A method for defining an intensity map for use in delivering radiation from a radiation source to an object with a multi-leaf collimator is disclosed. The method includes defining a field on the object for radiation delivery. The field includes a plurality of cells each having a defined treatment intensity level. At least a portion of the cells are grouped to form a matrix. The method further includes modifying the treatment intensity level of the cells within the matrix such that horizontal gradients of pairs of rows of the matrix are equal to one another and vertical gradients of pairs of columns of the matrix are equal to one another. A system for defining an intensity map is also disclosed.
|
1. A method for defining an intensity map for use in delivering radiation from a radiation source to an object with a multi-leaf collimator, the method comprising:
defining a field on the object for radiation delivery, said field including a plurality of cells each having a defined treatment intensity level; grouping at least a portion of the cells to form a matrix; and modifying the treatment intensity level of the cells within the matrix such that horizontal gradients of pairs of rows of the matrix are equal to one another and vertical gradients of pairs of columns of the matrix are equal to one another.
16. A system for defining an intensity map for use in delivering radiation from a radiation source to an object having a field defined thereon for radiation delivery, said field including a plurality of cells having predefined treatment intensity levels, the system comprising:
a processor for receiving the cells, grouping at least a portion of the cells to form a matrix, and modifying the treatment intensity level of the cells within the matrix such that horizontal gradients of pairs of rows of the matrix are equal to one another and vertical gradients of pairs of columns of the matrix are equal to one another.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
where: av, bv, cv, and dv are modified intensity levels; M=the average matrix intensity value; ΔH=the average horizontal gradient; and ΔV=the average vertical gradient. 12. The method of
13. The method of
14. The method of
15. The method of
17. The system of
18. The system of
19. The system of
21. The system of
22. The system of
23. The system of
|
The present invention relates generally to a radiation emitting device, and more particularly, to a system and method for efficiently delivering radiation treatment.
Radiation emitting devices are generally known and used, for instance, as radiation therapy devices for the treatment of patients. A radiation therapy device generally includes a gantry which can be swiveled around a horizontal axis of rotation in the course of a therapeutic treatment. A linear accelerator is located within the gantry for generating a high energy radiation beam for therapy. This high energy radiation beam may be an electron beam or photon (x-ray) beam, for example. During treatment, the radiation beam is trained on a zone of a patient lying in the isocenter of the gantry rotation.
In order to control the radiation emitted toward the patient, a beam shielding device, such as a plate arrangement or collimator, is typically provided in the trajectory of the radiation beam between the radiation source and the patient. An example of a plate arrangement is a set of four plates which can be used to define an opening for the radiation beam. The collimator is a beam shielding device which may include multiple leaves (e.g., relatively thin plates or rods) typically arranged as opposing leaf pairs. The plates are formed of a relatively dense and radiation impervious material and are generally independently positionable to delimit the radiation beam.
The beam shielding device defines a field on the zone of the patient for which a prescribed amount of radiation is to be delivered. The usual treatment field shape results in a three-dimensional treatment volume which includes segments of normal tissue, thereby limiting the dose that can be given to the tumor. The dose delivered to the tumor can be increased if the amount of normal tissue being irradiated is decreased and the dose delivered to the normal tissue is decreased. Avoidance of delivery of radiation to the healthy organs surrounding and overlying the tumor limits the dosage that can be delivered to the tumor.
The delivery of radiation by a radiation therapy device is typically prescribed by an oncologist. The prescription is a definition of a particular volume and level of radiation permitted to be delivered to that volume. Actual operation of the radiation equipment, however, is normally done by a therapist. The radiation emitting device is programmed to deliver the specific treatment prescribed by the oncologist. When programming the device for treatment, the therapist has to take into account the actual radiation output and has to adjust the dose delivery based on the plate arrangement opening to achieve the prescribed radiation treatment at the desired depth in the target.
The radiation therapist's challenge is to determine the best number of fields and intensity levels to optimize dose volume histograms, which define a cumulative level of radiation that is to be delivered to a specified volume. Typical optimization engines optimize the dose volume histograms by considering the oncologist's prescription, or three-dimensional specification of the dosage to be delivered. In such optimization engines, the three-dimensional volume is broken into cells, each cell defining a particular level of radiation to be administered. The outputs of the optimization engines are intensity maps, which are determined by varying the intensity at each cell in the map. The intensity maps specify a number of fields defining optimized intensity levels at each cell. The fields may be statically or dynamically modulated, such that a different accumulated dosage is received at different points in the field. Once radiation has been delivered according to the intensity map, the accumulated dosage at each cell, or dose volume histogram, should correspond to the prescription as closely as possible.
In such intensity modulation, borders between critical structures and tumor volumes are sometimes not well approximated with a standard one centimeter width leaf which provides a one centimeter by one centimeter grid (cell size) over the intensity map. A higher resolution than typically provided with the one centimeter leaf is often required. One possible solution is to provide a collimator with thinner leaves. However, the additional hardware required for the additional leaves is expensive, adds weight to the system, may reduce clearance between the treatment head and the patient, and may decrease reliability and life of the system.
Furthermore, it is also important that the final intensity map be configured such that it can be delivered with a conventional multi-leaf collimator, and that a filter process used to convert the intensity map be relatively fast so that iterations can occur quickly.
Accordingly, there is therefore, a need for a filter process for converting an intensity map into one that is ready for decomposition into an intensity map that is deliverable with a conventional multi-leaf collimator at a higher spatial resolution than is typically provided.
A method and system for defining an intensity map for use in delivering radiation from a radiation source to an object with a multi-leaf collimator are disclosed.
A method of the present invention generally includes defining a field on the object for radiation delivery. The field includes a plurality of cells each having a defined treatment intensity level. At least a portion of the cells are grouped to form a matrix. The method further includes modifying the treatment intensity level of the cells within the matrix such that horizontal gradients of pairs of rows of the matrix are equal to one another and vertical gradients of pairs of columns of the matrix are equal to one another.
A system of the present invention generally includes a processor for receiving the cells, grouping at least a portion of the cells to form a matrix, and modifying the treatment intensity level of the cells within the matrix such that horizontal gradients of pairs of rows of the matrix are equal to one another and vertical gradients of pairs of columns of the matrix are equal to one another.
The remaining cells may also be grouped into matrices and modified as required to form a deliverable intensity map for the entire field.
The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, drawings, and claims.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
Referring now to the drawings, and first to
The treatment processing unit 30 is used to input information, such as radiation intensity and location of treatment, into the radiation treatment device 20 and output data for monitoring of the treatment. The processing unit 30 includes an output device such as a visual display monitor 40 and an input device such as a keyboard 42. The treatment processing unit 30 is typically operated by a therapist who administers actual delivery of radiation treatment as prescribed by an oncologist. The therapist uses the keyboard 42 to enter data, which defines the radiation dose to be delivered to the patient, into the processing unit 30. The data may also be input via other input devices, such as a data storage device, for example. Various types of data can be displayed before and during the treatment on the screen of the display monitor 40.
A beam shielding device, generally indicated at 80, is provided in the path of the beam 50 to define a radiation field 81 (FIGS. 2 and 3). The beam shielding device 80 includes a plurality of opposing plates or leaves 82a-i and 84a-i, only two of which are shown in
The leaves 82a-i, 84a-i are movable in a direction generally perpendicular to axis R by a drive unit 86 (which is shown in
The motor controller 90 is coupled to a dose control unit 96 which includes a dosimetry controller coupled to the central processing unit 28 for providing set values for the radiation beam for achieving given isodose curves (FIG. 2). The output of the radiation beam is measured by the measuring chamber 74. In response to the deviation between the set values and the actual values, the dose control unit 96 supplies signals to the trigger system 60 which change in a known mariner the pulse repetition frequency so that the deviation between the set values and the actual values of the radiation beam output is minimized. The dose absorbed by the patient is dependent upon movement of the collimator plates 82a, 84a. The central processing unit 28 controls execution of the program and the opening and closing of the collimator plates 82a, 84a to deliver radiation according to a desired intensity profile. The central processing unit 28 may include other features described in U.S. Pat. No. 5,724,403, which is incorporated herein by reference in its entirety, for example.
It is to be understood that the radiation treatment device may be different than the one described and shown herein without departing from the scope of the invention. The treatment device 20 described above is provided as an example of a device for use in delivering a treatment developed by the optimization process described below.
In the following description, the original input intensity map is defined as a macromatrix and the groups of four microcells within the macromatrix are defined as micromatrices (or matrices). In order for the intensity map to be decomposed into orthogonal maps, the vertical gradients of each column of the micromatrix (matrix) 100 must be equal to one another and the horizontal gradients of each row of the micromatrix must also be equal to one another (FIG. 4). This provides a 1 cm×1 cm area under the intersection of one leaf pair for one collimator setting and another leaf pair for the orthogonal collimator setting. For example, if the horizontal gradients are equal for the micromatrix having cells 102 (shown in
where: a, b, c, d are the intensity values corresponding to locations in the micromatrix 100 of
Similarly, if the vertical gradients are equal the following equation must apply:
The following describes a method for converting an intensity map which does not meet the above constraints (i.e., horizontal gradients for each row are not equal or vertical gradients for each column are not equal), into an intensity map having equal horizontal gradients and equal vertical gradients. Preferably, the average value of the intensity of the four cells and their average horizontal and vertical gradients are maintained during the conversion, as further described below. Once the intensity map is converted, the map may be decomposed as described in U.S. patent application Ser. No. 09/457,602 by A. Siochi, filed Dec. 2, 1999 (incorporated by reference herein in its entirety) and an optimization method described therein may be used to find a decomposition which will yield the shortest treatment delivery time.
An average vertical gradient for the micromatrix 110 is defined as:
An average intensity value for the micromatrix 110 is defined as:
The horizontal gradient ΔH and vertical gradient ΔV defined above, provide the average intensity level for the rows and columns, respectively, of micromatrix 110. The average intensity value M defines the average cell intensity value over the entire micromatrix 110. The average horizontal and vertical gradients are preferably preserved during conversion of the micromatrix 110. The new intensity values are defined by having the average intensity value occur generally at a location common to all cells (i.e., point 120). The cell intensity values are then found by treating the horizontal and vertical gradients as vectors and moving in half steps of some combination of the vertical and horizontal gradients, as further described below. There may be a requirement that all cell intensity values are integers, due to the optimization method used on the converted intensity values, or the treatment device used to deliver the intensity map, for example. The equations set forth below are provided first for the case where there is no restriction on the cell intensity values (i.e., values may be fractions), and then provided for the case where the intensity values must be integers.
The following equations are used to convert the intensity values from the original micromatrix 110 to a transformed micromatrix 130 (with no constraint on the discreteness of intensity values):
where: av, bv, cv, and dv are the converted intensity values corresponding to am, bm, cm, and dm of the original micromatrix 110.
If there is a constraint on the discreteness of the intensity values (i.e., they can only be represented as integers) then the following equations are used:
The round function rounds the value in parenthesis either up or down to the next closest integer. For example if the value is 4.2 it will be rounded to 4, if the value is 4.8 it will be rounded to 5.
The calculation of av, bv, cv, and dv may result in some values being negative (i.e., less than 0). A minimum value N of the intensity values of micromatrix 130 is defined as:
If N is less than zero, the cell intensity values of the micromatrix 130 will need to be adjusted so that the values are all positive. The following provides three examples of methods which may be used to adjust the intensity values of the cells so that all of the cells within micromatrix 130 have a positive intensity value.
The first method maintains the horizontal and vertical gradients ΔH, ΔV while raising the average intensity value M. A minimum value N (defined above) is subtracted from the intensity value of each cell:
For example, if the transformed matrix 130 has intensity values of av=-1, bv=1, cv=2, and dv=4, the minimum value N is equal to -1 (the intensity value of cell av). Since N is less than zero the values of the cells need to be adjusted so that every cell is positive. The above equations may be applied to adjust the values as follows:
a'v=(31 1)-(-1)=0
A second process, which may be used to adjust the cell values so that they are all positive, maintains the maximum intensity value of the micromatrix 130, raises the average value M, and reduces the average horizontal and vertical gradients ΔH, ΔV. A variable P which represents the maximum intensity value of the micromatrix 130 is defined as follows:
A new average cell value M' is calculated as:
The average horizontal and vertical gradients are also recalculated as follows:
If there is no constraint on the discreteness of the intensity value, the following equations apply:
If there is a constraint on the discreteness of the intensity values (i.e., they can only be represented as integers) then the following equations are used:
For this process the roundup function rounds the values up to the more positive integer. For example, if the value is 4.2 it will be rounded up to 5.
The following example uses the second process to adjust the values of matrix 130 having intensity values av=-1, bv=1, cv=2 and, dv=4. The average horizontal and vertical gradients ΔH, ΔV and the average intensity value M of the micromatrix are calculated as:
It should be noted that ΔH, ΔV, and M can be calculated from the first converted micrormatrix 130, since these values are the same for both the original micromatrix 110 and the converted micromatrix 130. The maximum value P is equal to 4 (dv) and the minimum value N is equal to -1(av). The new average cell intensity value M' can then be calculated:
The new average horizontal and vertical gradients ΔH', ΔV' are also calculated:
ΔH'=2*4/(4-(-1))=8/5
If there is no constraint on the discreteness of the intensity values, the new intensity values are calculated as follows:
If there is a constraint on the discreteness of the intensity value (i.e., intensity value must be an integer), the new intensity values are calculated as follows:
A third process, which may be used to adjust the cell values so that they are all positive, maintains the average cell intensity value M, and reduces the average horizontal and vertical gradients. The new average horizontal and vertical gradients are calculated as follows:
ΔH"=ΔH*2*M/(P-N)
If there is no constraint on the discreteness of the intensity values, the following equations are used:
If there is a constraint on the discreteness of the intensity values, the following equations are then used:
The roundup function is the same as described above where the values are rounded up to the more positive integer. This is done to avoid having negative numbers in the final matrix.
The following example for the third process uses the same values for the micromatrix 130 (av=-1, bv=1, cv=2, dv=4). As described above, M=1.5 N=-1, and P=4. The new horizontal and vertical gradients are first calculated:
If there is no constraint on the discreteness of the intensity value, the intensity values are calculated as follows:
If the intensity value must be an integer, the values are then calculated as follows:
The specific process which is used to convert negative cell values into positive values depends on the area to be treated, or the type of treatment being given to a patient. The first process may be used, for example, in defining an intensity map for radiation treatment on a prostate tumor which is typically tolerable to high doses of radiation. The second process may be used, for example, for a tumor located in the head or neck area since these areas can not tolerate higher doses of radiation, and gradient values are more important. The third process is safest to use if the specific anatomy location of the tumor is not known, since the average cell value is maintained.
The above example uses an intensity map represented by a 2×2 matrix, however, the intensity map may have a size different than shown herein and may be mapped using various size matrices. Also, a multi-leaf collimator having leaves with a width other than 1 cm may be used, and the size of the corresponding microcells will be 1/n times the leaf width (where n is a positive integer (e.g., 2 or 3)). The intensity map may be broken down into microcells having a dimension other than 5 mm×5 mm if a different resolution is required. For example, each macrocell may be divided into nine microcells in which case the intensity map may be deliverable as two orthogonal intensity maps having a resolution of 1 cm×1/3 cm and 1/3 cm×1 cm (see, for example, U.S. patent application Ser. No. 09/234,364, referenced above). If the macrocell is divided into nine microcells, the macrocell would be modified by the filter such that the vertical gradients in pairs of adjacent rows are equal, and the horizontal gradient in pairs of adjacent columns are equal. For example, the first two rows of the macrocell will be grouped to form a 2×3 matrix (i.e., two rows×three columns) which will be modified such that the vertical gradients in each of the columns are equal. A second 2×3 matrix is then formed with the second and third rows of the macrocell and modified such that the vertical gradients in each of the columns are equal. The first two columns of the macrocell will then be grouped to form a 3×2 matrix (i.e., three rows×two columns) which will be modified such that the horizontal gradients in each row are equal to one another. The same is then done for the second and third columns. In order to retain the gradients for the for the first and second rows or first and second columns, the intensity values for the cells in the third row or third column will be modified, while maintaining the intensity values of the cells in the rows or columns which have already been modified.
Once the pairs of rows and columns are formed, the new cell intensity values are calculated by treating the horizontal and vertical gradients as vectors and moving in half steps of some combination of the vertical and horizontal gradients, as described above. The equations used above for the 2×2 matrix will be modified for use on the specific size matrix (e.g., 2×n or n×2; where n is a positive integer).
An average value may also be defined for the entire matrix, and the new cell intensity values calculated by moving from the center point of the matrix to the other cell locations with some combination of the average horizontal and vertical gradients. In this process, the equations for the 2×2 matrix are extended to the entire 3×3 matrix. For example, for a 3×3 matrix, two average vertical gradients (one from the first row to the second row v(1,2) and one from the second row to the third row v(2,3)) are defined. Similarly, two average horizontal gradients are defined (one from the first column to the second column h(1,2) and one from the second column to the third column h(2,3)). An average value M of the entire matrix (sum of cells divided by nine) corresponds to the center of the matrix (cell (2,2)). The values for the remaining cells are calculated by adding or subtracting the appropriate average horizontal and vertical gradients. For example, the value for cell (1,2) is equal to M minus v(1,2), and the value for cell (1,1) is equal to M minus h(1,2) and v(1,2). Similarly, the value for cell (1,3) is equal to M plus v(2,3) and minus h(1,2). This process may be performed on matrices having sizes other than 3×3.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiment and these variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Siochi, Ramon Alfredo Carvalho
Patent | Priority | Assignee | Title |
10004650, | Apr 29 2005 | Varian Medical Systems, Inc | Dynamic patient positioning system |
10413751, | Mar 02 2016 | VIEWRAY SYSTEMS, INC | Particle therapy with magnetic resonance imaging |
10463884, | Mar 15 2013 | VIEWRAY SYSTEMS, INC | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging |
10561861, | May 02 2012 | VIEWRAY SYSTEMS, INC | Videographic display of real-time medical treatment |
10595774, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
10688319, | Feb 20 2004 | University of Florida Research Foundation, Inc. | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
10773101, | Jun 22 2010 | SIEMENS HEALTHINEERS INTERNATIONAL AG | System and method for estimating and manipulating estimated radiation dose |
10806409, | Sep 23 2016 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Medical systems with patient supports |
10821303, | Oct 26 2012 | VIEWRAY SYSTEMS, INC | Assessment and improvement of treatment using imaging of physiological responses to radiation therapy |
10835763, | Oct 26 2012 | VIEWRAY SYSTEMS, INC | Assessment and improvement of treatment using imaging of physiological responses to radiation therapy |
10881878, | Apr 29 2005 | Varian Medical Systems, Inc. | Dynamic patient positioning system |
11000706, | Dec 13 2016 | VIEWRAY SYSTEMS, INC | Radiation therapy systems and methods |
11033758, | Dec 06 2017 | VIEWRAY SYSTEMS, INC | Radiotherapy systems, methods and software |
11040222, | Oct 26 2012 | VIEWRAY SYSTEMS, INC | Assessment and improvement of treatment using imaging of physiological responses to radiation therapy |
11083912, | Mar 15 2013 | VIEWRAY SYSTEMS, INC | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging |
11209509, | May 16 2018 | VIEWRAY SYSTEMS, INC | Resistive electromagnet systems and methods |
11351398, | Mar 02 2016 | VIEWRAY SYSTEMS, INC | Particle therapy with magnetic resonance imaging |
11378629, | Jun 22 2016 | VIEWRAY SYSTEMS, INC | Magnetic resonance imaging |
11497937, | Feb 20 2004 | University of Florida Research Foundation, Inc. | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
11612764, | Mar 15 2013 | VIEWRAY SYSTEMS, INC | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging |
11642027, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
11768257, | Jun 22 2016 | VIEWRAY SYSTEMS, INC | Magnetic resonance imaging |
11892523, | Jun 22 2016 | VIEWRAY SYSTEMS, INC | Magnetic resonance imaging |
11931602, | Dec 13 2016 | VIEWRAY SYSTEMS, INC | Radiation therapy systems and methods |
11986671, | Jun 22 2010 | SIEMENS HEALTHINEERS INTERNATIONAL AG | System and method for estimating and manipulating estimated radiation dose |
6577707, | Oct 30 2001 | Siemens Medical Solutions USA, Inc. | Edge extension of intensity map for radiation therapy with a modulating multi-leaf collimator |
6661871, | Sep 28 2001 | Siemens Medical Solutions USA, Inc. | System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator by minimizing junctions |
6853705, | Mar 28 2003 | The University of North Carolina at Chapel Hill | Residual map segmentation method for multi-leaf collimator-intensity modulated radiotherapy |
6904125, | Jul 14 2003 | Cancer Care Ontario | Phantom for evaluating nondosimetric functions in a multi-leaf collimated radiation treatment planning system |
6907105, | Sep 25 2001 | British Columbia Cancer Agency Branch | Methods and apparatus for planning and delivering intensity modulated radiation fields with a rotating multileaf collimator |
7734010, | May 13 2005 | BC Cancer Agency | Method and apparatus for planning and delivering radiation treatment |
7880154, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
7906770, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
7907987, | Feb 20 2004 | UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
8073103, | Jul 27 2006 | British Columbia Cancer Agency Branch | Systems and methods for optimization of on-line adaptive radiation therapy |
8121252, | Mar 11 2009 | Varian Medical Systems, Inc. | Use of planning atlas in radiation therapy |
8190233, | Feb 20 2004 | UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
8658992, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
8696538, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
8699664, | Jul 27 2006 | British Columbia Center Agency Branch | Systems and methods for optimization of on-line adaptive radiation therapy |
9050459, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9498167, | Apr 29 2005 | Varian Medical Systems, Inc | System and methods for treating patients using radiation |
9630025, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687673, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687674, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687675, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687676, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687677, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9687678, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9764159, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9788783, | Jul 25 2005 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Methods and apparatus for the planning and delivery of radiation treatments |
9966160, | Nov 24 2015 | VIEWRAY TECHNOLOGIES, INC | Radiation beam collimating systems and methods |
9974494, | Apr 29 2005 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
ER6756, | |||
ER9584, | |||
RE46953, | Apr 20 2007 | STC UNM | Single-arc dose painting for precision radiation therapy |
Patent | Priority | Assignee | Title |
5663999, | Jun 28 1996 | Siemens Medical Solutions USA, Inc | Optimization of an intensity modulated field |
5724403, | Jul 20 1995 | Siemens Medical Solutions USA, Inc | Virtual compensator |
6134296, | Jan 20 1999 | Siemens Medical Solutions USA, Inc | Microgradient intensity modulating multi-leaf collimator |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 17 1999 | SIOCHI, RAMON ALFREDO CARVALHO | Siemens Medical Systems, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010464 | /0137 | |
Dec 08 1999 | Siemens Medical Solutions USA, Inc. | (assignment on the face of the patent) | / | |||
Aug 01 2001 | Siemens Medical Systems, Inc | Siemens Medical Solutions USA, Inc | CERTIFICATE OF AMENDMENT | 012439 | /0905 |
Date | Maintenance Fee Events |
Jul 14 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 10 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 07 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 19 2005 | 4 years fee payment window open |
Aug 19 2005 | 6 months grace period start (w surcharge) |
Feb 19 2006 | patent expiry (for year 4) |
Feb 19 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 19 2009 | 8 years fee payment window open |
Aug 19 2009 | 6 months grace period start (w surcharge) |
Feb 19 2010 | patent expiry (for year 8) |
Feb 19 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 19 2013 | 12 years fee payment window open |
Aug 19 2013 | 6 months grace period start (w surcharge) |
Feb 19 2014 | patent expiry (for year 12) |
Feb 19 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |