A system is provided for optically communicating with an implantable device. In one embodiment, the system includes an implantable device having a large memory and an external unit which downloads information from the memory for analysis and display. The implantable device includes a light-emitting diode (LED) and a modulator for driving the LED. Although various frequencies can be used, frequencies which experience relatively little attenuation through body tissue are presently preferred. The external device includes a photo-multiplier tube (PMT) and a demodulator for equalizing and demodulating the detection signal produced by the PMT in response to detected light. A high bandwidth channel (perhaps as much as 500 Mbits/sec) is created by these components. This channel advantageously allows for a substantially reduced download time.
|
13. An external device capable of communicating with an implantable device, comprising:
an external transmitter configured to transmit information to the implantable device via an inductive communications link; and an external receiver configured to receive information from the implantable device via an optical communications link.
1. An implantable device capable of communicating with an external device, comprising:
an implantable transmitter configured to transmit information to the external device via an optical communications link; and an implantable receiver configured to receive information from the external device via an inductive communications link.
25. An implantable device capable of communicating with an external device, comprising:
an implantable transmitter configured to transmit information to the external device via an optical communications link that provides an optical bandwidth; and an implantable receiver configured to receive information from the external device via a non-optical communications link that provides a bandwidth lower than the optical bandwidth.
27. An external device capable of communicating with an implantable device, comprising:
an external transmitter configured to transmit information to the implantable device via a non-optical communications link that provides a non-optical bandwidth; and an external receiver configured to receive information from the implantable device via an optical communications link that provides a bandwidth higher than the non-optical bandwidth.
9. An implantable device capable of communicating with an external device, comprising:
an implantable transmitter configured to transmit information to the external device via an optical communications link; an implantable receiver configured to receive information from the external device via an inductive communications link, the implantable receiver including a receiver coil; and a power converter configured to convert current induced in the receiver coil into energy.
21. An external device capable of communicating with an implantable device, comprising:
an external transmitter configured to transmit information to the implantable device via an inductive communications link; and an external receiver configured to receive information from the implantable device via an optical communications link, wherein the external receiver includes a light sensor to produce a detection signal, and an enabling device to produce an enable signal for the light sensor.
2. The implantable device of
3. The implantable device of
4. The implantable device of
6. The implantable device of
7. The implantable device of
8. The implantable device of
10. The implantable device of
11. The implantable device of
12. The implantable device of
15. The external device of
16. The external device of
17. The external device of
18. The external device of
19. The external device of
20. The external device of
22. The external device of
23. The external device of
26. The implantable device of
28. The external device of
|
This application is a continuation of U.S. Pat. Appl. Ser. No. 09/096,877, filed on Jun. 12, 1998, now U.S. Pat. No. 6,243,608 the specification of which is hereby incorporated by reference.
1. Field of the Invention
This invention relates generally to wireless communication systems for devices implanted in the body, and more particularly to optical communication between an implanted device and a device external to the body.
2. Description of the Related Art
Implantable devices have become a standard method of treating various medical conditions, many of which relate to the heart. Examples of devices which are routinely implanted include pacemakers, defibrillators, and nerve stimulators. These devices and others which have not yet become routine (such as implanted personal identification chips) are being provided with large memories for storing vast amounts of data. In the case of medical devices, this data may include physiological data such as the electrogram (electrical waveform at the electrodes), instantaneous heart rate, blood pressure, volume pumped, body temperature, etc., and configuration data such as mode of operation, amplifier sensitivity, filter bandwidth, and error messages. Often the device stores data that has been collected over a period of hours or days. This data is periodically retrieved by a doctor to monitor the patients condition and to monitor the device's status. In response, the doctor might re-program the device for a different mode of operation, sensitivity setting, etc.
A method is needed to retrieve this data rapidly. The retrieval needs to be rapid so as to minimize the inconvenience to the patient who will usually have to remain in the doctors office for the data retrieval process. To download four megabytes of medical device data, for example, at 20 Kbit/s would take nearly a half-hour--an undesirably long time for both the patient and medical professional or technician.
One method for data retrieval is the use of electromagnetic coupling between a pair of coils. One coil is excited to induce a current in the other. Modulation of the excitation signal can be detected in the induced current, and so communication is achieved The problem with this is bandwidth. The coils each have a self-inductance which acts to attenuate high frequency signals, so that the bandwidth of communications is limited.
