in employing cast molding technology for manufacturing other types of contact lenses, especially contact lenses that have at least one rotationally asymmetric surface. As one example, toric contact lenses (i.e., contact lenses having a toric optical zone that are used to correct refractive abnormalities of the eye associated pith astigmatism) have at least one surface that is not rotationally symmetric. The problems encountered may be due to several factors. First, the toric optical zone is not spherical. Second, toric contact lenses include some type of ballast (such as prism ballast or slab-off zones) to inhibit rotation of the lens on the eye so that the cylindrical axis of the toric zone remains generally aligned with the axis of the astigmatism; in order to provide such ballast, the edge thickness of the lens is not uniform about the entire circumference of the lens. As another example of such lenses, many mulitfocal designs are not rotationally symmetric.

Applicant found that, in forming contact lens molds for molding lenses having a rotationally asymmetric lens surface, problems were encountered in consistently obtaining contact lens molds having the same geometries. Such inconsistencies in the contact lens mold geometries translated to inconsistencies in cast molding contact lenses in the molds. The present invention solves this problem.

The invention provides an improved method for injection molding a contact lens mold having a rotationally asymmetric molding surface. The method comprises: providing a first molding tool including a convex molding surface, and a second molding tool including a concave molding surface, wherein one of said convex or concave molding surfaces has an optical quality finish and is rotationally asymmetric, said one molding surface for forming an optical surface on the contact lens mold, and the other of said convex or concave molding surface is rotationally asymmetric; positioning the molding tools in opposed relationship to form a space therebetween, such that the respective molding surfaces are spaced substantially uniformly across their surfaces; and injecting a plastic resin into a space formed between the molding surfaces.

The method is especially useful for injection molding contact lens molds having a mold cavity defining surface for forming a toric contact lens surface molded thereagainst, and more particularly, for contact lens molds having a mold cavity defining surface shaped to provide ballast to a contact lens surface molded thereagainst.

The invention further includes an assembly for carrying out the method, and contact lens molds formed by the method.

FIG. 1 is a schematic cross-sectional view of a representative toric contact lens.

FIG. 2 is a schematic exploded view of a representative mold assembly.

FIG. 3 is a schematic cross-sectional view of the mold assembly of FIG. 2 assembled for cast molding a contact lens.

FIG. 4 is a schematic cross-sectional view of tooling for injection molding an anterior mold section of the assembly shown in FIGS. 2 and 3.

FIG. 1 schematically illustrates a representative contact lens having a rotationally asymmetric surface. For this described preferred embodiment, contact lens 1 is a toric contact lens, although the invention is applicable to other contact lenses having at least one rotationally asymmetric surface. As used herein, the term "rotationally asymmetric surface" denotes a surface that is not a second-order surface of revolution, such as a torus section.

Central zone 11 of posterior surface 3 is toric, i.e., this zone has a toric surface that provides the desired cylindrical correction. Posterior surface 3 may optionally include at least one peripheral curve 12 surrounding the central toric zone 11. For the described embodiment, central zone 21 of anterior surface 4 is spherical, and the spherical curve is matched with central zone 11 to provide the desired spherical correction to the lens. Anterior surface 4 includes at least one peripheral curve 22 surrounding central zone 21. Lens 1 is provided with ballast so that the lens maintains a desired rotational orientation on the eye. For the described embodiment, schematically shown in FIG. 1, peripheral section 24 has a different thickness than an opposed peripheral section 25 of the lens periphery due primarily to the ballast in surface 4; thus, anterior surface 4 is not rotationally symmetric. Other ballast types for inhibiting rotation of the contact lens on the eye are known in the art, and the invention is applicable for such other ballast types that require a rotationally asymmetric surface. It is further noted that for toric lens designs, the centerpoint of central zone 21 is not necessarily aligned with the center of lens 1, thereby further contributing to surface 4 not being rotationally symmetric.

