A method and system for remote assistance and review of a technician or multiple technicians, in real time, working with equipment of various complexity. A technician or multiple technicians at a remote location are coupled by a wireless means to an advisor at a local station, so that the advisor may view and hear the same stimuli as the technician, that the advisor and technician may communicate. The technician has limited training or otherwise in need of support, and may be a field engineer, technician or maintenance personnel. The advisor has extensive training and able to provide technical support, and generally has extended and specialized knowledge with regard to the remote apparatus, and may be a technical expert on the remote apparatus. The technician may comprise an individual or group with technical training and knowledge, but lacking managerial or other authority, while the advisor comprises an individual or group with such authority. The technician communicates with the advisor by visual cues or ordinary speech, while the advisor views and listens to the remote apparatus. The advisor gives advise to the technician for manipulating or repairing the remote apparatus. Alternatively, an intermediate advisor may advise the technician and be advised by a higher-level advisor.

Patent
   6317039
Priority
Oct 19 1998
Filed
Oct 19 1998
Issued
Nov 13 2001
Expiry
Oct 19 2018
Assg.orig
Entity
Small
132
17
all paid
12. A method for providing assistance to a mobile field operator by a local master technician, comprising the steps of:
operating a wireless remote system by the mobile field operator, said wireless remote system comprising an audio sensor, a video sensor, a wireless portable processor, an audio receiver and a wireless transceiver, wherein operating the wireless remote system comprises moving the audio sensor, the video sensor, the audio receiver and wireless transceiver with the mobile field operator;
operating a local station by a local master technician, said local station comprising an audio sensor, a video receiver, a processor and an audio receiver;
communicating over a wireless network between said local station and said wireless remote system,
delivering remote sound from said wireless remote system audio sensor to said local station audio receiver;
delivering remote images from said wireless remote system video sensor to said local station monitor;
delivering local sound from said local station audio sensor to said wireless remote system receiver; and
viewing and hearing by said local master technician of stimuli available to said mobile field operator;
communicating between said local master technician and said mobile field operator; and
directly advising said mobile field operator by said local master technician.
1. A system, comprising:
a wireless remote system disposed to be operated by a mobile field operator, said wireless remote system comprising an audio sensor, a video sensor, a wireless portable processor, an audio receiver and a wireless transceiver, wherein the audio sensor, the video sensor, the audio receiver and wireless transceiver move with the mobile field operator;
a local station disposed to be operated by a local master technician, said local station comprising an audio sensor, a video receiver, a processor and an audio receiver;
a wireless communication network coupled to said local station and said wireless remote system,
wherein said wireless remote system audio sensor and said local station audio receiver are disposed to recover remote sound and deliver said remote sound to said local master technician, said wireless remote system video sensor and said local station monitor are disposed to recover remote images and deliver remote images to said local master technician, and said local station audio sensor and said wireless remote system receiver are disposed to recover local sound and deliver said local sound to said mobile field operator, and
wherein said local master technician may view and hear stimuli available to said mobile field operator, said local master technician and said mobile field operator are capable of communicating, and said local master technician can directly advise said mobile field operator and wherein said local station is comprised of a plurality of said local processors operated by a plurality of said local master technicians advising a plurality of said mobile field operators.
2. A system as in claim 1, wherein:
the wireless remote system further comprises a monitor, a web browser, a codec and a wireless modem; and
the local station further comprises a web browser and a codec; and
wherein said wireless communication network is coupled to a computer network.
3. A system as in claim 1, wherein said wireless portable processor is located in a vehicle and is disposed to relay said wireless remote system audio sensor and said wireless remote system video sensor data to said local station processor and viewed by said local master technician.
4. A system as in claim 1, wherein said local master technician and said mobile field operator are physically separated by a substantial distance.
5. A system as in claim 1, wherein said wireless remote system video sensor is coupled by a wireless means to said wireless portable processor.
6. A system as in claim 1, wherein said wireless remote system audio sensor is coupled by a wireless means to said wireless portable processor.
7. A system as in claim 1, wherein said wireless remote system is coupled by a wireless mean to said wireless communication network via a cellular phone.
8. A system as in claim 1, wherein said wireless remote system audio sensor is coupled by a wireless means to said wireless communication network via a cellular phone.
9. A system as in claim 1, wherein said mobile field operator is a technician.
10. A system as in claim 1, wherein said video sensor is disposed to detect full spectrum light waves.
11. A system as in claim 1, wherein said wireless remote system is adapted to be coupled by a wireless means to said communication network while in an underwater environment.
13. A method as in claim 12, wherein said wireless portable processor is located in a vehicle, further comprising the step of relaying said wireless remote system audio sensor and said wireless remote system video sensor data to said local station processor.

1. Field of the Invention

This invention relates to a wireless video audio data remote system.

2. Description of Related Art

The nature of business organizations and their employees is generally such that, in most any subject, there are a relatively small number of persons with extensive training and experience (e.g., "experts") and a relatively large number of persons with only limited training and experience (e.g., technicians. This problem is exacerbated by the relatively larger costs associated with the former. Accordingly, when a business organization seeks to apply a person's skills to a problem, it is often faced with the fact that persons with the extensive training and skill are a scarce resource.

