The present invention relates to isolating, sequencing and cloning of the 5'-flanking region of neuropeptide ff (NPFF) promoter. The characterized neuropeptide ff (NPFF) promoter is useful in gene therapy and in DNA analyses, and in production of gene-modified animals.

Patent
   6320038
Priority
Aug 03 1999
Filed
Mar 27 2000
Issued
Nov 20 2001
Expiry
Aug 03 2019
Assg.orig
Entity
Small
2
0
EXPIRED
25. A nucleic acid comprising seq id NO:6.
26. A nucleic acid comprising seq id NO:3.
23. A nucleic acid comprising nucleotides 1-398 of seq id NO:8.
22. A nucleic acid comprising nucleotides 1-399 of seq id NO:7.
24. A nucleic acid comprising nucleotides 1-399 of seq id NO:9.
14. A nucleic acid comprising nuclcotides 9516-9840 of seq id NO:1.
11. A promoter for a neuropeptide ff gene comprising promoter-active DNA fragments located within nucleotide position 1 to position 9840 of seq id NO:1.
4. A promoter for a neuropeptide ff gene comprising promoter-active DNA fragments located within nucleotide position 1 to position 2480 of seq id NO:3.
7. A composition, comprising a coding region operationally coupled to a promoter and an acceptable carrier, wherein said promoter comprises promoter-active DNA fragments which are located in the 5'-flanking region of the human neuropeptide ff gene, wherein said promoter-active DNA comprises seq id NO:3.
1. A promoter for a neuropeptide ff gene comprising a promoter-active DNA fragment located in the 5'-flanking region of the neuropeptide ff gene, wherein said promoter-active DNA comprises nucleic acid selected from the group consisting of seq id NO:1, seq id NO:3, seq id NO:6; seq id NO:7, seq id NO:8, and seq id NO:9.
12. A composition, comprising a coding region operationally coupled to a promoter and an acceptable carrier, wherein said promoter comprises promoter-active DNA fragments which are located in the 5'-flanking region of the mouse neuropeptide ff gene, wherein said promoter-active DNA is selected from the group consisting of bases 9516-9840 of seq id NO:1, seq id NO:6 and seq id NO:7.
2. The promoter of claim 1 wherein said promoter comprises transcription factor binding sites which modulate neuropeptide ff gene expression.
3. The promoter of claim 2 wherein said transcription factor binding sites affect autonomic nervous function, pain and hormonal dysfunction resulting from a central nervous system disorder.
5. The promoter of claim 4 wherein said promoter comprises transcription factor binding sites which modulate neuropeptide ff gene expression.
6. The promoter of claim 5 wherein said transcription factor binding sites affect autonomic nervous function, pain and hormonal dysfunction resulting from a central nervous system disorder.
8. A composition of claim 7, wherein said promoter-active DNA fragments comprise DNA fragments located within nucleotide position 1-399 of seq id NO:9.
9. A composition of claim 7, wherein said coding region is required in the treatment or diagnosis of a disease in a subject.
10. A composition of claim 8, wherein said coding region is required in the treatment or diagnosis of a disease in a subject.
13. A composition of claim 12, wherein said promoter-active DNA fragments comprise DNA fragments located within nucleotide position 1 to position 9840 of seq id NO:1.
15. The nucleic acid of claim 14 comprising nucleotides 9262-9840 of seq id NO:1.
16. The nucleic acid of claim 14 comprising nucleotides 9036-9840 of seq id NO:1.
17. The nucleic acid of claim 14 comprising nucleotides 8756-9840 of seq id NO:1.
18. The nucleic acid of claim 14 comprising nucleotides 8552-9840 of seq id NO:1.
19. The nucleic acid of claim 14 comprising nucleotides 8314-9840 of seq id NO:1.
20. The nucleic acid of claim 14 comprising nucleotides 7980-9840 of seq id NO:1.
21. The nucleic acid of claim 14 comprising nucleotides 1-9840 of seq id NO:1.

This application is a continuation-in-part of application Ser. No. 09/365,755, filed Aug. 3, 1999, now abandoned, which is incorporated herein by reference.

The present invention relates to sequencing and cloning of the 5'-flanking region of neuropeptide FF (NPFF) promoter. A neuropeptide FF (NPFF) promoter region for mouse, rat and human has been cloned and sequenced. The characterized neuropeptide FF (NPFF) promoter is useful in screening and treating for genetic diseases associated with the promoter area of the NPFF gene by modulation of activation or inhibition of NPFF gene expression through the regulatory sites in the promoter area. The promoter can also be used as a marker for its locus in the corresponding chromosome. Thus, the characterized promoter is of considerable diagnostic value and can be used in gene therapy and in DNA analyses. Further, the promoter can be used for developing genetically modified animals.

Neuropeptide FF was originally identified as a mammalian counterpart of the molluscan cardioactive peptide FMRF-amide (Yang et al., 1985), found in the superficial dorsal horn of the spinal cord, hypothalamus, medulla and pituitary gland (Kivipelto et al. 1989). The findings that the peptide is present in the hypothalamo-pituitary system, decreases during salt-loading and is deficient in the pituitary gland of vasopressin-deficient Brattleboro rats, implicate NPFF involvement in hypothalamic regulation of pituitary functions (Majane and Yang, 1991; Majane and Yang, 1990; Majane et al., 1993). Peripherally administered NPFF raises blood pressure in rats, an effect mediated by both peripheral and central mechanisms (Allard et al., 1995; Laguzi et al., 1996). NPFF has also been implicated in sensory systems, most notably pain and morphine analgesia (Yang et al., 1985). Intracerebroventricular NPFF has been reported to induce a vigorous abstinence syndrome in morphine-tolerant rats. NPFF has attenuated the antinociceptive effects of morphine when administered in the third ventricle, whereas intrathecal NPFF produces long-lasting antinociception (Gouarderes et al., 1993).

The NPFF gene is located in the human chromosome locus 12q13 (Burke et al. 1998), which is known to be associated with a severe condition referred to as Allgrove syndrome (triple-A syndrome). The current NPFF promoter area is an evident region where mutations responsible for triple A syndrome are located. It serves as a useful marker for the appropriate area of chromosome 12, and has diagnostic and therapeutical value in treatment of a triple-A syndrome.

Accordingly, it is an object of this invention to clone and sequence the 5'-flanking region of the NPFF promoter in human, rat and mouse.

The promoter region cloned and characterized here plays an essential role in etiology and/or pathogenesis of CNS disorders involving NPFF, including those associated with deficient regulation of autonomic function, pain conditions, and hormonal dysfunction. Accordingly, another object of the invention is to provide potential methods of screening and treating for genetic diseases associated with the promoter area of the NPFF gene by modulation of activation or inhibition of NPFF gene expression through the regulatory sites in the promoter area. The sequence can also be used as a marker for its locus in the corresponding chromosome. Thus, the characterized promoter is of considerable diagnostic value and can be used in gene therapy and in DNA analyses.

Another object of the invention is to provide genetically modified animals.

FIG. 1A is a schematic representation of the gene structure and cloning strategy for the mouse NPFF gene. Cutting sites for restriction enzymes are indicated by the following abbreviations: B=BamHI, H=HindIII, RI=EcoRI, X=XbaI and Xh=XhoI. The cloning strategy is marked by numbers 1-4. Bar 1 indicates the 4.3 kb EcoRI DNA fragment, bar 2 indicates the 4.5 kb BamHI-EcoRI DNA fragment, bar 3 indicates the 5.5 kb BamHI DNA fragment and bar 4 indicates the 7 kb XbaI DNA fragment.

FIG. 1B shows the nucleotide sequence of the 5'-flanking region of the mouse NPFF gene (SEQ ID NO:6). Sequence is numbered relative to the translational start site (indicated by a bent arrow). The consensus TATA box is shaded. The putative regulatory elements are indicated by arrows underneath the sequences. The AC dinucleotide repeat is indicated by a thick bar under the sequence.

FIG 1C shows: Mouse NPFF promoter sequences. Nucleotide sequence from -9840 bp to -1 bp relative to the translational start site. cDNA sequence is underlined (SEQ ID NO: 1).

FIG 1D shows: Mouse genomic NPFF sequences from coding region and the 3' end of the gene. Nucleotide sequence from +1 relative to the translational start site. cDNA sequence is underlined (SEQ ID: 2).

FIG. 2A shows a map of mouse NPFF promoter deletions fused to luciferase reporter gene. The numbers indicate the nucleotide positions of the 5'-untranslated region with the first nucleotide of the codon for initiation of translation as +1. The promoter fragments were subcloned in NheI-SmaI site of the promotorless luciferase vector pGL3 basic. The MNF5'1.8-LUC reporter construct contains a dinucleotide repeat. Consensus binding sites for transcription factors are indicated by gray-scale colours.

FIG. 2B shows: Basal activity of mouse NPFF promoter to drive luciferase expression. A549 cells were transiently transfected for 48 hours with 5'-promoter deletion constructs fused with a promoterless luciferase vector (pGL3 basic). Transfections were done in duplicate and repeated at least three times. The activity of the promoter was seen to vary with the highest activity in the shortest construct MNF5'0.3-LUC. The activity was seen to drop to almost unmeasurable levels in the MNF5'1.5-LUC construct. The activity was still minimal in the following MNF5'1.8-LUC construct.

FIGS. 2C and 2D show: Activity analysis of the two shortest mouse NPFF promoter constructs MNF5'0.3-LUC and MNF5'0.6-LUC. A549 cells were transiently transfected for 24 hours whereafter the transfectants were stimulated for 16 hours with 10 nM TPA, 10 nM TPA and 1μM ionomycin (IM), 15 μg/ml LPS or 10 μM forskolin. Unstimulated transfectants serve as control. Activity was seen to increase with ∼30% in TPA+IM stimulated MNF5'0.3-LUC transfected cells. A slight increase in activity in the same transfectants was also seen with LPS stimulation. In cells transfected with MNF5'0.6-LUC a ∼50% increase in activity was seen after TPA+IM stimulation. LPS stimulated transfectants also gave an at least ∼40% increase in activity.

FIG. 3 shows a comparison between the first 400 bp of the NPFF promoter from mouse (SEQ ID NO: 7), rat (SEQ ID NO: 8) and human (SEQ ID NO: 9) and a consensus sequence (SEQ ID NO: 10). Sequence similarity is about 90% between mouse and rat and about 70% between rat and human. Conserved consensus binding sites for transcription factors are marked under the sequence. The translational start site is marked by a bent arrow and the TATA-box is marked by a box. M=mouse, R=rat and H=human.

FIG. 4 shows: Nucleotide sequence of the human NPFF promoter. Nucleotide sequence from -2480 bp to -1 bp relative to the translational start site (SEQ ID NO: 3).

FIG. 5 shows: A new, previously unidentified open-reading frame was found in the mouse promoter residing from -4236 to -3841 relative to the translational start site. Amino acids are marked under the sequence (SEQ ID NO: 4). This protein (SEQ ID NO:5) may have multiple functions and it may give rise to a previously unidentified bioactive peptides.

We report here the cloning of the 5'-flanking region of the NPFF gene from mouse, rat and human. Totally 9.8 kb, 1.5 kb and 1.3 kb of the NPFF promoter from mouse, rat and human was cloned and sequenced. Comparisons between the promoter region from all species showed a high sequence similarity. Such a high sequence homology and well-conserved structure could indicate an important physiological function and a need for a similar, tightly regulated transcription of the gene. We have previously shown that the NPFF gene is expressed in specific regions in the brain and in the spinal cord and is induced upon inflammatory stimulus (Vilim et al., 1999). In agreement with this several inflammation related transcription factor consensus sites were found (FIG. 1B), amongst them e.g. NFκB, which is considered as an immediate early mediator of immune and inflammatory responses (Lenardo & Baltimore, 1989). Also several consensus sites for the nuclear factor of activated T-cells (NFAT) were found (for review see Kel et al., 1999). Transcription factors belonging to this growing family play key roles in the regulation of cytokine and other genes during immune response. An interesting finding was also the consensus site in mouse and rat for heat shock factor 1 (HSF1). HSF1 is activated in cells exposed to elevated temperatures and other environmental stress conditions (Sarge et al., 1993). We also focused on the potential involvement of AP1, STAT1 and CREB.

By using transiently transfected cells with deletional series of mouse NPFF promoter fused with firefly luciferase cDNA we could show that the basal activity of the promoter changes with increasing promoter size (FIG. 2B). This indicates that the promoter is tightly regulated is affected by several transcriptional factors and apparently has a complex transcriptional control. To study the possible involvement of some transcription factors our attempt was to a) activate transcription factors by protein kinase C (PKC) b) activate NFATp by PKC and Ca2+ -levels with TPA and ionomycin (Verweij et al., 1990), c) activate transcription factors by the bacterial endotoxin LPS and d) activate CREB by increasing intracellular cAMP values with forskolin. TPA and ionomycin increased promoter activity in MNF5'0.3-LUC transiently transfected cells (FIG. 2C). In this promoter region a consensus binding site for NFAT was also detected by computational analysis (FIG. 2A). It seems likely that this consensus binding site is active and that the transcription factor NFAT contributes to the transcriptional regulation of the NPFF gene. When MNF5'0.6-LUC was transiently transfected in cells and transfectants were stimulated both TPA and ionomycin and LPS stimulated cells showed higher promoter activity compared to control (FIG. 2D). This still confirms the involvement of NFATp and also possibly confirms the function of a NFκB or a STAT1 site residing in this construct (FIG. 2A). An interesting and contradictory finding was that although LPS seems to increase promoter activity, TPA does not. It seems likely that the transcriptional regulation is dependent on a synergistic mechanism involving several transcriptional factors affecting the gene expression.

A possible silencer element was also found in the proximal mouse promoter residing between 1.5 kb to 1.8 kb. Promoter activity dropped dramatically in cells transiently transfected with MNF5'1.5-LUC if compared with cells transfected with the construct MNF5'1.3-LUC, which is only about 200 bp shorter than MNF5'1.5-LUC. A possible silencer could accordingly reside between 1.3 and 1.5 kb of the mouse NPFF promoter. This finding is also confirmed by that cells transiently transfected with the longest construct. MNF5'1.8-LUC, also exhibits a similarly low promoter activity. It would be interesting to see if a longer promoter construct than the ones used in this study could again raise the promoter activity. Since we have cloned and sequenced also the corresponding region in the rat NPFF promoter and the sequence similarity was about 90%, it is possible that this region could be a functional, cell-specific silencer. It still remains unknown if the human NPFF promoter contains similar sequence. The possibility also remains that the AC-dinucleotide repeat in the MNF5'1.8-LUC construct adds additional regulatory effects. Additional roles of the AC-repeat might also be possible since an almost complementary GT-repeat was found approx. 6.5 kb upstream from the TATA-box in the mouse promoter. These partially complementary elements might interact to form complex secondary structures that may in turn contribute to the regulation of this promoter. Similar AC-repeat structures have been characterized in some other brain specific promoters such as PAX-6 gene (Okladnova et al., 1998) and the GLYT-1 gene (Borowsky & Hoffman, 1998). Proteins bound to repeat elements has been reported (Xu & Goodridge, 1998). Thus it is possible to identify this/these proteins bound to the AC-repeat which may play a role in control of the function of the AC-repeat. These proteins might control the accessability of the AC-segment to the complementary GT-repeat.

To study the endogenous NPFF promoter activity in vitro, we tried to affect the transcription of the gene by stimulating a cell-line, A549, which has been found to endogenously express NPFF mRNA. The results are in accordance with the transfection results; the expression of NPFF increased with LPS stimulation, which also was seen in the transfection results. This additionally emphasises the role of NFκ B in the transcriptional regulation of the NPFF gene. The involvement of NFκ B was also confirmed by decreased expression in cells stimulated first with TPA and then with the known NFκ B inhibitor PGA1.

As a conclusion, current data shows that the transcriptional regulation of the NPFF gene is highly complex and probably involves several transcription factors in synergy in control of the gene expression.

It is obvious that key elements involved in regulation of the NPFF gene are included in the characterized promoter, which has not been reported earlier. NPFF is involved in autonomic regulation including blood pressure and heart functions, analgesia and morphine tolerance, learning, and its expression is increased in the spinal cord after peripheral inflammation. Modulation of activation or inhibition of NPFF gene expression through the regulatory sites in the promoter area may be a part of pathophysiology in disease conditions related to these conditions.

The NPFF gene is located in the human chromosome locus 12q13 (Burke et al. 1998), which is known to be associated with a severe condition referred to as Allgrove syndrome (triple-A syndrome) characterized by a triad of adrenocorticotropic hormone (ACTH), resistant adrenal insufficiency, achalasia and alacrima, hypoglycaemia and sensory impairment and autonomic neuropathy. The current NPFF promoter area is an evident region where mutations responsible for triple A syndrome are located. Thus, the characterized promoter serves as a useful marker for the appropriate area of chromosome 12. Also in other applications it is of considerable diagnostic value and can be used in gene therapy and in DNA analyses.

The invention will be further described with reference to the following non-limiting examples.

Cloning of the Mouse NPFF Promoter

Stratagene mouse genomic library was screened with mouse NPFF cDNA (Vilim et al., 1999). DNA from positive clones were isolated, digested with a panel of restriction enzymes and analysed by Southern blotting. A 4.3 kb EcoRI DNA fragment (see FIG. 1A) that hybridized with the mouse NPFF cDNA probe was subcloned in pBluescript KS+/- vector (Stratagene). The cloned 4.3 kb EcoRI fragment was sequenced by automated sequencer (ABI Prism Automated Fluorescence Sequencer) by using universal primers (T3, T7, Promega) and gene specific primers. Restriction enzyme map of the resulting sequence was computed by using the University of Wisconsin GCG Sequence Analysis Software Package. A 0.8 kb BamHI-EcoRI fragment at the 3'-end of the 4.3 kb EcoRI fragment was subsequently used to probe the Southern blot of NPFF lambda-DNA. This probe hybridized to a 4.4 kb fragment of BamHI-EcoRI digested NPFF lambda-DNA. The 4.4 kb BamHI-EcoRI fragment was thereafter subcloned in pBluescript KS+/- and sequenced as described previously. A 3.5 kb EcoRI-BamHI fragment located at the 5' end of the 4.3 kb EcoRI fragment was then used to reprobe the NPFF Southern. This probe hybrized to a 5.5 kb BamHI fragment, which in turn, was subcloned in pBluescript KS+/- and sequenced. A 2.5 kb BamHI-XbaI fragment at the 5'-end of the 5.5 kb BamHI fragment was finally used to reprobe the NPFF Souther filter and it hybridized to a 7 kb XbaI fragment. The 7 kb XbaI fragment was subsequently subcloned in pBluescript KS+/- and sequenced. The resulting nucleotide sequences were assembled using the GCG Sequence Analysis Software Package. Total of 10.3 kb of the NPFF promoter was cloned and sequenced. The search for the consensus transcription factor recognition sites was performed by MatInspector Professional from Transfac Database at NCBI/NIH.

By using the strategies presented in examples 1 and 4 a 9.8 kb, 1.5 kb and 1.3 kb piece of the NPFF promoter region was cloned and sequenced from mouse, rat and human, respectively. An illustration of the cloning strategy of the mouse NPFF promoter is shown in FIG. 1A. The homology between the proximal promoter based on sequence similarity was seen to be high between all species when doing comparisons based on computorial software (GCG, Wisconsin/CSC, see FIG. 1B). Some of the consensus binding sites for transcription factors were seen to be conserved between all three species in the proximal promoter (FIG. 3).

Luciferase Reporter Constructs

To prepare 5'-deletion constructs of the proximal mouse promoter a 325 bp, 579 bp, 805 bp, 1085 bp, 1289 bp, 1527 bp and a 1861 bp fragment were amplified by PCR with the antisense primer 5'-TGG AGT CCA TGC TGC CAT-3' (SEQ ID NO: 11) and the sense primers (cutting site for NheI is underlined) 5'-GTG CTA GCA ATC TGT TGA AGG ATT GG-3' (SEQ ID NO: 12), 5'-GTG CTA GCA GTC TCC TAT CTC TCA CT-3' (SEQ ID NO: 13), 5'-GTG CTA GCA GAC GGA ACT GGA AAA AT-3' (SEQ ID NO: 14), 5'-GTG CTA GCT CTC CTA GCA AGT AAT TC-3' (SEQ ID NO: 15), 5'-GTG CTA GCT ACA TAT GAC TGA GAG AT-3' (SEQ ID NO: 16), 5'-GTG CTA GCA GCC TGG ATG CAT TGT AT-3' (SEQ ID NO: 17) and 5'-GTG CTA GCA CAG AGT CTC AGG CTT AG-3' (SEQ ID NO: 18), respectively. PCR reactions were performed with Pfu DNA polymerase (Promega) using an Eppendorf Mastercycler gradient machine with the following program: 1. 95°C for 2 min, 2. 95°C for 45 sek, 3. 53.6°C for 30 sek, 4. 72°C for 3 min with a 1 sek addition after each cycle, 5. Steps 2-4 for 35 cycles followed by a 72°C 5 min final extension. The PCR products were cleaned from primers and nucleotides with QIAquick PCR purification kit (Qiagen) and subsequently cut with NheI. The cut products were run on a 1.2% agarose gel, excised from the gel and extracted by QIAquick agarose gel extraction kit. The PCR products were ligated in NheI-SmaI cut promoterless pGL3-basic vector (Promega) upstream of the firefly luciferase cDNA in sense orientation. The yielded constructs MNF5'0.3-LUC, MNF5'0.6-LUC, MNF5'0.8-LUC, MNF5'1.0-LUC, MNF5'1.3-LUC, MNF5'1.5-LUC and MNF5'1.8LUC (see FIG. 2A) were transformed in competent DH5α cells.

Transfection and Luciferase Assay

The functioning of the promoter in a cell was shown.

The human lung carcinoma A549 cell-line was kept in a humidified cell-incubator at 37°C and with 5% CO2. The cell-line was grown in Dulbecco's modified eagle medium (Gibco) containing 10% fetal calf serum (Gibco), 1×Glutamax (Gibco), 50 μg/ml penicillin and 50 IU/ml streptomycin (Gibco) and was regularly passed. 16-24 hours before transfection cells were plated at a density of 1×105 cells in 1 ml medium in 12-well dishes (Nunc). Reporter constructs (1 μg) or promoterless pGL3-basic vector (1 μg, as negative control) were co-transfected with pSV-β-galactosidase vector (0.5 μg, Promega) by first mixing 3 μl of Fugene 6 (Roche) transfection reagent with 57 μl of serum-free medium, which was incubated at RT for 5 minutes. The mix was added to the DNA and incubated at RT for 15 minutes and then added to the cells. The transfections were done in duplicates and repeated at least three times. Cells were transiently transfected for a total time of 48 h and before collecting the transfectants some cells were left unstimulated or stimulated for 16 hours with TPA (10 nM), TPA (10 nM) and ionomycin (1 μM), lipopolysaccharide (LPS, 15 μg/ml) or forskolin (10 μM). Cells were collected and lysed with 140 μl of reporter lysis buffer (Promega) according to the manufacturer's manual. The luciferase assay was performed on 20 μl of cleared cell extract and 100 μl of luciferase assay reagent (Promega) using a Luminoscan luminometer (Labsystems). Transfection efficiencies were determined by using β-Galactosidase enzyme assay system (Promega) with 50 μl of cell extract. The luciferase acitivity of each transfection was expressed as luciferase activity/β-galactosidase activity.

The ability of a deletional series of the NPFF promoter to drive the transcription of firefly luciferase cDNA is presented in FIG. 2B. The highest expression of luciferase was seen in the shortest construct (MNF5'0.3-LUC) with decreasing activity in the two following constructs (MNF5'0.6-LUC and MNF5'0.8-LUC, respectively). The luciferase expression started increasing again with the two following constructs (MNF5'1.0-LUC and MNF5'1.3-LUC, respectively) whereafter the expression decreased to barely measurable level with the last two constructs (MNF5'1.5-LUC and MNF5'1.8-LUC). The last construct also contained a 29×(AC) dinucleotide repeat.

To study the involvement of some known pro-inflammatory transcriptional factors the two shortest constructs (MNF5'0.3-LUC and MNF5'0.6-LUC) were transfected in cells and stimulated with a phorbol ester, a phorbol ester together with a Ca2+ -ionophore, a bacteria endotoxin and a cAMP activator. These compounds should all affect several transcription factors, amongst them many known pro-inflammatory transcription factors eg. NFκ B, NFAT and CREB. The results are presented in FIGS. 2C and 2D. The results show an increase in luciferase activity of TPA and ionomycin stimulated MNF5'0.3-LUC transfected cells (FIGS. 2C and D) and an increase in luciferase activity in TPA and ionomycin and LPS stimulated MNF50.6'-LUC transfected cells.

Cloning of the 5'-flanking Region of the Human and Rat NPFF Gene Promoter

To clone the promoter region of the human and rat NPFF gene, a Genome Walker kit (Clontech, Palo Alto, Calif.) was used according to manufacturer's instructions. The NPFF specific human and rat antisense primers used for the primary PCR reaction was 5'-GCT GCC ACC ACC TAC CCT CCT AC-3' (SEQ ID NO: 19) and 5'-CAC CCC AGC TCC CTG CCT CTT-3' (SEQ ID NO: 20), respectively. The antisense primer for the nested human and rat PCR was 5'-GTG GAT CCA TCT AGA GCA GGC AAA TG-3' (SEQ ID NO: 21) and 5'-CGT GGC CCC AGT TCC TCA GCA-3' (SEQ ID NO: 22), respectively. The PCR reactions were performed using a MJ Research MiniCycler. The primary PCR reactions was performed with the following conditions: 94°C for 25 sec and 72°C for 4 min×7 cycles; 94°C for 25 sec and 67°C for 4 min×32 cycles, followed by a 67° C. 4 min final extension. The nested PCR reactions was conducted using a 50 times diluted primary PCR product as a template, the same reaction composition and cycle parameters, except that nested primers were used and that 20 thermocycles were performed instead of 32. Using this technique, we were able to identify a single major PCR product in one of the human libraries (PvuII) and two major PCR products in the rat libraries (DraI and PvuII) provided in the Genome Walker kit. The products were purified with the QIAquick PCR purification kit (Qiagen) and cloned into pGEM T-vector (Promega) and sequenced automatically in both directions (ABI Prism Automated Fluorescence Sequencer). Using this approach 1.3 kb of the human NPFF promoter and 1.5 kb of the rat NPFF promoter was cloned and sequenced. We still continued our cloning efforts conserning the human NPFF promoter and by using a second round of the same approach as above we were able to clone an additional 4 kb fragment of the human promoter. Sequencing is now in progress. A comparison between the NPFF promoters from all species is presented in FIG. 3. The search for the consensus transcription factor recognition sites was performed by MatInspector and MatInspector Professional from Transfac Database at NCBI/NIH. Comparisonal studies to study homology between the NPFF promoters were performed using Seqweb software package available at CSC web site (www.csc.fi).

The human sequences have been presented in FIG. 4.

Comparison of Proximal Promoter of NPFF Gene Between Mouse, Rat and Human

A comparison between the first 400 bp of the NPFF promoter from mouse, rat and human. Sequence similarity is about 90% between mouse and rat and about 70% between rat and human. Conserved consensus binding sites for transcription factors are marked under the sequence. The translational start site is marked by a bent arrow and the TATA-box is marked by a box (FIG. 3). M=mouse, R=rat and H=human.

The invention has been illustrated by examples and embodiments, but it may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention and all such modifications are intended to be included within the scope of the enclosed claims.

References

Allard, M., Labrouche, S., Nosjean, A. & Laguzzi, R. (1995). Mechanisms underlying the cardiovascular responses to peripheral administration of NPFF in the rat. J. Pharmacol. Exp. Ther. 274: 577-583.

Burke, J. F., Clarke, A. J. H., James, M. R. & Perry, S. J. (1998). Physical mapping of the human NPFF gene and investigation of its candidacy as a disease gene locus. Soc. Neurosci. Abstr. 24(2): 2046.

Gouarderes, C., Sutak, M., Zajac, J. M. & Jhamandas, K. (1993). Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. Eur. J. Pharmacol. 237:73-81.

Kel, A., Kel-Margoulis, O., Babenko, V. & Wingender, E. (1999). Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. J. Mol. Biol. 288: 353-376.

Kivipelto, L., Majane, E. A., Yang, H. Y. & Panula, P. (1989). Immunohistochemical distribution and partial characterization of FLFQPQRFamidelike peptides in the rat central nervous system of rats. J. Comp. Neurol. 286: 269-287.

Laguzzi, R., Nosjean, A., Mazarguil, H. & Allard, M. (1996). Cardiovascular effects induced by the stimulation of neuropeptide FF receptors in the drosal vagal complex: an autoradiographic and pharmacological study in the rat. Brain Res. 711: 193-202.

Lenardo, M. J. & Baltimore, D. (1989). NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58(2): 227-229.

Majane E. A. & Yang, H. Y. (1991). Mammalian FMRF-NH2 -like peptide in rat pituitary: decrease by osmotic stimulus. Peptides 12: 1303-1308.

Majane E. A., Zhu, J., Aarnisalo, A. A., Panula, P. & Yang, H. Y. (1993). Origin of neurohypophyseal neuropeptide-FF (FLFQPQRF-NH2). Endocrinology 133: 1578-1584.

Okladnova, O., Syagailo, Y. V., Tranitz, M., Stober, G., Rieder, P., Mossner, R. & Lesch, K.-P. (1998). A promoter-associated polymorphic repeat modulates PAX-6 expression in human brain. Biochem. Biophys. Res. Commun. 248: 402-405.

Sarge K. D., Murphy, S. P. & Morimoto, R. I. (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol. 13(3): 1329-13407.

Verweij, C. L., Guidos, C. & Crabtree, G. R. (1990). Cell type specificity and activation requirements for NF-AT-1 transcriptional activity determined by a new method using transgenic mice to assay transcriptional activity if an individual nuclear factor. J. Biol. Chem. 265: 15788-15795.

Vilim, F. S., Aarnisalo, A. A., Nieminen, M.-L., Lintunen, M., Karlstedt, K., Kontinen, V. K., Kalso, E., States, B., Panula, P. & Ziff, E. (1999). Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol. Pharmacol. 55: 804-811.

Yang, H. Y. T., Fratta, W., Majane, E. A. & Costa, E. (1985). Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc. Natl. Acad. Sci. USA 82: 7757-7761.

SEQUENCE LISTING
<100> GENERAL INFORMATION:
<160> NUMBER OF SEQ ID NOS: 22
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 1
<211> LENGTH: 9840
<212> TYPE: DNA
<213> ORGANISM: Mouse
<400> SEQUENCE: 1
tctagacaga taccaggtac caatgttaaa tcatgatctt acgttttgtg tcagaactta 60
ttttgcatgc cattcatgac tctggagagt tttctccaaa aggaaagatg agattaattt 120
tcttttgcat tctttgtaat tatgacaaag aagagtcctt tctgttcctc tgtcctattt 180
tctaaccact tgctctctac tgtttgccct ccttcctggc agaaagtccc aaggaaagct 240
cagagccaac gggttctcca gccccagtga ttcagcacag ttccgcatca gcccctagca 300
atggccttag tgttcgatct gcagctgaag ctgtggccac ctcggtcctc actcagatgg 360
ccagccaaag gacagaactg agcatgccca tacagtcaca tgtgatcatg accccacagt 420
cgcagtctgc gggcagatga tgcctcccat gatggagagg tccccagcca gagctcgccc 480
gcctgagcca agagagagat caacttaacc cctcctgtct gtcttggaat tgggcagaat 540
ggagagggag aaattgtgtg ttgtgagtat ggacagatgt ggggcttttc tctttagcca 600
catgatcatg tacgattaac acctgtacta ggcgcttctg gccccaaagc cacatagatc 660
atcccccaag ggtagggttt cttatgtacc tacagccaaa ggcctttcca tatggtctga 720
gcagtcatcc ctggccctga tgcatgtgtg cctgtctctt aacactaacc cttgcacttg 780
taggtttggg gtttctcagt gtcccctcct cccattgacc tgtggctgtt accttcttat 840
ttcttattag catgccactt cctgccagat ggagggaggt gagatttgat ggcgtgttac 900
ttgcttgtcc cacccctagc caccacatgc actcaggact ttgtctccca atagctgctt 960
atttgtctct ttcctccttc ctaaactgca gtgaaaacat tcacttgttg agaatgtaat 1020
acatttaatg tatgaggtag cagtgtttcc cacctcttcc atgtgcttta ttcctatctg 1080
ctaccaaaaa caaacacaaa caaaaaaagc aaaactctga gagtttgaat catttttcat 1140
ttccaaatct attggtacct catttcgtct cttgactttc cttagtctag tggtggggtc 1200
tttcctactt ccccactagg ccttgggaac ctcatcttgt ggccttattg ttagtggcaa 1260
tgaaaaagga gagagctgga gacctaactg ggcttccctg tctccttccc taccctccag 1320
ttctaatcat cagggcagac aggaacagtg taatttaaaa cttgttccat caggttactg 1380
gattaactga ttcttttatg ttttacaaga gtttactggc caaagtctac atattgtcat 1440
ctttggtcat ctgtgctcct gcctctccac tgtgcttccc tgtccacatc actgcctgtt 1500
ccactataac tactttagct cagacctcct agagttgtca gacagtagct gcttccattc 1560
tctgtccctc ctacagctct cagcctccct tcttttctaa ggtatgtttt gtacccacca 1620
gtgtccagca ctctctcaac aaccttttca tcttctcacc cagttcttag cctacccact 1680
ggttgtctct agtcctgaaa tttcgttgaa cttgtccatg gtacaggctc cagggctctg 1740
aagcatcatg gttgaggtca tggatgcttt tgaatataag actgagtgga gagaggaggt 1800
atacattttc ctatgtataa tctcagcaga gcactcagga tatggcctgt ctgtgagatt 1860
gctgtctgtg gctgttggct gtccttattt tatgggttac agagagaaaa tacacccctc 1920
ctcttcttca tcttcccttg gctctgagct atgcaggctc ttccagagcc agaggcctgt 1980
ggatagatag gtcagcttta atagctcttg agttgagaat ccttcccatt gtcctagaac 2040
caccttctgc catctgctca agccaagtcc tcttttctag ctccatctta agtatgcaga 2100
ataattgctt gcgtctttgt cttccaaaat tcactgtcgt ggaggaatgg aaatgtcgtg 2160
tagcttatat gattatttcc tcagagttta gactagtgag cccatcctgt gacatgtttg 2220
tatgttttat gtaaatttcc ctcctgctct ttagagtcaa tgctgaacag gccacaccca 2280
gtgaaaacta ggaactggtt ttatagtctt ctcccacagg gtcttaacaa aaacatcccc 2340
tgaggtgaca aggatagcaa atgccacagc agatggttga gggcaagcca ccatctccag 2400
gggtttcact tggccttaga aactcacagc catagtttga gctcaggact tctttagatg 2460
gctgcttcct aggatttttt tttcctgctt atgaattttg tttctttttt tttaattgtc 2520
ttgatttccc agtagcagcc ttacactaaa atatgactga gcttatagct tccaagggcc 2580
ccccttggct attttcttcc tccatcagtc aagtgtttaa ttcagtgtaa cctaccagtc 2640
tgtcctggtt gcatgtctag tatacgtgga ggttcttttt cactttcttg acccttcatg 2700
tctgcttctc ttgagtcttt gtttttatag caggaagtta gtattggggg cttgaatgat 2760
gcagggcacc aacagaacca ttgcaggact gaaatcccca gactaccgat accttggtgg 2820
tcggttctca gcttcactaa gaaagcagaa cggctgctta tgctgaagcc tctgtgacag 2880
tcaagggggt catcacctac attattgctg ccaggggtca cagccctgac ctttgccttc 2940
cagacttaac tgaaccagaa ccagatacca tagaggatag caataaaccc ttcttgacat 3000
ctgactatga tgtgtcatag cggggtctct ggtcatgtct atttggggtt caatatgcct 3060
cttgtatttg aatgtcaact cctgtcccta ggtataggaa attttgtgat ataatttcat 3120
taaatagttt gactaattcc tttttaattt atctcaggtc ctccttctcc ccagtggctt 3180
ctgaggtttg tttggtcttt taagtatatt ccaagcttct tgaaaatact ggtaatatct 3240
atctctctct ttctctctct ctctctctgt ctctgtgtgt gtgtgtgtct gtctgtctgt 3300
ctgtctgtct gtctgtgtgt gtctgagtat atgattgttc caactttgtg ctccactgca 3360
gaactgcatg atcttaatct cttggggaca ctttctagtg agggttttca ctttcatgtt 3420
tctttcatgt taatttctat cttgttcctt ttccatgttt gaatgccctc atcaaaatct 3480
ccctccatat atctgacttt ctcctccaac ttacccactg ttttgttcat tttggaggtt 3540
ttgtatacag ttcctagttc atgcatttgt atctgagact tctacatcaa ctctgaactc 3600
tttctcagac ttctcagtac ttttggtttt cattaaggag aggtttgtag tatgccctgg 3660
tctgctgttg tctcatgttc cttgtgtttc tctgtggaat tttgtacatc agtcaggatg 3720
gctatgtcct ccagttttaa ctcatctttt cccaactctg ttttgtttca tgtaactaag 3780
cccttcttca gaggtctgtc agaaaggcgc tgagagtgtg atgtctcagg cccaggtgtg 3840
gtcagaggcc tggtctgtgc tcttgccacc cactccatat aacacagagt gttcagagtc 3900
tcaaaggtga gaagccgccc aacacgcagg gagagctggg aaggacacgg gccccttcat 3960
tcactttcac tcccttcctg ttggctgaga tgccagatct gcctgcttcc ttcctccact 4020
ccttcccatg gctgtaagca ccagaccaca tacttaaggg agctgtgctg gtgaaccttg 4080
ccttgctgcc tgccttccct ctcccattct gtagctcttg actccttcct tgattcacct 4140
cttccgtctc ctcagggacc cgccctccag caccatcatc ctgagagata taactgtact 4200
ttgtacagcc tgaaccgcca aaaagacaca catgcaattc ttcctctggc ttctgagagg 4260
ctccttaaag gtgctaactg ctcagctcac tctccccggc gtgtccccat cctcagaaca 4320
catttccatt atctattgta cccaccaaaa agaaatatgt acttcttatg aaaagaaaac 4380
cctagtctgt tcagatgtgt ctcacagctg tgtgacacgt gccttcgttg ctatgctttc 4440
tcctttcttt agccatgttt gaccagggtg ggagggtgga tcctaaagcc tatcaaaaga 4500
ccctacccca ctccagtcca gctagacatt cttcttacaa attctgtttc tgtctgtata 4560
tgtgcatatg catagacaaa tccccctatt ccaccagcct ggtgatccat aggaatgagc 4620
agtgcctgct ggccacattc ccaccgtttg cactgttact ttgaggtaaa atcctaccct 4680
agaatgaaca aaggctggtg aaagtagggc agattaaggc agcttatgtt cttgtaaatg 4740
caagtttcta tttcagctag taggtgtttt ctttttctgt tttgtttttt aatgtagagc 4800
tggtaggcta taagccagca attgtgagta aggctttagc tattagtggc tgtgagcact 4860
agtttcattg actttacctt agggcagtgg ttctcagaac atggtccaag aacaacatca 4920
gcagcaccat cacctgaaga gcttgctaga aatgtacact ctgggccatc ccaacctcct 4980
gagttggcca ctctgaaggt gagctttaac taacagtctc tgctgctagt tcacactaat 5040
gcatgacagt ccctagcgga caggctggga gcatcttagc tctgggatga caacgattac 5100
tttaaatgtc ttctctgcct tagaattgat atttttattt cccccagtcc ttccttcctc 5160
ttccattaaa acagccacca ccacattact catctcaaat tctaggttgg tcttccttct 5220
agtcttagct ctaaaactct tgcctgcatt ggtctggact catatttcct tgcaggctac 5280
tagttctgca ttcttggtga ctttagccag caggaaggcc aggagtggtg gtggcatatg 5340
cctttgatcc cagcactttt gagggaagca gaggcaggca gatctctttg tgttcaagac 5400
cagtctggtc tacataggga gttcaaagcc aatcatagct atgcagtgag accctgtctc 5460
aaaacaaaca aacaaaatca gcaggagcct tagttgtcca tttcttccct gtgcacacac 5520
cacatctctt acaggaagat tagcctccac ccccacagtg gagcctccta catcctgata 5580
gagtatatgt tgagaagcca tgtgtatcta tgaatatagc tctgttctat atccttttga 5640
catgtagcaa tacctctcca tcctcaagga actcaaccca gtctgggtct ccccaggctc 5700
cagtggtaga ctctgacagg tgggaggata cagtgctctg ggctgttttg ttacaaaagt 5760
gtcttctgtc ctttccctcc tcccaattca gcatgacccc tgtgagcagg ctctcacaat 5820
ctcctggggc agggctgagg caggggcttt cagctcttct ccataactat cccttcttcc 5880
ttcccccatg ccatttagca gttatcaccc agccttgcct tctccctcca tcccttgccc 5940
tgacatatac tgtgccttat ttatgctgca aatataacat taaactatca agagaatgac 6000
tggtatgttt ggtgcttccc tacgcagact catggggccc attggtcact cctagagact 6060
cagtaggcat ttgtgtctga ccatcctcct ccttccactt cttagggcag aactagcagg 6120
ctctctctgc tttcagtaag taacatggtg ttggaaaagg cacagagttc agatctttaa 6180
actgcctcag agccaaggca tcacaaaaag actgaccaat gggaatactg aacaccctgg 6240
ctctttcagt gttttatgct cacccacttc caacaattga aaggaagaaa aagtcctact 6300
cccaagaaag gggcttggga gtgtacaaag aggtagacaa agtcaagctt tctccagaga 6360
ctagaaggaa tagctgaaga gatggctcag tagttaagag gaaaaactgc tcttgtctca 6420
aaagatccgt ttggtcccca cacccatgtt ggctagttta ccaccaccct taactccagc 6480
tgcaagggat ctggtgccct cttttggccc ccacaggcac tgcactcact tgcataaccc 6540
ttcccccagc acacatatac acaattaaaa agttaaaaaa aaaaaaatta aaaagagaag 6600
aagattggaa actcgaggca aactttgtaa aagcagatta aagctcacag gagaacaggt 6660
aatgatcagg gtgaggaagc ggacaggtga gccactgatc ctttctgtgt ctgtgtcttc 6720
cactaaaagt ggaaaccacc aaggagacag actgaagaac ctgacaaaag acagaacagg 6780
tacctctaag gttccttggt agaacagatc tactgggttg gtgtctggtg aaggactcag 6840
agcctcctta ggaaatggaa acacttactg gccatcactg tgtgggcccc agcaattaag 6900
gtacttactg ccaagcctga agacctgagc ttgatccctg gatacatgtg gtgggaagag 6960
aactggcaag gtgttctctg agctccacat atgctctgtg gggcatgtgt ctccttctcc 7020
ccaggtaaat aaatgaatga gaaagtgggt ggggagcaca cagtatgtcc aagaaagaga 7080
gaacattacc aaaagctaag acagagtctg gaggaagact ggagaggtgg ctcagtggtt 7140
aagagcactt gtgttctaga ggacttgagt tccgttccat ttaggtggct cacatctgga 7200
attctggact ttcggaagaa cagtcaggtg ctcttaccca ctgagccatc tcaccagccc 7260
caatattttt tttttttttt tttgagacag ggtttctctg tgtagctctc actgtcctgg 7320
aactcattct gtagaccagg ctggccttga actcagagat ttgccctacc tcccaagtgc 7380
tgggactaaa ggcatatgtc accacaggcc agctgagatc ctgtatttaa ataaataagt 7440
ctggaaggtg ataaataaaa ctaagtctag aagatgagaa tcctagcaca caggttagga 7500
tgattaattt ttgttgaggt tagaagtgaa ccagcttctt tgtgaactta gtagcttcag 7560
cccagactcc ggtactgaag cagcagtgca gtgaacacag ggtggctgct gtgagactgc 7620
tgtgtacgca acccatctgc tgttcaggac agcttcctgt tcacagggtt aggttttttt 7680
attgttctct gggtgctgga gattgtgctc aggggcctcc agcaagttgc ctctttgttg 7740
tttttttgtt tgtttgtttt gttttgaggc agggtttctc tgtgtagcct tggctgtttt 7800
ggaactagct ctgtagaaga gcctggcctc gactcaaaaa gatcagcctg cctctgaagt 7860
cacacagtga atttcgagag caaagataaa atacgaaatt tctgccaggt gtggtggtgc 7920
acatctgtaa tcccagcact tgagaaacta aaaacagagg ccagcatatt gggctacata 7980
cagagtctca ggcttagaaa accagacaag ctgggcactg tgacacacac tttaatccca 8040
gcacttggga ggcagaggca tcctaatcta catagtaaat tctagaccag ccaaggctaa 8100
atggtgacac ctgtttacac acacacacac acacacacac acacacacac acacacacac 8160
acacacacac acacagtgga gacaggaaaa gagagaggtg gggagagaaa ccgagaagac 8220
ccacaacaaa agcagcagtg aaatatttca actataatgt atgacaagct ctacaggaaa 8280
tcttgagaca aaccttacag aaaggttcac ccaagcctgg atgcattgta ttctagaaca 8340
tcagaaacct gatctagaag gtctccctct gcagtagagc acctgcctac catacacaag 8400
gctcttcatt tggacttgat tcccaagaaa gaaattttaa aatgccactt atccgcaaac 8460
ctaaaatgta agttggttcc aataaagtac ttccctgttg agcaaagaag atgtggatac 8520
atggtatttc tccaaatatg tgaggggctt ttacatatga ctgagagata acctgagact 8580
ccattgaaca agctaggacc tctggtagag gccaccaaga agctaaagcc cactcagcac 8640
tctctggaga tggtaagttc cccaggactg gagtgggagg acagcaaagg gaatcacagt 8700
tgacattttg aaaacaccgg gtctgtgctt tcctacaaaa tgcatcccaa atgtttctcc 8760
tagcaagtaa ttcattttac tgttcccata tgtaagtgag gaaaaaaaga gtgtgagcag 8820
cttgctttgc tcatggggta gaaccccgac agtccttctt ctgtttaggc tagagacatg 8880
gtactctgac acctggattt gcaagtgagg ttaggactag ctcctttaaa ggacccttcc 8940
ctgaactgga gtgattgtct gtccctaaag cagaacccta gtcgccagct ccagtagtat 9000
attagaacca gaaccaggca gagcccatgc tgaccagacg gaactggaaa aatgtcacaa 9060
ttctgggccc caaagaacta ggtcctcaag tcctagacaa aatgtatgga aagggaaatg 9120
gctggacgtg gcagtgaaga gtagtggcca caaggtggca gcagagtttc agctgtggag 9180
gcccaatccc cagttctctt gcaaagatgg gcctgtccac aaaatttaca ggccacctct 9240
actcagtaag gctccaaaaa gagtctccta tctctcactt aactattcac aggtaaatct 9300
taaagggtag tgaacccaca tttaacctga ctagaagcag tggggattga aatggggctg 9360
tggtcctgat cacccattcc aggcaggagt agggaccaag ctggttcacc ctagcctgca 9420
cttaacacta gttccttccc atccaggaca taatgcccaa ttctgacagg agtttctcca 9480
gtcaggaaca agaggtgatc aattgaagct tctccaatct gttgaaggat tggaggttct 9540
tctaaggttc ccccagggtc taactctgac aaactgtctg caattaatga tgcttcctga 9600
gctccggaga caagatttat gcatctaata aagtctatat aactccaggc ttaggctggg 9660
ggggaggaag ctaagagcag agagtcccca ggggagtacg ggaggggggg tcccaggtgg 9720
ctcttaatag agccatgcat ttccattgct tgtctagatt tccccccagg ctgccggtga 9780
ggtgggggta gggacatcag gtataagaag accgtgggca ctcaggaggc agatggcagc 9840
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 2
<211> LENGTH: 5124
<212> TYPE: DNA
<213> ORGANISM: Mouse
<400> SEQUENCE: 2
atggactcca agtgggctgc tctgctgctg ctgctactgc tgctgctgaa ttggggccac 60
actgaagagg cagggagctg gggtgaagac caagtctttg cagtgagtga acatcctgct 120
gccccatcca cccagccgcc atctctcctt cagctgaaac ttatgataca gggtttggtg 180
ttccccaggc tgctaaggtc ttcaaaaagt ctggcttcta agggagggaa atggcttctc 240
agcccacgca agtttcccct agaagccatt ctttccctcc atgtcttcag tgtacaagac 300
actgccaggt tccttccctg ccactctctc atcacaggga gaagataagg gaccccaccc 360
accacagtat gcccacattc cagacaggat ccagactcct gggtccctct ttcgtgttct 420
gctccaggcc atggacacac ctagaaggag cccagccttc ctgtttcagc cccagaggtg 480
agttccaaag ggaagaggct gagaagggtg gagggcagag gaagatgtga gagaaggtga 540
gatggaggga gtgccaacta aggatgaatc tctcctaagg tttggcagaa gtgcatgggg 600
gtcctggagc aaggaacagc taaatccgca ggccagacag ttctggagcc tggccgctcc 660
tcagcgcttt gggaagaagt agcatcgtca gctgtgatgc ctgcatgcaa aaccacttcc 720
ccatgttccc tgtgtgcccc caaataaaaa tggtccggct ggcttcagaa tccctgtgtt 780
tggacaagac tgtcagggag caggtgggag cccaagggca atagctgtag ccccccttca 840
cctccactca gtctctagcc attctgttgt taaggatccc caaggctact actgcacctt 900
gcctcctctc ggtaacaaaa aagaacaagg ggttcaaaag gagaacaagc tcaccatgtt 960
tattccttat accctcatga cccaaggcca gagagagcag ggttttggaa gccaaagagc 1020
agcatttatt caggactcca atagattcat ccatcaccca cggaatgagg acaaatcctg 1080
tgctggctgg ggccctgtgg ttcatggctc cttgcttgcc tgtgccttcc tcagtctcaa 1140
ggcagacagg ctgtgtcaga ggtagagatg gcacttctgg agggtaccag agctaggtgg 1200
atacatggac ccaggggcag aaggagcaag aagtaaaaga tgcatatcca tcactgcagt 1260
gggatgctac ttgctacccg ccatgatcct gaggtactgt agggcgcggt gagcagcatc 1320
acctcgggct gcctccctgg tggttgcaga accataacac acagtggctg gctgggtgga 1380
cagttccact aggcactggc agagcccact caggctcagt tcctctggaa accaagaaag 1440
agaagggagg cactggtggg gaaggggcac caaacagtgt acacatcacc catctcccaa 1500
ctccttcata cttgctttga tccagtcccc tccatcccca gtctctagtt ggccatacca 1560
atatccagat agctgacatg gaaagcctgc tcctcagaga gctcactgag gacactgcag 1620
caggcagagc ccagagcccc tagagagccc acggagcaac tgcgaaggga taggatcttt 1680
tctcccacag aattccgcaa ggaatcccag gtgcagcctg gcccacgatt cctcagtcca 1740
tccaggcggg agctcacgcc ctaatgagat aagagtgaga aagcagctaa ggactgtggg 1800
acccaagaac tgggtattat gctctgactc ctggcagcct tcctcatccc aggaaaagtt 1860
gcctataggg gctttgccct aggccagctt tcactagtga ccctacatat aggctgaggg 1920
gacttctggg cgcacaggtt caaggagccc tgggaaggaa agcaggccca tactcacttc 1980
caaaccacag acccaaccca attccgtacc atgtcctgca gtgtgaacca catgtcgagc 2040
ccacacaagc cacttacaat ggaaaaatga tcgtcatcag gctctgcctc attgccatcc 2100
cgggcatcca gaggtacaag tgtgcactcg aaggagcatc ttagctgctg cgttacgctt 2160
tgccagcttt ttggaagtgc cactgcctga gggtggggga aggaattgtt caacttgggg 2220
attcctaaca gaccaatgct ttcctctagg gtaacttaga cagtcaccca atgagatacc 2280
actgcaaaga ggagctcaag gcctgatctt tttaactgag gagttggtga gccagataag 2340
agggggaaag atgggcaggg acaagggaga gacaggaagg caggagctga gcaaggacct 2400
gcaaagcaaa ggaagctggg acagagcaca gccaggcaaa gaaccacctt gtgtttgggg 2460
ttacagtgtg gcaaagagag aaggtgagtg aacccccttt tccccagtta ccaatctcaa 2520
tgaaacgctc cacccggcaa gtcatggtga actctttgcg gtgagcaggc ccagactctt 2580
gggtcaccat gtactctggc aaacgccagc ctttttgcac caccagctcc ttgaaagaaa 2640
accataagag agtccaaggc ttagtgagga aagggtcctt agccaatggc cttctaccaa 2700
gagcctccac ctttgagtga gaaggaggac caccctaccc acaagtgcac acgcccctgc 2760
ctcagcccta cttcagagaa gatagcacac atgacaatga agacgaggca cacctgcaga 2820
gcaccgacgg ggttgcactc agactgctga ggagagacag ggggctgcat ctccatggga 2880
gggctcctaa agaaaaaagg gcccaggcca gtgctgagga aaatgcagag gttcctcctg 2940
tcctggtcat ggatcaagtg ccagccacta ccacctccca attcctcacc aggcaggcag 3000
ctatctgtcc aaacatctag cctttctcct ccctccccac accccaccaa gtgaggctct 3060
gctacttccc aggagcactt agatgtggaa atccttcagc aatgtccctg tgatggaggt 3120
aaaggagctg tacacacagt cctggaagta ccttttgggt ctcaaacatg gagcctctaa 3180
gatgtttaaa caatctaaca ttcattgctt ggctatttaa tcatcataaa ttacctccta 3240
gctcaggctt accaaccagc tggtgcaaat ttttcaatta caccagtctg tctttactct 3300
caggcttcct catcctgacc tgcctgagtc caagagctat gagactagaa gccaagaccc 3360
cctccttcct ccaagacgtc aggggactca agatacctgg ttagtacagc agatggaaca 3420
ggggcagcag cttctgcagc aacgacagga gtgtcctcag gcggtgaaga gtctaggaga 3480
gaaaaagaac ttcccgaggg gaagaaggtc ttggattcac acccatgtag aagggaatga 3540
gggtgtgagg tccttctgac ctttccatcc cctgagaact ccttcccccc gatgcagact 3600
cggagagcct cagcaacagc tcttcctcct gggatcctct gctgacccca cactggctca 3660
gaagcactga ggttagggtg ggggctcaga aaagagtctc tttctaccca acaagctgca 3720
acctgaatgt ggaagaggga aagccatctt gctagaaaga gggggcatgc caggaccaac 3780
tttatcagtc tttgcctcca ccccctatgc ccttttctca tgccccagag cagccaccac 3840
ccatcaaagg gggctggcta ttactctgag gcactctaga aacaccctgt tcagcttcag 3900
aggaaattct caggaagggg ccacgagagg gtggccatga gtcaccagac caggcttagg 3960
gagagaagta gatagtgcag aggcctgggt tctcagcggg cttctagtgt gccttggctg 4020
ttcctccctc acctgctgtc ctccagggct ggttccagca tgctcccccc tttgaggtgt 4080
ttgagggcca cctcagctgc cttgtgcttg gctgccttct tgctggggcc ctgacctaag 4140
aaaaggggcg tgggcaatac tggaggtcac cggcaggaca gcagagaaac cagcccccac 4200
agcctatctc ctcatagcca gagggagtga gaagagccct ctgaccaacc tcccctgtca 4260
gaactggaag ggttctacta attgttggac tagccttttt cctagttagc attaacagtc 4320
aacttggcac aacctaggat ctaaaaggat ctgaaaggag agccttaact gaggaattgc 4380
ctacatcagc ctggcctgag ggcatgtctg ggggtgggtg ggggggatgg actgatagtt 4440
aattgatgct gatatgcaca gcccactatt gtggtaccac ccctaggcag gtggtcctga 4500
actgtgtaag aaatctagta gagtataaat aagccagcca gccagcatgg agtatctgcc 4560
attgttcctg ctgtgcttct gtggctgtga agtgagttcc ttagtcagaa gtagcaagaa 4620
tcagattatt ttctttggtc ttgactgata atgtgagttt cttccttagc ttcccttagt 4680
catgaatgta acctgaactg taaacctatc aacccttttc ctcctctaaa ctgcttttag 4740
tttcggagcc ttactacagc aacagaaatg ggccttgaac acctcctctt tcagtcagct 4800
cccgtaatga aactgtgcca ggcaggattt ttgagctcca acactggtgg gttgcggagg 4860
gatgttttgc tctgtctttc tttccccttt tctcttccct cggtaaatag gaaatagaga 4920
caactgaggg tctgaagtca aagctctgct ctgccactta ttacatgtga actggagcct 4980
accatttaat ttctcatact aagttcttcg tgttcaatgt gaggcatgaa ggctagcaga 5040
gtatgtgctc cccctaatac ccacgaggag ttcaatgtct catttactct tcctctgggg 5100
tgataaagta gcagatccga attc 5124
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 3
<211> LENGTH: 2480
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3
tggcttagtc cgcattaaca gaaatatggt atctggagca tccagatcca aacctgctct 60
aatctacgtg tctaaaggat aagttggttc ctagatgcct tgccttaaag agtggggtgc 120
ttccccttga gcaaaaaaga ctatggagtg ggccaggtgc ggtggctcac gcctgtaatc 180
ccaacacttt gggatgccaa ggtgggtgga ttgcttgagg tcaggagttc aagaccagcc 240
tggccaacat ggtgaaaccc catctctact ccccctacaa aaattagccg ggcatagtgg 300
tgtgtgcctg taatcccagc tacttgggag gctgaggcag gagaatcgcc tgaacccggg 360
aggcagaggg gttgcggtga gccgagatcg caccactgca ctccagcctg ggtgacagag 420
ccagactcca tcgtaaaaaa aaaaaaaaaa aagctggagt gtaagaatga actctctctt 480
caaaaatatg aagagctttt acacatgaaa gagatgagat gttctgttga gacttaatgg 540
agcaaactaa gaccccgagt agaagtcaca ggaagcccaa agccccctcg gcacaaggat 600
aaatattgtc cgaagactgt ctgaggagat ggtaagttcc ccgactgggg cacatgaggc 660
aatcacagct aacgttttga ggatacctgt tctatgcaag ctgttttatt gaatggatta 720
caaaaagtat gttaagtaat gcacacccta ggaaggcgtt ccttgtaaaa tgggcccatg 780
tttcaggtga ggaaactgaa gctcagagcg ggagacagct tgctcaagca gaggccaagg 840
cctttacgtc atggctcttc ctcagcacaa gctagagacc cacactggtg gggatgctcc 900
aaaagggact cgaggattag aaggaacctg caccatatgg ctttgaaggc ctctccctga 960
ggattagtga ttctgatttt tcttaagaca ggattctagg ctactctata tgagagccag 1020
ggccaggcag aggctgtgga gaccagagtc ggggtcagaa tgatagtcca gccccacagt 1080
agcctgctcc tgtccttctg ggactccctg gagactggac cctagcacct ccactcagcc 1140
tcaccctcct cacttcctct gcagaggtct attctaggaa aaggaaatgg ccggagctgg 1200
caatgaggag ctgtgaccac agggtggcag cagtgcttca gctgtggaga gtgactatag 1260
gaagggcgat gaggcaggtc ggaagcagtg ctctctagtg aggatggggg tctgtctgca 1320
aagattggaa gccacactca ttcagtgggc tccaaaatcc tgtagcctcc ctctatatct 1380
taataatttt ttttttttga gacagagttt ctctttttgc caaggctgga gtgtagtggt 1440
gccatctcag ctcactgcaa cctctgcctc cccgattcaa gcgattctcc tgcctcagcc 1500
tcctgagtag ctgggattac aggtgcctac caccacgccc agctaatttt tgtattttta 1560
gtagacaggg gtttcaccat gttggccagg ctggtctcga actcctgccc tcaggtgatc 1620
cacccgcctt ggtctcccaa agtgctgggg ttacaggtgt gaggcactgc acccggcaaa 1680
aaaaaaatgg tttttaatta aaaaaaaaaa gatacaggct gggcatggtg gttgacgcct 1740
gtagtcccag ctacttggga ggctgaggca ggagaatcac ttgaacccag gagccagagg 1800
ttgcagtgag ccgagatcgc gccactgcac tccagcctgg gcaaaaagag cgaaactcca 1860
tctcaaaaag aaaaaaagtt aaattctctc catcatcatg aagttgaata tattttttct 1920
atccacaggc aaatctgagt agcctccaag aggcacacaa gcagaggatg ggctgtgttg 1980
ccctgactgc cagccccagg cacagaggac caggcctggt catcctcaca gactctgacc 2040
ctggctcttc ccactcctct tccactccag gacatcctac ttaacccctc ctgacatgag 2100
tttcttgtgc tttagtctac aggttaggaa agaggggaag tgataaacaa gctctccaac 2160
ctgttgaggg attaggggtt cgtctaaggc tccccagggc ctggctctga caaagcgtct 2220
gcaactaatg atgcttcttg agctctggag acaggattta tgcatctaat aaagtctgta 2280
actccaggct taggggccgg gggcaggagg ctgagagcat gaagtcctgg gggcgccatg 2340
ggaggagatc ccaggtggct cctaatgagc cctgcatttc atttgcctgc tctagattcc 2400
cctaaggcta ctgtgaggct gggggtgggg gaacagcagg tataagaggt tggggtggct 2460
gtaggagggt aggtggcagc 2480
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 4
<211> LENGTH: 396
<212> TYPE: DNA
<213> ORGANISM: Mouse
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (7)..(393)
<400> SEQUENCE: 4
gtatct atg aat ata gct ctg ttc tat atc ctt ttg aca tgt agc aat 48
Met Asn Ile Ala Leu Phe Tyr Ile Leu Leu Thr Cys Ser Asn
1 5 10
acc tct cca tcc tca agg aac tca acc cag tct ggg tct ccc cag gct 96
Thr Ser Pro Ser Ser Arg Asn Ser Thr Gln Ser Gly Ser Pro Gln Ala
15 20 25 30
cca gtg gta gac tct gac agg tgg gag gat aca gtg ctc tgg gct gtt 144
Pro Val Val Asp Ser Asp Arg Trp Glu Asp Thr Val Leu Trp Ala Val
35 40 45
ttg tta caa aag tgt ctt ctg tcc ttt ccc tcc tcc caa ttc agc atg 192
Leu Leu Gln Lys Cys Leu Leu Ser Phe Pro Ser Ser Gln Phe Ser Met
50 55 60
acc cct gtg agc agg ctc tca caa tct cct ggg gca ggg ctg agg cag 240
Thr Pro Val Ser Arg Leu Ser Gln Ser Pro Gly Ala Gly Leu Arg Gln
65 70 75
ggg ctt tca gct ctt ctc cat aac tat ccc ttc ttc ctt ccc cca tgc 288
Gly Leu Ser Ala Leu Leu His Asn Tyr Pro Phe Phe Leu Pro Pro Cys
80 85 90
cat tta gca gtt atc acc cag cct tgc ctt ctc cct cca tcc ctt gcc 336
His Leu Ala Val Ile Thr Gln Pro Cys Leu Leu Pro Pro Ser Leu Ala
95 100 105 110
ctg aca tat act gtg cct tat tta tgc tgc aaa tat aac att aaa cta 384
Leu Thr Tyr Thr Val Pro Tyr Leu Cys Cys Lys Tyr Asn Ile Lys Leu
115 120 125
tca aga gaa tga 396
Ser Arg Glu
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 5
<211> LENGTH: 129
<212> TYPE: PRT
<213> ORGANISM: Mouse
<400> SEQUENCE: 5
Met Asn Ile Ala Leu Phe Tyr Ile Leu Leu Thr Cys Ser Asn Thr Ser
1 5 10 15
Pro Ser Ser Arg Asn Ser Thr Gln Ser Gly Ser Pro Gln Ala Pro Val
20 25 30
Val Asp Ser Asp Arg Trp Glu Asp Thr Val Leu Trp Ala Val Leu Leu
35 40 45
Gln Lys Cys Leu Leu Ser Phe Pro Ser Ser Gln Phe Ser Met Thr Pro
50 55 60
Val Ser Arg Leu Ser Gln Ser Pro Gly Ala Gly Leu Arg Gln Gly Leu
65 70 75 80
Ser Ala Leu Leu His Asn Tyr Pro Phe Phe Leu Pro Pro Cys His Leu
85 90 95
Ala Val Ile Thr Gln Pro Cys Leu Leu Pro Pro Ser Leu Ala Leu Thr
100 105 110
Tyr Thr Val Pro Tyr Leu Cys Cys Lys Tyr Asn Ile Lys Leu Ser Arg
115 120 125
Glu
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 6
<211> LENGTH: 1920
<212> TYPE: DNA
<213> ORGANISM: Mouse
<400> SEQUENCE: 6
tacagagtct caggcttaga aaaccagaca agctgggcac tgtgacacac actttaatcc 60
cagcacttgg gaggcagagg catcctaatc tacatagtaa attctagacc agccaaggct 120
aaatggtgac acctgtttac acacacacac acacacacac acacacacac acacacacac 180
acacacacac acacacagtg gagacaggaa aagagagagg tggggagaga aaccgagaag 240
acccacaaca aaagcagcag tgaaatattt caactataat gtatgacaag ctctacagga 300
aatcttgaga caaaccttac agaaaggttc acccaagcct ggatgcattg tattctagaa 360
catcagaaac ctgatctaga aggtctccct ctgcagtaga gcacctgcct accatacaca 420
aggctcttca tttggacttg attcccaaga aagaaatttt aaaatgccac ttatccgcaa 480
acctaaaatg taagttggtt ccaataaagt acttccctgt tgagcaaaga agatgtggat 540
acatggtatt tctccaaata tgtgaggggc ttttacatat gactgagaga taacctgaga 600
ctccattgaa caagctagga cctctggtag aggccaccaa gaagctaaag cccactcagc 660
actctctgga gatggtaagt tccccaggac tggagtggga ggacagcaaa gggaatcaca 720
gttgacattt tgaaaacacc gggtctgtgc tttcctacaa aatgcatccc aaatgtttct 780
cctagcaagt aattcatttt actgttccca tatgtaagtg aggaaaaaaa gagtgtgagc 840
agcttgcttt gctcatgggg tagaaccccg acagtccttc ttctgtttag gctagagaca 900
tggtactctg acacctggat ttgcaagtga ggttaggact agctccttta aaggaccctt 960
ccctgaactg gagtgattgt ctgtccctaa agcagaaccc tagtcgccag ctccagtagt 1020
atattagaac cagaaccagg cagagcccat gctgaccaga cggaactgga aaaatgtcac 1080
aattctgggc cccaaagaac taggtcctca agtcctagac aaaatgtatg gaaagggaaa 1140
tggctggacg tggcagtgaa gagtagtggc cacaaggtgg cagcagagtt tcagctgtgg 1200
aggcccaatc cccagttctc ttgcaaagat gggcctgtcc acaaaattta caggccacct 1260
ctactcagta aggctccaaa aagagtctcc tatctctcac ttaactattc acaggtaaat 1320
cttaaagggt agtgaaccca catttaacct gactagaagc agtggggatt gaaatggggc 1380
tgtggtcctg atcacccatt ccaggcagga gtagggacca agctggttca ccctagcctg 1440
cacttaacac tagttccttc ccatccagga cataatgccc aattctgaca ggagtttctc 1500
cagtcaggaa caagaggtga tcaattgaag cttctccaat ctgttgaagg attggaggtt 1560
cttctaaggt tcccccaggg tctaactctg acaaactgtc tgcaattaat gatgcttcct 1620
gagctccgga gacaagattt atgcatctaa taaagtctat ataactccag gcttaggctg 1680
ggggggagga agctaagagc agagagtccc caggggagta cgggaggggg ggtcccaggt 1740
ggctcttaat agagccatgc atttccattg cttgtctaga tttcccccca ggctgccggt 1800
gaggtggggg tagggacatc aggtataaga agaccgtggg cactcaggag gcagatggca 1860
gcatggactc caagtgggct gctctgctgc tgctgctact gctgctgctg aattggggcc 1920
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 7
<211> LENGTH: 411
<212> TYPE: DNA
<213> ORGANISM: Mouse
<400> SEQUENCE: 7
tccaggacat aatgcccaat tctgacagga gtttctccag tcaggaacaa gaggtgatca 60
attgaagctt ctccaatctg ttgaaggatt ggaggttctt ctaaggttcc cccagggtct 120
aactctgaca aactgtctgc aattaatgat gcttcctgag ctccggagac aagatttatg 180
catctaataa agtctatata actccaggct taggctgggg gggaggaagc taagagcaga 240
gagtccccag gggagtacgg gagggggggt cccaggtggc tcttaataga gccatgcatt 300
tccattgctt gtctagattt ccccccaggc tgccggtgag gtgggggtag ggacatcagg 360
tataagaaga ccgtgggcac tcaggaggca gatggcagca tggactccaa g 411
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 8
<211> LENGTH: 410
<212> TYPE: DNA
<213> ORGANISM: Rat
<400> SEQUENCE: 8
tccaggacta taatgctcaa tcctgacagg agtttcttca gtcaggaaca agaggtgatc 60
aattgaagct tctccaacct gttgaaggat tggaggttct tgtaagactc ctccagggcc 120
tagctctgac aaactgtctg caattaataa tgcttcctga gctctggaga caagatttat 180
gcatctaata aagtctataa ctccaggctc atgctggggg tagagaactg agagcagaaa 240
gtctcccagg gcggtatggg aggggggtcc caggtggctc ttaatagagc catgcatttc 300
cattgcctgt ctagatttcc cccaggctgc tgatgaggtg ggggtagggg acatcaggta 360
taagaagccc gtgtgccacg gaggaggcag atggcagcat ggattccaag 410
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 9
<211> LENGTH: 411
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 9
taacccctcc tgacatgagt ttcttgtgct ttagtctaca ggttaggaaa gaggggaagt 60
gataaacaag ctctccaacc tgttgaggga ttaggggttc gtctaaggct ccccagggcc 120
tggctctgac aaagcgtctg caactaatga tgcttcttga gctctggaga caggatttat 180
gcatctaata aagtctgtaa ctccaggctt aggggccggg ggcaggaggc tgagagcatg 240
aagtcctggg ggcgccatgg gaggagatcc caggtggctc ctaatgagcc ctgcatttca 300
tttgcctgct ctagattccc ctaaggctac tgtgaggctg ggggtggggg aacagcaggt 360
ataagaggtt ggggtggctg taggagggta ggtggcagca tggattctag g 411
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 10
<211> LENGTH: 417
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence Consensus
sequence for NpFF promotor region
<400> SEQUENCE: 10
tccaggacna taatgcncaa ttctgacagg agtttctnca ngtcaggaac aagaggtgat 60
caattgaagc ttctccaacc tgttgaagga ttggaggttc ttctaaggct ccnccagggc 120
ctagctctga caaactgtct gcaattaatg atgcttcctg agctctggag acaagattta 180
tgcatctaat aaagtcnnta taactccagg cttanggctn gggggnagga agctgagagc 240
agaaagtcnc cnggggnggn cngggggggg ggtcccaggt ggctcttaat agagccatgc 300
atttccattg cctgtctaga tttcccccca ggctgctgnt gaggtggggg taggggnaca 360
tcaggtataa gaagnccgtg tggcactnag gaggcagatg gcagcatgga ttccaag 417
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 11
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence antisense
primer for mouse
<400> SEQUENCE: 11
tggagtccat gctgccat 18
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 12
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 325 bp mouse promoter
<400> SEQUENCE: 12
gtgctagcaa tctgttgaag gattgg 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 13
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 579bp mouse promoter
<400> SEQUENCE: 13
gtgctagcag tctcctatct ctcact 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 14
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 805bp mouse promoter
<400> SEQUENCE: 14
gtgctagcag acggaactgg aaaaat 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 15
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 1085bp mouse promoter
<400> SEQUENCE: 15
gtgctagctc tcctagcaag taattc 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 16
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 1289bp mouse promoter
<400> SEQUENCE: 16
gtgctagcta catatgactg agagat 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 17
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for1527bp mouse promoter
<400> SEQUENCE: 17
gtgctagcag cctggatgca ttgtat 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 18
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequencesense
primer
for 1861bp mouse promoter
<400> SEQUENCE: 18
gtgctagcac agagtctcag gcttag 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 19
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence antisense
primer for human
<400> SEQUENCE: 19
gctgccacca cctaccctcc tac 23
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 20
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence antisense
primer for rat
<400> SEQUENCE: 20
caccccagct ccctgcctct t 21
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 21
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence antisense
primer for nested human
<400> SEQUENCE: 21
gtggatccat ctagagcagg caaatg 26
<200> SEQUENCE CHARACTERISTICS:
<210> SEQ ID NO 22
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence antisense
primer for nested rat
<400> SEQUENCE: 22
cgtggcccca gttcctcagc a 21

Panula, Pertti Aarre Juhani, Brandt, Annika, Westerlund, Johanna

Patent Priority Assignee Title
7341847, Apr 02 2003 Agency for Science, Technology and Research Promoter construct for gene expression in neuronal cells
9724430, Sep 28 2007 Intrexon Corporation Therapeutic gene-switch constructs and bioreactors for the expression of biotherapeutic molecules, and uses thereof
Patent Priority Assignee Title
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jun 09 2005REM: Maintenance Fee Reminder Mailed.
Nov 21 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 20 20044 years fee payment window open
May 20 20056 months grace period start (w surcharge)
Nov 20 2005patent expiry (for year 4)
Nov 20 20072 years to revive unintentionally abandoned end. (for year 4)
Nov 20 20088 years fee payment window open
May 20 20096 months grace period start (w surcharge)
Nov 20 2009patent expiry (for year 8)
Nov 20 20112 years to revive unintentionally abandoned end. (for year 8)
Nov 20 201212 years fee payment window open
May 20 20136 months grace period start (w surcharge)
Nov 20 2013patent expiry (for year 12)
Nov 20 20152 years to revive unintentionally abandoned end. (for year 12)