A representative mold assembly 25 for the method of this invention is shown in FIGS. 2 and 3. The mold assembly includes posterior mold 30 having a posterior mold cavity defining surface 31 (which forms the posterior surface of the molded lens), and anterior mold 40 having an anterior mold cavity defining surface 41 (which forms the anterior surface of the molded lens). Each of the mold sections is injection molded from a plastic resin, such as polypropylene or polystyrene, in an injection molding apparatus, as described in more detail below. When the mold sections are assembled, a mold cavity 32 is formed between the two defining surfaces that corresponds to the desired shape of the contact lens molded therein. Accordingly, for the described embodiment, posterior mold cavity defining surface 31 has a toric central zone (for forming the toric posterior surface of the toric contact lens) having a cylindrical axis, and anterior mold cavity defining surface 41 has a configuration that will provide ballast to a lens molded in mold cavity 32. Of course, surfaces 31, 41 may also include curves for forming desired peripheral curves on the lens, and the central zones of surfaces 31, 41 may be designed to provide a desired spherical correction to the molded toric lens.

As mentioned above, the posterior and anterior mold sections are injection molded from a plastic resin in an injection molding apparatus. FIG. 4 illustrates schematically an injection mold arrangement for the injection molding of anterior mold section 40. As seen in the Figures, anterior mold section 40 includes surface 42 opposed to anterior mold cavity defining surface 41, surfaces 41 and 42 defining segment 43 therebetween of mold section 40. Tools 51,52 are mounted in the injection molding apparatus. Tool 51 has an optical quality finish on its molding surface 53 since tool 51 is used to form mold anterior cavity defining surface 41. (As used herein, the term "optical quality finish" denotes a molding surface that is sufficiently smooth for ultimately forming the optical surface of a contact lens, e.g., the produced contact lens is suitable for placement in the eye without the need to machine or polish the formed lens surface.) Tool 52, used to form opposed surface 42, does not need to have an optical quality finish on its molding surface 54 since opposed surface 42 of contact lens mold 40 does not contact the polymerizable lens mixture in casting contact lenses, i.e., opposed surface 42 does not form part of mold cavity 32.

According to conventional methods of injection molding such a contact lens mold, the shape of opposed surface 42 was not considered particularly critical. Therefore, tool molding surface 54 would generally have a shape that was easy to machine in order to avoid unnecessary labor and expense in forming the molding surface on tool 52, i.e., this tool molding surface would be formed of rotationally symmetric curves especially spherical curves.

However, applicant found that, in forming contact lens molds for molding lenses having a rotationally asymmetric lens surface, a problem of inconsistent molding of contact lens molds was encountered. More specifically, it was discovered that when surface 53 of tool 52 was made with a rotationally symmetric molding surface as in conventional methods, it was difficult to obtain contact lens molds having consistent geometries, which translated to inconsistencies in the casting of lenses in the contact lens molds. It is believed that there was still sufficient mismatch between the shapes of surfaces 41 and 42, especially in the region of the molding surfaces that provide ballast, that uneven resin flow occurred in injection molding the contact lens mold, thus causing the inconsistency in the injection molding process.

The present invention solved this problem by providing molding tool 52 with a molding surface 54 that is rotationally asymmetric, such that when the two molding tools 51,52 are positioned in opposed relationship, molding surfaces 53,54 are spaced substantially uniformly across their surfaces. Preferably, tools 51 and 52 are locked into these positions with respect to one another. It is believed that this uniformity in the space formed between the molding surfaces 53,54 results in more uniform flow of resin during injection molding, and thereby provides more consistency in the injection molding of the contact lens mold sections. Preferably, surface 54 has curves approximating each of the curves on surface 53. Molding surfaces 53, 54 should be shaped so that the thickness of section 43 varies no more than 0.2 mm, more preferably no more than 0.15 mm, and especially no more than 0.1 mm, across its profile.

(It is noted that due to the scale of FIG. 4, the various curves of surfaces 41 and 42 are not visibly illustrated; similarly, the various curves of surface 31 is not illustrated in FIG. 3. However, for the described embodiment, it is evident that surface 31 would be shaped to provide contact lens surface 21, and surfaces 41,42 of the tools would be shaped accordingly. As discussed above, for the described embodiment, lens 1 does not include a uniform peripheral thickness due primarily to inclusion of a ballast.)