Another method for data retrieval is to provide a direct electrical connection. A wire connected to the implanted device is passed directly through the skin and coupled to the external device. Inherent with this technique is increased discomfort and increased risk of infection.
Thus, another method is needed to transfer a large amount of data quickly from the implanted device to the external device with minimal discomfort.
Accordingly, there is provided herein a system for communicating between an implantable device and an external device. In one embodiment, the system includes an implantable device having a large memory and an external unit which downloads information from the memory for analysis and display. The implantable device includes a light-emitting diode (LED) and a modulator for driving the LED. The LED emits a modulated light signal representing the data that is stored in memory. One light frequency range which may be used is 4.3×1014-5.0×1014 Hz, as body tissue exhibits good transmission in this range. The external device includes a photo-multiplier tube (PMT) for detecting and amplifying the modulated light signal, and a demodulator for equalizing and demodulating the detection signal produced by the PMT in response to modulated light.
These components will support a high bandwidth optical channel capable of carrying as much as 500 Mbit/s or more, and thereby provide for a substantially reduced data retrieval time. The implantable device may further include a receiver coil which has currents induced in response to a communication signal from the external device. A power converter may be coupled to the receiver coil to convert the induced currents into energy for powering the LED.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of examples in the drawings and will herein be described in detail It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
The following description illustrates the principles of the invention with respect to an implantable pacemaker ("pacer") and an external device ("programmer"). The invention, however, is directed to an improved telemetry link between any implantable device and any external device configurable to download information from the implantable device. Thus, the invention applies to implantable cardioverter/defibrillators (ICD's), nerve stimulators, drug delivery devices, or any other implantable device configured to transmit data to an external device.
Turning now to the figures,
Illustratively, programmer 110 is a programmer/analyzer for use by a physician. The programmer/analyzer operates to download information stored in pacer 106 by transmitting signals which place the pacer in a mode for downloading, and thereafter detecting signals sent by the device. Then, under control of the physician or other medical professional, the programmer/analyzer operates to analyze and display the information in a format which allows the physician to diagnose any problems. After performing an analysis, the physician may instruct the programmer/analyzer to adjust operating parameters of pacer 106. If this is the case, the programmer/analyzer provides new operating parameters to pacer 106.
Microprocessor 204 preferably is programmable and operates according to a program stored in a nonvolatile memory. The program often is parameterized--i.e. one or more of the operations the microprocessor performs is alterable by setting a parameter. For example, the microprocessor may be programmed to periodically trigger atrium stimulator 212. One of the parameters for this operation might be a value specifying the rate at which the stimulator is triggered. The parameters may be provided to microprocessor 204 via telemetry module 218 and stored in memory 206.
Pacer 106 in
Microprocessor 204 preferably also monitors one or more physiological signals. For example, microprocessor 204 may detect cardiac voltage signals via atrium sensor 212 and/or ventricle sensor 214. Blood pressure, body temperature, and adaptive configuration data may also be monitored. These signals preferably are logged in memory 206 for later retrieval by programmer 110. Memory 206 preferably is large enough to store a variety of physiological signals that are monitored over a period of several days. This amount of data may comprise several megabytes of data. Memory 206 preferably is implemented as dynamic random access memory (DRAM) or other suitable memory type.
Atrium sensor/stimulator 212 is an interface circuit between microprocessor 204 and a heart lead coupled to an atrium of the heart. Similarly, ventricle sensor/stimulator 214 is an interface circuit between microprocessor 204 and a heart lead tat is coupled to a ventricle of the heart. These interface circuits are configured to apply a customized electrical energy pulse to the respective region of the heart in response to a trigger signal from microprocessor 204. Interface circuits 212, 214 may also be configured to measure cardiac voltage signals from the electrodes so that microprocessor 204 can monitor the performance of the heart. The microprocessor 204 may store the cardiac waveforms (or "electrograms") in memory for subsequent retrieval by a medical technician.
Telemetry module 218 may be designed to be activated by programmer 110 when wand 108 enters into proximity with pacer 106. This event causes telemetry module 218 to be activated and to notify microprocessor 204 of an incoming communication. Microprocessor 204 monitors the incoming communication from programmer 110 and stores programming data or parameters, and responds to any requests. For example, one request might be to transfer the data from memory 206 to programmer 110. In this case, microprocessor 204 provides the data from memory 206 to telemetry module 218 for transferal to programmer 110.