With many problems, and in particular with the problem of servicing and trouble-shooting equipment, experience shows that the most tasks require only a subset of the full experience that characterizes experts in the field, and that those tasks can be adequately carried out by entry-level technicians. However, when a technician is confronted with a task requiring an expert, often the only indicator thereof is the technicians inability to solve the problem. Sometimes the technician's lack of extensive knowledge can actually make the problem worse. These effects serve to increase the cost, time, effort, and frustration associated with the servicing and trouble-shooting equipment.

One method in the prior art has been to advise technicians at a fixed location using audio video and data transmission over various wired networks. An example of this is U.S. Pat. No 5,619,183 (Ziegra et al.). The main disadvantage of that fixed-site system is that remote-site technician oversight is impractical when a mobile work force requires video, audio and data transmission from continually changing job site locations. Another disadvantage is that the fixed-site to fixed-site system software does not fully utilize the idea of "leveraged expertise".

Accordingly, it would be advantageous to provide a method and system by which technicians can perform the tasks they are adequately trained for, in a wireless environment, while allowing experts to assist them when expert assistance is required.

The invention provides a method and system for remote assistance and review of a technician or group of technicians working with equipment of various complexity. In a preferred embodiment, a technician at a remote job site is coupled to an advisor manning a local station (where "local" and "remote" are relative to a remote apparatus being controlled or serviced by the technician, and do not necessarily denote large distance), in such manner that the advisor may view and hear the same stimuli as the technician and that the advisor and technician can communicate.

In a preferred embodiment, a technician at a remote job site may be coupled by a wireless communication link(s) to a local station. The technician at the remote job site wears an apparatus consisting of a video and audio sensor, such as a camera and a microphone, and a receiver for the communication link such as earphone or speaker and a wireless portable data processor. The communication link comprises a wireless communication path to/from the local station, and may further comprise data encoding, compression, and error correction/detection devices. The local station comprises a video and audio display, such as a monitor and a speaker, software that allows for real-time communication to multiple technicians, and a transmitter for the communication link with the remote job site, such as a microphone.

In a preferred embodiment, the technician may comprise an individual or group with limited training or otherwise in need of support, such as a field engineer or technician. The technician(s) should generally know how to operate the remote job site apparatus, but need not have extended or specialized knowledge with regard thereto. The advisor may comprise an individual or group with extensive training and able to provide technical support, who generally does have extended and specialized knowledge with regard to the remote job site apparatus, such as a technical expert on the remote job site apparatus. In an alternative embodiment, the technician(s) may comprise an individual or group with technical training and knowledge, but lacking managerial or other authority, while the advisor(s) comes an individual or group with such authority.

In a preferred embodiment, the technician(s) couples the remote job site communication apparatus to the wireless communication link(s) and to the local station communication apparatus. The technician(s) may communicate with the advisor(s) by visual cues or ordinary speech, while the advisor(s) may view and listen to the remote job site apparatus. The advisor(s) may give advice to the operator for manipulating the remote job site apparatus, and may manipulate the remote job site apparatus directly by means of the control signal or data signal feeds. Thus, the technician(s) may service/repair/operate the remote job site apparatus as if the advisor were peeking over his shoulder.

In an alternative embodiment, an intermediate advisor may advise/control the technician(s) and be advised/controlled by a higher-level advisor.

FIG. 1 shows a block diagram of a wireless remote system

FIG. 2 shows a block diagram of wireless portable communication apparatus for a remote system.

FIG. 3 shows a block diagram of a local station for a wireless remote system.

FIG. 4 shows a block diagram of a vehicular based portable processor for a remote system.

FIG. 5 shows a block diagram of a centralized expertise station coupled to multiple wireless portable remote systems.

FIG. 6 shows a flow diagram of a method for operating a wireless remote system.

In the following description, a preferred embodiment of the invention is described with regard to preferred process steps and data structures. However, those skilled in the art would recognize, after perusal of this application, that embodiments of the invention may be implemented using a set of general purpose computers operating under program control, and that modification of available general purpose computers to implement the process steps and data structures described herein would not require undue invention.

FIG. 1 shows a block diagram of a wireless remote system.

A wireless remote system 101 comprises a mobile field technician 102 at a remote job site utilizing a wireless portable processor 103 and a wireless audio headphone/microphone 104 and a wireless camera 105 coupled by a wireless network 106 to the local station 108 and being advised by the local master technician 109.

The local station 108 is comprised of a local processor 110 and the local master technician audio/microphone headset 111 utilized by the local master technician 109.

As described herein, the mobile field technician 102 may operate/service/maintain an apparatus at a remote job site with the advice and control of the local master technician 109:

(a) The local master technician 109 may view and hear the same stimuli at the remote site as the mobile field technician 102, by means of audio and video sensors at the remote job site.

(b) The mobile field technician 102 may communicate with the local master technician 109 by means of the wireless network 106.

(c) The mobile field technician 102 may communicate with the local master technician 109 by means of the wireless network 106 and/or by means of the Internet 107.

As used herein, "local" and "remote" are relative to logical control of the remote job site apparatus and do not necessarily denote large distance. For example, the remote job site and the local station 108 may be located in the same building or even in the same room, where it is desired to logically separate the function of the mobile field technician 102 and the local master technician 109 as in a local training environment. Similarly, the mobile field technician 102 need not be physically co-located with the remote job site apparatus where it is desired to control that remote job site apparatus by means of physically distant tools and software.

In a preferred embodiment, remote air conditioning system control software such as Parker Controls VVT system would allow a mobile field technician 102 to make adjustments to a facility's hvac system with guidance from the local master technician 109 without either of them physically being at the job site.

FIG. 2 shows a block diagram of the portable components of the wireless remote system.

The mobile field technician 102 wears a group of components that comprise a wireless remote system 101. The wireless remote system 101 is comprised of a wireless portable processor 103 an earphone headset 104 a microphone 128 and a video sensor/camera 105. In a preferred embodiment, the wireless portable processor 103 is of sufficient size and weight to be worn by the mobile field technician 102 and has an embedded web browser 118 to allow for wireless connection to the Internet 107, an embedded codec 117 for audio/video data compression, a wireless modem 119, to connect to the wireless network 106, a wireless RF video receiver 120, a wireless RF audio transceiver 116, a data input jack 114, to receive data from a testing meter 126, an audio input jack 129 to alternatively connect to the wireless earphone headset 104, and a video input jack 115, to alternatively connect to the video sensor/camera 105, and a communication port 132, to alternatively connect the wireless portable processor 103, to a cellular phone 112, that would alternatively couple the wireless remote system 101, to the wireless network 106.

In a preferred embodiment, the wireless earphone headset 104, comprises a set of headgear or a helmet suitable for wearing by the mobile field technician 102, having the microphone 128 and the video sensor/camera 105 attached thereto or embedded therein, in suitable locations relative to the mobile technician's ears, eyes, and mouth. For example, the wireless earphones 104 are preferably disposed near the mobile field technicians ears, the wireless camera 105 is preferably disposed near the side of the mobile field technician's head and pointed ahead at a center-of-vision line relative to the operator's head, and the microphone 128 is preferably disposed near the mobile field technicians mouth. Alternatively, the wireless camera 105 may be detached from the headset 104 and placed at a distance from the mobile field technician 102, in such a manner as to provide the local master technician 109 a larger field of view while mounted to a stationary platform.

In a preferred embodiment, the wireless earphone headset 104 would comprise a microphone 128 for voice communication with the local master technician 109, an earphone 133 for use on one ear by the mobile field technician 102, and a wireless transceiver 130 to couple with the wireless headphone transceiver 116. Alternatively, the earphone headset 104 could be coupled to the wireless portable processor 103 by means of wired connection to the audio imput jack 129.

In a preferred embodiment, the wireless earphone headset 104 comprise the NCHSM-776 product, by Specialty Products, Inc., of Reno, Tex. p.o. box 30665, and the GRT-1001 transceiver product, by Polaris Industries, Inc., of 470 Armour Drive, Atlanta Ga. The NCHSM-776 product is a combination earphone headset 104 and a noise canceling microphone 128. In an alternative embodiment, the wireless earphone headset would have a jack for a wired connection to the wireless portable processor 103. In an alternative embodiment, the wireless earphone headset 104 would be coupled to a cellular phone 112 and operate independently of the wireless portable processor 103.

In a preferred embodiment, the video/sensor camera 105 would be detachable from the wireless earphone headset 104 and would comprise a camera 105 and a wireless RF video transmitter 131. The wireless RF video transmitter 131 would be wirelessly coupled to an RF receiver 120 that would be mechanically coupled or embedded to the wireless portable processor 103. Alternatively, the camera 105 and the wireless earphone headset 104 would use the same transceiver 116 in a dual band mode and thus only need one.

In a preferred embodiment, the video/sensor camera 105 would comprise the SCI-VC-600 color board camera product, by Synergy Concepts Inc., of P.O.box 803089 Dallas Tex. 75380-3088 and a wireless RF video transmitter 131 model GRT1001 by Polaris Industries, Inc., of 470 Armour Drive, Atlanta Ga.

In a preferred embodiment, the camera 105 can be configured to alternatively provide high-resolution still images in place of continuous video images, represented by an analog video signal in a standard format.

In a preferred embodiment, the camera 105 would be detachable from the wireless earphone headset 104 and be functionally independent.

In a preferred embodiment, the wireless portable processor 103 comprise the 220E product hand held computer, by Hitachi Inc., of 2000 Sierra Point Parkway, Brisbane, Calif. 94005-1835.

In a preferred embodiment, the wireless portable processor 103 would be worn on a belt pack or on a backpack coupled alternatively to an external battery pack that would be worn on a belt pack or a backpack.

An output of the camera 105 is wirelessly coupled to a local video codec 117, which digitizes the video signal output by the camera 105, to produce a stream of digital video data. In a preferred embodiment, the local video codec 117 also compresses the digital video data using a wave let full color motion compression algorithm performed in real time. In a preferred embodiment, the local video codec 117 comprise the HARC-C compression engine product, by Houston Advanced Research Center, Inc., of 16800 Greenspark Drive, Ste 140 North, Houston, Tex. 77060. However, in an alternative embodiment, the local video codec 117, may use another video compression standard, such as the MPEG I or MPEG II compression standard. The MPEG I and or the MPEG II compression standards are known in the art.

The wireless portable processor 103 utilizes a web browser 118 software to access the Internet 107. In a preferred embodiment, the web browser 118 would comprise the Netscape 4.0 product, by Netscape Inc. 501 E. Middlefield Rd., Mountain View, Calif. 94043.

The wireless portable processor 103 is mechanically coupled to or has embedded within, a wireless modem 119. The wireless modem 119 is coupled by a wireless means to the wireless network 106 which may be coupled to the Internet 107. The audio/video data from the wireless portable processor 103 can be coupled alternatively via the wireless network 106 and/or the Internet to the local station 108. In a preferred embodiment, the wireless modem 119 comprise the Type III PCMCIA CDPD modem, by Inot of 1255 W. 15th. St., Plano Tex. 75075-7270. In a preferred embodiment, the wireless modem 119 would be connected to the wireless portable processor via a PCMCIA slot. Alternatively, the wireless portable processor 103 would be coupled to the wireless network 106 via a cabled connection to a cellular phone 112. In a preferred embodiment, the cellular phone 112 would comprise a model 2160i by Nokia Corp., of 6000 Connection Dr., Irving, Tex. 75039.

FIG. 3 shows a block diagram of a local station 108 for a remote system.

The local station 108 comprises an operator headset 111, including earphones 135 and a microphone 134, a local processor 110, local station software 136, a local station data interface 123 and a local master technician 109.

In a preferred embodiment, the local master technician 109 would don the operator headset 111 and couple the local processor 110 to the wireless network 106 and/or the Internet 107 via a web browser 118 and the local station data interface 123.

In a preferred embodiment, the local station 108 would be coupled by a wireless means to the wireless portable processor 103 and the mobile field technician 102 via the wireless network 106 and/or the Internet 107.

In a preferred embodiment, the local master technician 109 would communicate with the mobile field technician 102 via normal speech and visual signals. The local master technician 109 would view the visual signals from the mobile field technicians' camera 105 on the video monitor of the local processor 110 and hear the audio/speech from the mobile field technician 102 using the earphones 135 and give direction to the mobile field technician 102 via the microphone 134.

In a preferred embodiment, the local processor 110 would comprise a computer of sufficient capacity to allow for a plurality of audio/video signals from a plurality of mobile field technicians 102 to be processed simultaneously. The local station software 136 would utilize a plurality of video windows that would contain the video signals from the individual mobile field technicians' cameras 105. When activated by the local master technician 109, the individual reduced video windows 122 become enlarged video windows 121 to facilitate observation of details. The mobile field technicians 102 could signal their desire to audibly communicate with the local master technician by an electronic signal, such as a flashing light or icon, within their reduced video windows 122. The local station software would also track the time each individual mobile field technician 102 was on-line and transmitting data. Where appropriate, the local processor 110 may perform data compression, error detection and correction for audio and video signals transmitted from the mobile field technician 102 via the wireless portable processor 103.

In an alternative embodiment, the local station 108 is comprised of a local master technician 109 utilizing a wireless portable processor 103 to communicate with one or more mobile field technicians 102. The term "local master technician" is not to necessarily imply that the local master technician 109 is constantly in a fixed location, but may himself/herself be mobile. Similarly, the term "mobile field technician" is not to necessary imply that the mobile field technician is continually moving, but may himself/herself, be at a fixed job site for a varying period of time.

In a preferred embodiment, the local station software would comprise the 3.0 cu-see-me product by Whitepines Inc. of 542 Amherst Street, Naushua, N.H. 03063.

In a preferred embodiment, the local processor 110 would comprise the PC300GL product by IBM of San Jose Calif.

In a preferred embodiment, the local processor web browser 118 would comprise the Netscape 4.0 product by Netscape Inc. of 501 E. Middlefield Road, Mountain View, Calif. 94043.

In a preferred embodiment, the operator headset would comprise the SP-NCHSM-776 product by Specialty Products of P.O. box 30665 Reno, Tex. 75462.

The local station data interface 123 is any connecting point that couples the local processor 110 to the wireless network 106 and/or the Internet 107. It could be a standard POTS telephone line, an ISDN line, dedicated T1, fiber optic, satellite, broad band RF or wireless microwave broad band. It would be clear to those skilled in the art that these different methods would be workable with the disclosure of the present invention, and would not require any undo invention.

In a preferred embodiment, the local station data interface 123 would comprise a dedicated ISDN line to allow for adequate data transmission to and from the local processor 110 from the wireless network 106.

The wireless network may comprise any wireless link capable of carrying sufficient information between the wireless portable processor 103 and the local processor 110 such as a CDPD cellar network, TDMA, CDMA, ARDIS, RAM, spread spectrum RF, satellite and/or broad band microwave. In a preferred embodiment, the wireless network 106 comprises the CDPD cellular network coupled to an Internet service provider. However, the wireless network 106 could be utilized as a direct communication link between the wireless portable processor 103 and the local processor 110 without using the Internet 107. It would be clear to those skilled in the art that these alternative wireless networks would be workable with the disclosed invention, without any undo invention.

FIG. 4 shows a block diagram of a vehicle based wireless remote system

The vehicle based wireless remote system comprises a wireless portable processor 103 a vehicular mounted wireless network antenna 125 and a vehicular mounted RF antenna 137. The mobile field technician 102 would move about a job site while transmitting/receiving audio and video data. The camera 105 and the wireless earphone headset 104 would transmit/receive data via a dual channel audio/video transceiver 138 mounted either on the wireless earphone headset 104 or alternatively on a belt or back pack. The dual channel audio/video transceiver 138 would relay the audio/video data by a wireless means to a vehicular mounted RF antenna 137 which would be coupled to a dual channel audio/video transceiver 138 coupled to or embedded with the wireless portable processor 103. The wireless portable processor 103 would relay the audio/video data from the mobile field technician 102 to the wireless network 106 via the wireless modem 119 that would be coupled to a vehicular mounted wireless network antenna 125.

In a preferred embodiment, the dual channel audio/video transceiver 138 would comprise the GFI-1001 model by Polaris Industries of 470 Armour Drive, Atlanta, Ga.

FIG. 5 shows a block diagram of a centralized expertise station 127.

A centralized expertise station 127 is comprised of one or more local master technicians 109 and one or more local processors 110. The local master technicians 109 would guide and advise a plurality of mobile field technicians 102 via a wireless network 106 and/or the Internet 107. Alternatively, the mobile field technicians 102 need not be technicians at all but may be individuals only in need of the specialized information that the local master technician 109 is providing. Accordingly, the local master technicians 109 may not be technicians at all, but may be individuals with knowledge or knowledge resources sought by others. The centralized expertise station could be a knowledge resource for hire that was made accessible via the wireless remote apparatus 101. Alternatively, the centralized expertise station 127 could be a no-fee based center for information that was made accessible via the wireless remote apparatus 101.

In a preferred embodiment, the centralized expertise station 127 would comprise a plurality of local master technicians 109 who represent a variety of trades and/or have other specialized knowledge that is sought by individuals utilizing wireless portable processors 103. An individual that uses the wireless portable processor 103 could be a maintenance employee of an apartment project and require oversight and information that would be provided by a local master technician 109 that would allow the maintenance man to perform a repair. In a preferred embodiment, the maintenance personnel would couple to the centralized expertise station 127 via a wireless portable processor 103 coupled to the wireless network by a wireless means 106 and the Internet 107 and receive guidance and information from a local master technician 109 on a fee-for-use or contract basis.

FIG. 6 shows a flow diagram of a method of operating a wireless remote system.

In a step 601, the mobile field technician 102 would don the wireless earphone headset 104 and a camera 105.

In a step 602, the mobile field technician 102 would couple the wireless portable processor 103 to the wireless network 106. In a preferred embodiment, the mobile field technician 102 would couple the wireless portable processor 103 to the cellular network and connect to the Internet 107.

In a step 603, the wireless portable processor 103, transmits audio/video to the local station 108 via the wireless network 106.

In a step 604, the local processor 110 receives the audio/video from the mobile field technician 102.

In a step 605, the local master technician 109 dons the operator headset 111 and views the computer monitor on the local processor 110 and hears and views the audio/video data transmitted from the mobile field technician 102 via the wireless portable processor 103 and the wireless network 106. In a preferred embodiment, the local master technician 109 would view the video data from the camera 105 in on-screen video windows that can be enlarged for better detail observation and reduced in order to view multiple field technician video windows at the same time. In a preferred embodiment, the local processor 110 would use the White Pines 3.0 video conference software.

In a step 606, the local master technician 109 communicates verbally with the mobile field technician 102 using the local station microphone 134 and the local station earphones 135 that comprise the operator headset 111.

In a step 607, the local master technician 109 directs the mobile field technician 102.

Although this preferred method of operation is disclosed with regard to a technician and an expert, collectively performing the task of troubleshooting remote apparatus, it would be clear to those skilled in the art, after perusal of this application, that there are many alternative tasks that may be performed by the mobile field technician 102, with the assistance of the local master technician 109, using substantially the same method and system. Moreover, it would be clear to those skilled in the art, after perusal of this application, how to modify the system disclosed herein, and known equipment, to implement such alternative tasks without undue invention.

For example, the following are alternative embodiments of the invention:

1. The mobile field technician 102 may not be a technician at all but is only an individual in need of information that would be provided via the wireless portable processor 103.

2. The local master technician 109 may not be a technician at all but may simply be an information provider via the wireless remote system.

3. The mobile field technician 102 may not wear or carry the wireless portable processor 103 but would transmit audio/video to a vehicle located processor (FIG. 4) that would relay the audio/video from the wireless earphone headset 104 and the wireless camera 105 to the wireless network 106 via a wireless network antenna 125.

4. The mobile field technician 102 may not wear the camera 105 but would alternatively set the camera on a stationary platform in a manner as to observe the desired area or object. The camera 105 would transmit the video utilizing an attached wireless video transmitter to the wireless portable processor 103 or alternatively to a vehicle located processor as shown in FIG. 4.

5. The mobile field technician 102 may not transmit audio via the wireless portable processor 103 at all but would alternatively transmit/receive audio via a cell phone.

6. The local station 108 may alternatively be a centralized expertise station 127 where a plurality of master technicians 109 would advise a plurality of mobile field technicians 102. The local master technicians 109 may represent different trades or areas of expertise and may offer that expertise on a fee or contract basis. Alternatively, the local master technicians 109 may not be technicians at all but simply information providers or allow access to information in a fee based or non fee based environment via the wireless portable processor 103.

7. The local master technician 109 may alternatively utilize a wireless portable processor 103 to advise one or more mobile field technicians 102 using wireless portable processors 103. The local master technician 109 may be at the same location or job site but find it necessary to advise one or more technicians that may be separated from each other or separated from the local master technician 109 or otherwise in need of instruction. An example would be a local master technician 109 advising mobile field technicians that are on a building roof while local master technician may be on the first floor.

Although preferred embodiments are disclosed herein, many variations are possible which remain within the concept, scope and spirit of the invention, and these variations would become clear to those skilled in the art after perusal of this application.

Thomason, John A.

Patent Priority Assignee Title
10129569, Oct 26 2000 Front Row Technologies, LLC Wireless transmission of sports venue-based data including video to hand held devices
10162796, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Inspection systems and methods
10257463, Feb 16 2012 Covidien LP Multifunctional conferencing systems and methods
10290206, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for control of a non-destructive testing system
10325298, Jan 22 2013 BAKER HUGHES HOLDINGS LLC Systems and methods for a non-destructive testing ecosystem
10348965, Dec 23 2014 PogoTec, Inc. Wearable camera system
10387237, Jan 22 2013 General Electric Company Systems and methods for analyzing data in a non-destructive testing system
10432244, May 22 2017 Peloton Technology, Inc Transceiver antenna system for platooning
10448079, Oct 27 2000 VOXX International Corporation Vehicle console capable of wireless reception and transmission of audio and video data
10471478, Apr 28 2017 United Parcel Service of America, Inc.; United Parcel Service of America, Inc Conveyor belt assembly for identifying an asset sort location and methods of utilizing the same
10484438, Jan 22 2013 General Electric Company Systems and methods for collaborating in a non-destructive testing system
10546253, Jan 22 2013 BAKER HUGHES, A GE COMPANY, LLC Realtime inspection management
10671949, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC System and methods for management of mobile field assets via wireless handheld devices
10672046, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for non-destructive testing online stores
10728501, Feb 16 2012 Covidien LP Multifunctional conferencing systems and methods
10887516, Dec 23 2014 PogoTec, Inc. Wearable camera system
10979959, Nov 03 2004 The Wilfred J. and Louisette G. Lagassey Irrevocable Trust Modular intelligent transportation system
11010448, Dec 31 2012 BAKER HUGHES, A GE COMPANY, LLC Inspection systems and methods
11090689, Apr 28 2017 United Parcel Service of America, Inc. Conveyor belt assembly for identifying an asset sort location and methods of utilizing the same
11267609, Jun 22 2015 Menasha Corporation; PepsiCo, Inc. Stackable pallet display
11282515, Aug 31 2015 Hand Held Products, Inc. Multiple inspector voice inspection
11300857, Nov 13 2018 OPKIX, INC Wearable mounts for portable camera
11558538, Mar 18 2016 Opkix, Inc. Portable camera system
11601332, Dec 31 2012 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for non-destructive testing online stores
11646028, Aug 31 2015 Hand Held Products, Inc. Multiple inspector voice inspection
11858010, Apr 28 2017 United Parcel Service of America, Inc. Conveyor belt assembly for identifying an asset sort location and methods of utilizing the same
11869052, Jan 22 2013 BAKER HUGHES HOLDINGS LLC Systems and methods for a non-destructive testing ecosystem
6487375, Dec 28 2000 Xerox Corporation System to communicate information from a plurality of machines to a remotely located receiver
6608560, Jun 05 2001 Clockwork IP, LLC Device and method for providing HVAC service assistance
6678892, Oct 27 2000 VOXX International Corporation Multimedia entertainment unit for use in a vehicle
6690273, Oct 19 1998 WIRELESS REMOTE SYSTEM LLC Wireless video audio data remote system
6753899, Sep 03 2002 Audisoft Method and apparatus for telepresence
6763088, Oct 29 2002 BENHOV GMBH, LLC Medical dispatch system
6811492, Mar 20 2000 NINTENDO CO , LTD Video game machine using digital camera and digital camera accessory for video game machine
6956599, Feb 16 2001 Samsung Electronics Co., Ltd. Remote monitoring apparatus using a mobile videophone
6987480, Nov 24 1999 The United States of America as represented by the Secretary of the Navy; NAVY, GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE Voice communications control system and method
7035897, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
7051356, Feb 25 2002 WEINSTEIN, BRADLEY A Method and system for remote wireless video surveillance
7063256, Mar 04 2003 United Parcel Service of America, Inc Item tracking and processing systems and methods
7090134, Mar 04 2003 United Parcel Service of America, Inc System for projecting a handling instruction onto a moving item or parcel
7149701, Nov 02 2001 JERRY L MCKINNEY 2002 TRUST; JERRY L MCKINNEY TRUST Regulatory compliance system and method
7201316, Mar 04 2003 United Parcel Service of America, Inc. Item tracking and processing systems and methods
7206559, Oct 16 2001 Qualcomm Incorporated System and method for a mobile computing device to control appliances
7221267, Dec 03 2003 Uber Technologies, Inc User interface to aid system installation
7231233, Nov 25 2003 GOSIESKI, GEORGE J , JR Combined multi-media and in ear monitoring system and method of remote monitoring and control thereof
7253732, Sep 10 2001 STRATEGIC DESIGN FEDERATION W, INC Home intrusion confrontation avoidance system
7336169, Mar 23 2005 Lake Star Consulting LLC; Emergency Medical Systems, Inc.; EMERGENCY MEDICAL SYSTEMS, INC Method and real time emergency response surveillance system
7377429, Mar 04 2003 United Parcel Service of America, Inc. Item tracking and processing systems and methods
7383158, Apr 16 2002 Trane International Inc HVAC service tool with internet capability
7424309, Jul 16 1999 Bayerische Motoren Werke Aktiengesellschaft System in vehicles for making a telephone call
7466992, Oct 18 2001 Corydoras Technologies, LLC Communication device
7525420, Nov 02 2001 JERRY L MCKINNEY 2002 TRUST Environmental equipment alarm circuit verification system and method
7539504, Dec 05 2001 UPLOAD TECHNOLOGIES, S A Wireless telepresence collaboration system
7561717, Jul 09 2004 United Parcel Service of America, Inc System and method for displaying item information
7565187, Apr 11 2002 FREELINC HOLDINGS, LLC Transceiver device and fastener
7593751, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC Conducting field operations using handheld data management devices
7667669, Oct 27 2000 Audiovox Corporation Vehicle display device having a wireless transmitter
7679578, May 15 2003 Audiovox Corporation Headrest mountable video system
7780231, May 15 2003 Audiovox Corporation Entertainment system mountable in a vehicle seat and methods for mounting and displaying same
7791586, May 15 2003 Audiovox Corporation Entertainment system mountable in a vehicle seat
7812856, Oct 26 2000 Front Row Technologies, LLC Providing multiple perspectives of a venue activity to electronic wireless hand held devices
7826877, Oct 26 2000 Front Row Technologies, LLC Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
7839355, Oct 27 2000 Audiovox Corporation Vehicle display device having a wireless transmitter
7844468, Apr 30 2003 International Business Machines Corporation Second site control of article transport processing
7884855, Oct 26 2000 Front Row Technologies, LLC Displaying broadcasts of multiple camera perspective recordings from live activities at entertainment venues on remote video monitors
7894769, Jul 10 2003 TOA Corporation Wireless microphone communication system
7909397, May 15 2003 Audiovox Corporation In-vehicle docking station for a portable media player
7945471, Nov 02 2001 JERRY L MCKINNEY 2002 TRUST Monitoring system communication system and method
7949616, Jun 01 2004 Telepresence by human-assisted remote controlled devices and robots
7954894, May 15 2003 Audiovox Corporation Headrest mountable video system
7972216, Mar 20 2000 Nintendo Co. Ltd. Video game system and camera accessory for a video game system
8059882, Jul 02 2007 Honeywell International Inc. Apparatus and method for capturing information during asset inspections in a processing or other environment
8079954, Dec 10 2001 Medic4all AG Visual medical monitoring system for a remote subject
8086184, Oct 26 2000 Front Row Technologies, LLC Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
8086277, Jul 10 2003 TOA Corporation Transmitter of wireless microphone, receiver for wireless microphone, portable information communication device, and wireless microphone communication system
8090321, Oct 26 2000 Front Row Technologies, LLC Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
8126276, Feb 21 2001 International Business Machines Corporation Business method for selectable semantic codec pairs for very low data-rate video transmission
8184169, Jun 27 2000 Front Row Technologies, LLC Providing multiple video perspectives of activities through a data network to a remote multimedia server for selective display by remote viewing audiences
8265776, Sep 10 2001 STRATEGIC DESIGN FEDERATION W, INC Energy monitoring system and method
8270895, Oct 26 2000 Front Row Technologies, LLC Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
8319845, Oct 26 2000 Front Row Technologies, LLC In-play camera associated with headgear used in sporting events and configured to provide wireless transmission of captured video for broadcast to and display at remote video monitors
8386303, Nov 02 2001 JERRY L MCKINNEY 2002 TRUST Sparse data environmental equipment threshold compliance alarm system and method
8396280, Nov 29 2006 Honeywell International Inc.; Honeywell International Inc Apparatus and method for inspecting assets in a processing or other environment
8401460, Oct 26 2000 Front Row Technologies, LLC Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
8447174, May 15 2003 VOXX International Corporation Portable video system
8494581, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC System and methods for management of mobile field assets via wireless handheld devices
8583027, Oct 26 2000 Front Row Technologies, LLC Methods and systems for authorizing computing devices for receipt of venue-based data based on the location of a user
8610786, Jun 27 2000 Front Row Technologies, LLC Providing multiple video perspectives of activities through a data network to a remote multimedia server for selective display by remote viewing audiences
8633869, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
8686849, Aug 10 2010 Robert Bosch GmbH Method of alarm handling in wireless sensor networks
8713613, Jan 04 2006 Audiovox Corporation Data distribution unit for vehicle entertainment system
8736517, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
8750784, Oct 26 2000 Front Row Technologies, LLC Method, system and server for authorizing computing devices for receipt of venue-based data based on the geographic location of a user
8862184, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC System and methods for management of mobile field assets via wireless handheld devices
8933863, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
8950004, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for licensing non-destructive testing content
8973061, Jan 04 2006 VOXX International Corporation Data distribution unit for vehicle entertainment system
9003880, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Reference speed measurement for a non-destructive testing system
9036892, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for data entry in a non-destructive testing system
9107000, Dec 21 2001 ONE-E-WAY, INC. Wireless digital audio music system
9114745, May 15 2003 VOXX International Corporation Portable video system
9135597, Jun 09 2008 International Business Machines Corporation Second site control of article transport processing
9152304, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for virtual control of a non-destructive testing system
9185161, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for synchronizing non-destructive testing devices
9217999, Jan 22 2013 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for analyzing data in a non-destructive testing system
9218470, Dec 31 2012 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for non-destructive testing user profiles
9282396, Dec 21 2001 One-E-Way Inc. Wireless digital audio music system
9299044, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC System and methods for management of mobile field assets via wireless handheld devices
9317241, Oct 27 2000 VOXX International Corporation Vehicle console capable of wireless reception and transmission of audio and video data
9371099, Nov 03 2004 THE WILFRED J AND LOUISETTE G LAGASSEY IRREVOCABLE TRUST, ROGER J MORGAN, TRUSTEE Modular intelligent transportation system
9479726, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
9489124, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for virtual control of a non-destructive testing system
9535809, Jan 22 2013 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for implementing data analysis workflows in a non-destructive testing system
9537907, Jan 22 2013 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for sharing data in a non-destructive testing system
9538677, Mar 13 2013 BAKER HUGHES HOLDINGS LLC System for mobile device cradle and tube gripper of non-destructive testing inspection device
9581438, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for control of a non-destructive testing system
9584705, Mar 14 2013 GOOGLE LLC Wearable camera systems
9584760, Feb 16 2012 Covidien LP Multifunctional conferencing systems and methods
9588515, Dec 31 2012 BAKER HUGHES HOLDINGS LLC Systems and methods for remote control of a non-destructive testing system
9620107, Dec 31 2012 Westinghouse Air Brake Technologies Corporation Voice inspection guidance
9641569, Jan 22 2013 BAKER HUGHES HOLDINGS LLC Systems and methods for collaborating in a non-destructive testing system using location information
9641797, Jan 15 1999 THROOP, LLC Wireless augmented reality communication system
9646444, Jun 27 2000 Mesa Digital, LLC Electronic wireless hand held multimedia device
9710573, Jan 22 2013 BAKER HUGHES HOLDINGS LLC Inspection data graphical filter
9747565, Sep 18 2000 FLEET CONNECT SOLUTIONS LLC System and methods for management of mobile field assets via wireless handheld devices
9838442, Jan 22 2013 General Electric Company Systems and methods for implementing data analysis workflows in a non-destructive testing system
9870690, Oct 08 2013 General Electric Company Methods and systems for a universal wireless platform for asset monitoring
9881519, Feb 20 2008 HAZSIM, LLC Hazardous material detector simulator and training system
9882989, Jan 22 2007 Snap One, LLC Systems and methods for providing remote assistance for controlling a site
9924137, Feb 16 2012 Covidien LP Multifunctional conferencing systems and methods
9930257, Dec 23 2014 PogoTec, Inc. Wearable camera system
9954908, Jan 22 2013 BAKER HUGHES, A GE COMPANY, LLC Systems and methods for collaborating in a non-destructive testing system
Patent Priority Assignee Title
3919475,
4605959, Aug 23 1984 Westinghouse Electric Corp. Portable communications terminal
4750197, Nov 10 1986 INTEGRATED CARGO MANAGEMENT SYSTEMS Integrated cargo security system
4962473, Dec 09 1988 ITT Corporation Emergency action systems including console and security monitoring apparatus
5452289, Jan 08 1993 MULTI-TECH SYSTEMS, INC Computer-based multifunction personal communications system
5546072, Jul 22 1994 Northrop Grumman Systems Corporation Alert locator
5619183, Sep 12 1994 ZIEGRA, RICHARD C Video audio data remote system
5671158, Sep 18 1995 Envirotest Systems Corp. Apparatus and method for effecting wireless discourse between computer and technician in testing motor vehicle emission control systems
5697834, Jul 17 1996 Energy, United States Department of Remote repair appliance
5726660, Dec 01 1995 CUFER ASSET LTD L L C Personal data collection and reporting system
5793416, Dec 29 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Wireless system for the communication of audio, video and data signals over a narrow bandwidth
5801755, Apr 09 1996 MEDCOM TECHNOLOGY ASSOCIATES INC Interactive communciation system for medical treatment of remotely located patients
5810747, Aug 21 1996 IRDETO ACCESS, INC Remote site medical intervention system
5812054, May 09 1994 SECURITYVILLAGE COM INC ; A O A AMERICA-ISRAEL LTD , Device for the verification of an alarm
5917405, Jun 08 1993 JOAO CONTROL & MONITORING SYSTEMS, LLC Control apparatus and methods for vehicles
H1790,
RE34895, Aug 13 1991 Matsushita Electric Industrial Co., Ltd. Home automation system
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 02 2012THOMASON, JOHN A WIRELESS REMOTE SYSTEM LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0284900919 pdf
Date Maintenance Fee Events
Apr 07 2005ASPN: Payor Number Assigned.
Apr 13 2005M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
May 11 2009M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
May 13 2009ASPN: Payor Number Assigned.
May 13 2009RMPN: Payer Number De-assigned.
Jan 06 2012ASPN: Payor Number Assigned.
Jan 06 2012RMPN: Payer Number De-assigned.
Sep 25 2012ASPN: Payor Number Assigned.
Sep 25 2012RMPN: Payer Number De-assigned.
Mar 07 2013M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Nov 13 20044 years fee payment window open
May 13 20056 months grace period start (w surcharge)
Nov 13 2005patent expiry (for year 4)
Nov 13 20072 years to revive unintentionally abandoned end. (for year 4)
Nov 13 20088 years fee payment window open
May 13 20096 months grace period start (w surcharge)
Nov 13 2009patent expiry (for year 8)
Nov 13 20112 years to revive unintentionally abandoned end. (for year 8)
Nov 13 201212 years fee payment window open
May 13 20136 months grace period start (w surcharge)
Nov 13 2013patent expiry (for year 12)
Nov 13 20152 years to revive unintentionally abandoned end. (for year 12)