Tools 51,52 are typically made from brass, stainless steel or nickel or some combination thereof, and the desired molding surface is formed on the tools according to generally methods known in the art, such as lathe cutting. Alternately, if the tool surface has a shape that is difficult to lathe cut, other methods are generally available in the art, such as electrodischarge machining. After forming the desired surface, surface 53 of tool 51 is polished to achieve precision surface quality so that no surface imperfections are transferred to the mold section being injection molded therefrom. Surface 54 of tool 52 does not require such degree of polishing, since it is not used to form an optical surface, and therefore, the molding surface 54 of tool 52 does not need to correspond exactly to surface 53. As shown schematically in FIG. 4, the end of tool 52 opposite surface 54 is designed to mount the tool in insert 55, surrounded by ejector sleeve 56, and tool 51 is surrounded by sleeve 57. This assembly is mounted in blocks 58,59, with a gate 60 provided for introducing resin As would be apparent to one skilled in the art, the exact design or configuration to accommodate the molding tools will depend on the injection molding apparatus.

Although certain preferred embodiments have been described, it is understood that the invention is not limited thereto and modifications and variations would be evident to a person of ordinary skill in the art. As one example, the invention is applicable to toric contact lenses having other ballast means than that illustrated for the described embodiment, and for other types of contact lenses having at least one rotationally asymmetric surface. As another example, the invention is not limited to injection molding of anterior mold sections, but is also applicable to injection molding of posterior mold sections that have a rotationally asymmetric mold cavity defining surface. As yet another example, the invention is applicable to contact lens mold types other than those illustrated in FIGS. 2 to 4, and the various injection molding set-ups therefor.

Kennedy, Gabriel Philip

Patent Priority Assignee Title
10130759, Mar 09 2012 Picolife Technologies, LLC Multi-ported drug delivery device having multi-reservoir cartridge system
10213549, Dec 01 2011 Picolife Technologies, LLC Drug delivery device and methods therefor
10245420, Jun 26 2012 PicoLife Technologies Medicament distribution systems and related methods of use
6476971, Oct 31 2000 Eastman Kodak Company Method of manufacturing a microlens array mold and a microlens array
6595639, Nov 10 2000 COOPERVISION INTERNATIONAL LIMITED Junctionless ophthalmic lenses and methods for making same
6939486, Jun 25 2002 Bausch & Lomb Incorporated Apparatus and method for making intraocular lenses
7152975, Nov 10 2000 COOPERVISION INTERNATIONAL LIMITED Junctionless ophthalmic lenses and methods for making same
7156641, Jan 03 2000 Johnson & Johnson Vision Care, Inc. Mold for forming a contact lens and method of preventing formation of small strands of contact lens material during contact lens manufacture
7585167, Dec 30 2004 Bausch & Lomb Incorporated Core locking assembly and method for orientation of asymmetric tooling
7828431, Nov 10 2000 COOPERVISION INTERNATIONAL LIMITED Junctionless ophthalmic lenses and methods for making same
7935280, Dec 30 2004 Core locking assembly and method for orientation of asymmetric tooling
8638964, Oct 10 2008 Widex A/S Method for manufacturing a hearing aid having a custom fitted resilient component
8663538, Feb 12 2009 Picolife Technologies, LLC Method of making a membrane for use with a flow control system for a micropump
8764425, Feb 12 2009 Picolife Technologies, LLC Mold for making a membrane for use with a flow control system for a micropump
8771229, Dec 01 2011 Picolife Technologies, LLC Cartridge system for delivery of medicament
8790307, Dec 01 2011 Picolife Technologies, LLC Drug delivery device and methods therefor
8807169, Feb 12 2009 Picolife Technologies, LLC Flow control system for a micropump
9883834, Apr 16 2012 PicoLife Technologies Medication delivery device with multi-reservoir cartridge system and related methods of use
9993592, Dec 01 2011 Picolife Technologies, LLC Cartridge system for delivery of medicament
Patent Priority Assignee Title
5110278, Nov 30 1990 Novartis AG Injection molding apparatus for producing a toric lens casting mold arbor
5271875, Sep 12 1991 Bausch & Lomb Incorporated Method for molding lenses
5407062, Jan 28 1994 Bausch & Lomb Incorporated Contact lens mold packaging
5456864, Sep 29 1992 Bausch & Lomb Incorporated Method of making plastic molds for molding contact lenses
5466147, Sep 12 1991 Bausch & Lomb Incorporated Apparatus for molding lenses
5601759, Oct 05 1993 Bausch & Lomb Incorporated Method for molding contact lenses
5611970, Jan 31 1994 Bausch & Lomb Incorporated Method of cast molding toric contact lenses
5702735, Jun 10 1994 JOHNSON & JOHNSON VISION PRODUCTS INC Molding arrangement to achieve short mold cycle time
5716540, Feb 09 1996 Johnson & Johnson Vision Products, Inc.; JOHNSON & JOHNSON VISION PRODUCTS, INC Apparatus and method for producing center gated lens molds for contact lens manufacture
5843346, Jun 30 1994 Bausch & Lomb Incorporated Method of cast molding contact lenses
JP405337957,
WO9407684,
////////////////////////////////////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 09 1999Bausch & Lomb Incorporated(assignment on the face of the patent)
Mar 20 2008B&L VPLEX HOLDINGS, INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B&L SPAF INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B&L FINANCIAL HOLDINGS CORP CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B & L DOMESTIC HOLDINGS CORP CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B&L CRL PARTNERS L P CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B&L CRL INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008WP PRISM INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008Bausch & Lomb IncorporatedCREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008B&L MINORITY DUTCH HOLDINGS LLCCREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008BAUSCH & LOMB INTERNATIONAL INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008BAUSCH & LOMB CHINA, INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008WILMINGTON PARTNERS L P CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008WILMINGTON MANAGEMENT CORP CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008SIGHT SAVERS, INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008RHC HOLDINGS, INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008Iolab CorporationCREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008BAUSCH & LOMB TECHNOLOGY CORPORATIONCREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008BAUSCH & LOMB SOUTH ASIA, INC CREDIT SUISSESECURITY AGREEMENT0207330765 pdf
Mar 20 2008BAUSCH & LOMB REALTY CORPORATIONCREDIT SUISSESECURITY AGREEMENT0207330765 pdf
May 18 2012Credit Suisse AG, Cayman Islands BranchBausch & Lomb IncorporatedRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0287260142 pdf
May 18 2012Bausch & Lomb IncorporatedCITIBANK N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0287280645 pdf
May 18 2012EYEONICS, INC CITIBANK N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0287280645 pdf
Aug 05 2013CITIBANK N A , AS ADMINISTRATIVE AGENTWP PRISM INC N K A BAUSCH & LOMB HOLDINGS INC RELEASE OF SECURITY INTEREST0309950444 pdf
Aug 05 2013CITIBANK N A , AS ADMINISTRATIVE AGENTBausch & Lomb IncorporatedRELEASE OF SECURITY INTEREST0309950444 pdf
Aug 05 2013CITIBANK N A , AS ADMINISTRATIVE AGENTISTA PHARMACEUTICALSRELEASE OF SECURITY INTEREST0309950444 pdf
Aug 30 2013Bausch & Lomb IncorporatedGOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL AGENTSECURITY AGREEMENT0311560508 pdf
Jan 08 2015GOLDMAN SACHS LENDING PARTNERS, LLCBARCLAYS BANK PLC, AS SUCCESSOR AGENTNOTICE OF SUCCESSION OF AGENCY0347490689 pdf
Jul 17 2017Bausch & Lomb IncorporatedThe Bank of New York MellonSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0432510932 pdf
Feb 13 2018VALEANT CANADA LPTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018Valeant Pharmaceuticals InternationalTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018VALEANT PHARMACEUTICALS NORTH AMERICA LLCTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018WIRRA IP PTY LIMITEDTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018VALEANT PHARMA POLAND SP Z O O THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018VALEANT PHARMACEUTICALS LUXEMBOURG S A R L THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018VALEANT PHARMACEUTICALS IRELAND LIMITEDTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018ORAPHARMA, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Technolas Perfect Vision GmbHTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018SYNERGETICS USA, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018ATON PHARMA, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018SOLTA MEDICAL, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018SYNERGETICS USA, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Technolas Perfect Vision GmbHBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018VALEANT CANADA LPBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Valeant Pharmaceuticals InternationalBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018WIRRA IP PTY LIMITEDBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018VALEANT PHARMA POLAND SP Z O O BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018VALEANT PHARMACEUTICALS LUXEMBOURG S A R L BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018VALEANT PHARMACEUTICALS IRELAND LIMITEDBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018SANTARUS, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Salix Pharmaceuticals, LtdBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Bausch & Lomb IncorporatedBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018BAUSCH & LOMB PHARMA HOLDINGS CORP BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018COMMONWEALTH LABORATORIES, LLCBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018DOW PHARMACEUTICAL SCIENCES, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018ECR PHARMACEUTICALS CO , INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018LABORATOIRE CHAUVIN S A S BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018Medicis Pharmaceutical CorporationBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018ONPHARMA INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018PRECISION DERMATOLOGY, INC BARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Feb 13 2018ATON PHARMA, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018Bausch & Lomb IncorporatedTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018DOW PHARMACEUTICAL SCIENCES, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018ECR PHARMACEUTICALS CO , INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018LABORATOIRE CHAUVIN S A S THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018Medicis Pharmaceutical CorporationTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018ONPHARMA INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018ORAPHARMA, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018PRECISION DERMATOLOGY, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018Salix Pharmaceuticals, LtdTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018SANTARUS, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018COMMONWEALTH LABORATORIES, LLCTHE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018SOLTA MEDICAL, INC THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018BAUSCH & LOMB PHARMA HOLDINGS CORP THE BANK OF NEW YORK MELLON, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440634 pdf
Feb 13 2018VALEANT PHARMACEUTICALS NORTH AMERICA LLCBARCLAYS BANK PLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454440299 pdf
Oct 18 2022The Bank of New York MellonLABORATOIRE CHAUVIN S A S OMNIBUS PATENT SECURITY RELEASE AGREEMENT REEL FRAME 045444 0634 0618720295 pdf
Oct 18 2022The Bank of New York MellonBausch & Lomb IncorporatedOMNIBUS PATENT SECURITY RELEASE AGREEMENT REEL FRAME 045444 0634 0618720295 pdf
Oct 18 2022The Bank of New York MellonThe United States of America, as represented by the Secretary, Department of Health and Human ServicesOMNIBUS PATENT SECURITY RELEASE AGREEMENT REEL FRAME 045444 0634 0618720295 pdf
Oct 18 2022The Bank of New York MellonTechnolas Perfect Vision GmbHOMNIBUS PATENT SECURITY RELEASE AGREEMENT REEL FRAME 045444 0634 0618720295 pdf
Oct 19 2022BARCLAYS BANK PLCTechnolas Perfect Vision GmbHRELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS REEL FRAME 045444 0299 0617790001 pdf
Oct 19 2022BARCLAYS BANK PLCBausch & Lomb IncorporatedRELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS REEL FRAME 045444 0299 0617790001 pdf
Oct 19 2022BARCLAYS BANK PLCPF Consumer Healthcare 1 LLCRELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS REEL FRAME 045444 0299 0617790001 pdf
Oct 19 2022BARCLAYS BANK PLCLABORATOIRE CHAUVIN S A S RELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS REEL FRAME 045444 0299 0617790001 pdf
Oct 19 2022BARCLAYS BANK PLCThe United States of America, as represented by the Secretary, Department of Health and Human ServicesRELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS REEL FRAME 045444 0299 0617790001 pdf
Date Maintenance Fee Events
Mar 18 2005M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 25 2009M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 07 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 23 20044 years fee payment window open
Apr 23 20056 months grace period start (w surcharge)
Oct 23 2005patent expiry (for year 4)
Oct 23 20072 years to revive unintentionally abandoned end. (for year 4)
Oct 23 20088 years fee payment window open
Apr 23 20096 months grace period start (w surcharge)
Oct 23 2009patent expiry (for year 8)
Oct 23 20112 years to revive unintentionally abandoned end. (for year 8)
Oct 23 201212 years fee payment window open
Apr 23 20136 months grace period start (w surcharge)
Oct 23 2013patent expiry (for year 12)
Oct 23 20152 years to revive unintentionally abandoned end. (for year 12)