To provide a download of a substantial amount of data in as short a time as possible from pacer 106 to programmer 110, a high bandwidth connection in the reverse direction (i.e. from the pacer to the programmer) is desired. This high-bandwidth connection comprises a pacer transmitter 308 which transmits a modulated light signal to a wand receiver 310 through body tissues 306. It is contemplated that wand transmitter 302 and implant receiver 304 are coils that communicate via a shared inductive coupling. Thus one embodiment uses an inductive coupling communications link for programmer 110 to transmit data and commands to pacer 106, and an optical communications link to transmit data and status information from pacer 106 to programmer 110. Alternatively, an optical link could be used to communicate in both directions.
It is contemplated that implant transmitter 308 includes an LED that emits light in the infrared (<4.3×1014 Hz), visible (4.3×1014-7.3×1014 Hz) or ultraviolet (>7.3×1014 Hz) frequency ranges, and that wand receiver 310 includes a light sensor sensitive to light emitted by implant transmitter 308. The various frequencies (colors) of light experience differing amounts of attenuation by body tissues 306. The light emitted by implant transmitter 308 preferably experiences relatively small losses while passing through body tissues 306. Experiments have been done using a light frequency of 5.42×1014 Hz (green light), but somewhat lower frequencies such as 4.3×1014-5.0×1014 Hz may be preferred, and 4.5×1014-4.7×1014 Hz may be more preferred.
Because the optical signal may be greatly attenuated (i.e. reduced in intensity) by body tissue, light sensor 408 preferably is highly sensitive and must be protected from ambient light. This protection may be provided in the form of an enable signal which is asserted only when be ambient light is blocked, e.g. when the wand is pressed flat against the torso. In one implementation, the enable signal may be asserted when a mechanical switch is closed upon pressing the wand against the torso. In another implementation, the enable signal may be asserted when a phototransistor adjacent to the light sensor 408 detects that the light intensity has fallen below a predetermined threshold.
One light sensor which is contemplated for use in wand 108 is a PMT (photomultiplier tube) such as R5600-01 PMT from Hamamatsu Corporation. PMT's are well known and widely available, and are able to detect single photons while maintaining a low noise level. This light sensor is advantageously sensitive to light in the frequency range from 4.3×1014 to 20.0×1014 Hz.
In another embodiment, light sensor 408 comprises a photodiode which may be robust enough to withstand ambient light and sensitive enough to detect attenuated light emissions from the pacer. This right sensor advantageously does not require an enable signal and the means for generating the enable signal.
Referring still to
In one embodiment, power converter 508 employs a full-wave rectifier to convert the currents induced in coil 502 into a unidirectional charging current. The power converter also includes a bank of switching capacitors to be charged by the unidirectional charging current and thereafter step up the voltage to charge an energy storage capacitor. Current sensor 504 may be configured to detect the induced currents by sensing the voltage drop across one or more diodes in the full-wave rectifier.
In another embodiment, the LED is powered by power supply 202 of pacer 106. Power converter 508 may be included for the purpose of recharging power supply 202.
Various modulation schemes may be employed for the communication channels. The wand-to-implant communications channel may use pulse-width modulation (PWM), frequency-shift keying (FSK), or other suitable techniques. The implant-to-wand communications channel may also employ any suitable techniques such as pulsecode modulation (PCM) and simplex signaling. Both channels may employ channel coding for error detection, timing, and/or constraining power usage. Such channel coding techniques are known to those of ordinary skill in the art. It is noted that light sensor 408 may be configured to generate a detection signal which is proportional to the light intensity, and that consequently both digital and analog amplitude modulation signaling is also supported by the contemplated configuration.
Wand 108 illustratively comprises modulator 404, transmit coil 406, light sensor 408, demodulator 410, ambient light detector 606, reflective surface 608, interface module 610, and user interface 612 In one embodiment, light sensor 408 is placed near a convergence point of light rays that reflect from reflective surface 608. Reflective surface 608 is designed to increase the light-gathering ability of wand 108. Ambient light detector 606 is positioned within the concavity defined by reflective surface 608 and/or adjacent to light sensor 408. Ambient light detector 606 provides the enable signal discussed in
Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Pauly, Robert L., Bendele, Travis H.
Patent | Priority | Assignee | Title |
10193209, | Apr 06 2015 | Covidien LP | Mat based antenna and heater system, for use during medical procedures |
10322288, | Oct 28 2011 | Medtronic, Inc | Heat management for recharge coils for implantable medical devices |
10339269, | Mar 31 2014 | Covidien LP | Hand-held spherical antenna system to detect transponder tagged objects, for example during surgery |
10369067, | Oct 28 2008 | Covidien LP | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
10575765, | Oct 13 2014 | GLUSENSE LTD | Analyte-sensing device |
10595958, | Oct 28 2008 | Covidien LP | Wirelessly detectable objects for use in medical procedures and methods of making same |
10660726, | Jan 21 2015 | Covidien LP | Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same |
10722323, | Nov 23 2009 | Covidien LP | Method and apparatus to account for transponder tagged objects used during medical procedures |
10871487, | Apr 20 2016 | GLUSENSE LTD | FRET-based glucose-detection molecules |
10874560, | Jan 21 2015 | Covidien LP | Detectable sponges for use in medical procedures and methods of making, packaging, and accounting for same |
11065081, | Jan 21 2015 | Covidien LP | Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same |
11238973, | May 10 2019 | Covidien LP | Hand-held spherical antenna system to detect transponder tagged objects, for example during surgery |
11575434, | Oct 16 2019 | WYSS CENTER FOR BIO AND NEURO ENGINEERING | Optical transmission for an implantable system |
11620464, | Mar 31 2020 | Covidien LP | In-vivo introducible antenna for detection of RF tags |
6978182, | Dec 27 2002 | Cardiac Pacemakers, Inc | Advanced patient management system including interrogator/transceiver unit |
7009511, | Dec 17 2002 | Cardiac Pacemakers, Inc. | Repeater device for communications with an implantable medical device |
7065409, | Dec 13 2002 | Cardiac Pacemakers, Inc. | Device communications of an implantable medical device and an external system |
7127300, | Dec 23 2002 | Cardiac Pacemakers, Inc. | Method and apparatus for enabling data communication between an implantable medical device and a patient management system |
7292139, | Dec 17 2002 | Cardiac Pacemakers, Inc. | Repeater device for communications with an implantable medical device |
7395117, | Dec 23 2002 | Cardiac Pacemakers, Inc. | Implantable medical device having long-term wireless capabilities |
7696877, | May 01 2007 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
7751901, | Dec 27 2002 | Cardiac Pacemakers, Inc. | Advanced patient management system including interrogator/transceiver unit |
7752059, | Jul 05 2005 | Cardiac Pacemakers, Inc. | Optimization of timing for data collection and analysis in advanced patient management system |
7791467, | Dec 17 2002 | Cardiac Pacemakers, Inc. | Repeater providing data exchange with a medical device for remote patient care and method thereof |
7794499, | Jun 08 2004 | Theken Spine, LLC | Prosthetic intervertebral spinal disc with integral microprocessor |
7860733, | Jul 05 2005 | Cardiac Pacemakers, Inc. | Optimization of timing for data collection and analysis in advanced patient management system |
8055517, | Jul 05 2005 | Cardiac Pacemakers, Inc. | Optimization of timing for data collection and analysis in advanced patient management system |
8111162, | May 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
8130093, | Dec 17 2002 | Cardiac Pacemakers, Inc. | Repeater providing data exchange with a medical device for remote patient care and method thereof |
8150509, | Oct 21 2004 | Cardiac Pacemakers, Inc. | Systems and methods for drug therapy enhancement using expected pharmacodynamic models |
8160704, | Nov 02 2005 | Cardiac Pacemakers, Inc. | System and method for enabling relayed communications by implantable medical devices |
8264342, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
8326652, | Jul 05 2005 | Cardiac Pacemakers, Inc. | Optimization of timing for data collection and analysis in advanced patient management system |
8358212, | May 27 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Multi-modal transponder and method and apparatus to detect same |
8451113, | Dec 17 2002 | Cardiac Pacemakers, Inc. | Repeater providing data exchange with a medical device for remote patient care and method thereof |
8620447, | Apr 14 2011 | ABIOMED, INC | Transcutaneous energy transfer coil with integrated radio frequency antenna |
8700172, | Dec 23 2002 | Cardiac Pacemakers | Implantable medical device having long-term wireless capabilities |
8710957, | Feb 28 2007 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
8726911, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Wirelessly detectable objects for use in medical procedures and methods of making same |
8766788, | Dec 20 2010 | ABIOMED, INC | Transcutaneous energy transfer system with vibration inducing warning circuitry |
8791815, | Dec 17 2002 | Cardiac Pacemakers, Inc. | System and method providing data exchange with a medical device for remote patient care |
8878668, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
8887619, | Oct 28 2011 | Medtronic, Inc | Removable heat management for recharge coils |
9002468, | Dec 16 2011 | ABIOMED, INC | Automatic power regulation for transcutaneous energy transfer charging system |
9002469, | Dec 20 2010 | ABIOMED, INC | Transcutaneous energy transfer system with multiple secondary coils |
9050235, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
9114265, | Dec 23 2002 | Cardiac Pacemakers, Inc. | Method and apparatus for enabling data communication between an implantable medical device and a patient management system |
9220826, | Dec 20 2010 | ABIOMED, INC | Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system |
9226686, | Nov 23 2009 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to account for transponder tagged objects used during medical procedures |
9514341, | Mar 31 2014 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
9560787, | Oct 28 2011 | Medtronic, Inc. | Removable heat management for recharge coils |
9578449, | Dec 23 2002 | Cardiac Pacemakers, Inc. | Enabling data communication between an implantable medical device and a patient management system |
9690963, | Mar 02 2015 | Covidien LP | Hand-held dual spherical antenna system |
9717565, | Jan 21 2015 | Covidien LP | Wirelessly detectable objects for use in medical procedures and methods of making same |
9730850, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
9763742, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Wirelessly detectable objects for use in medical procedures and methods of making same |
9814540, | Mar 31 2014 | Covidien LP | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
9979810, | Dec 23 2002 | Cardiac Pacemakers, Inc. | Enabling data communication between an implantable medical device and a patient management system |
D775331, | Mar 02 2015 | Covidien LP; RF SURGICAL SYSTEMS LLC | Hand-held antenna system |
Patent | Priority | Assignee | Title |
3867950, | |||
4041954, | May 07 1974 | Kabushiki Kaisha Daini Seikosha | System for detecting information in an artificial cardiac pacemaker |
4361153, | May 27 1980 | Pacesetter, Inc | Implant telemetry system |
5314453, | Dec 06 1991 | Spinal Cord Society | Position sensitive power transfer antenna |
5350413, | Jun 21 1990 | Ottawa Heart Institute Research Corporation | Transcutaneous energy transfer device |
5387259, | Oct 20 1992 | Sun Microsystems, Inc. | Optical transdermal linking method for transmitting power and a first data stream while receiving a second data stream |
5411537, | Oct 29 1993 | Intermedics, Inc. | Rechargeable biomedical battery powered devices with recharging and control system therefor |
5556421, | Feb 22 1995 | Intermedics Inc | Implantable medical device with enclosed physiological parameter sensors or telemetry link |
5617235, | Mar 10 1994 | Pacesetter AB | Device for optically transmitting and receiving binary information |
5626619, | Oct 08 1993 | Sorin CRM SAS | Optically isolated shock circuit for implantable defibrillator |
5690690, | Mar 08 1995 | Pacesetter, Inc. | Implantable cardiac stimulation system |
5730125, | Feb 22 1995 | Intermedics Inc | Implantable medical device with enclosed physiological parameter sensors or telemetry link |
5899928, | May 14 1996 | Pacesetter, Inc. | Descriptive transtelephonic pacing intervals for use by an emplantable pacemaker |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2001 | Intermedics Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 19 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 22 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 14 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 19 2005 | 4 years fee payment window open |
Aug 19 2005 | 6 months grace period start (w surcharge) |
Feb 19 2006 | patent expiry (for year 4) |
Feb 19 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 19 2009 | 8 years fee payment window open |
Aug 19 2009 | 6 months grace period start (w surcharge) |
Feb 19 2010 | patent expiry (for year 8) |
Feb 19 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 19 2013 | 12 years fee payment window open |
Aug 19 2013 | 6 months grace period start (w surcharge) |
Feb 19 2014 | patent expiry (for year 12) |
Feb 19 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |