An apparatus and method for the temperature calibration of a thermogravimetric analyzer. The apparatus includes a crucible, a weight, and a corresponding metal foil. The metal foil supports the weight in the crucible until the melting point of the metal foil is reached. When the melting point of the foil is reached, the metal foil is no longer able to support the weight, causing the dropping of the weight in the crucible.

Patent
   6354732
Priority
Jul 21 1999
Filed
Jul 18 2000
Issued
Mar 12 2002
Expiry
Jul 18 2020
Assg.orig
Entity
Large
4
9
EXPIRED
1. An apparatus for temperature calibration of a thermogravimetric analyzer comprising:
a crucible;
at least one weight;
a metal foil corresponding to the at least one weight and having a melting point, said metal foil supporting said at least one weight in said crucible, wherein when said melting point is reached, said metal foil is not able to support said at least one weight causing the dropping of said at least one weight in the crucible.
9. A method for temperature calibration of a thermogravimetric analyzer including a furnace, a microbalance for measuring changes of mass inside the furnace, a temperature controller to control temperature inside the furnace and a recording apparatus, the method comprising the steps of:
suspending within the furnace at least one weight by a corresponding metal foil having a melting point above which the metal foil is not able to support the at least one weight;
increasing the temperature inside the furnace until at least the melting point of the foil is reached causing the dropping of the at least one weight;
detecting, by means of the microbalance, the dropping of the at least one weight and recording the temperature at the moment of said detecting.
6. A thermogravimetric analyzer and calibration apparatus comprising:
a furnace;
a microbalance for measuring changes of mass inside the furnace;
a temperature controller to control the temperature inside the furnace;
a recording apparatus to record changes of mass inside the furnace in relation to temperature changes; and
an apparatus for temperature calibration of the thermogravimetric analyzer placed in the furnace comprising:
a crucible placed on said microbalance;
at least one weight;
a metal foil corresponding to said at least one weight and having a melting point, said metal foil supporting said at least one weight in said crucible, wherein when said melting point is reached, said metal foil is not able to support said at least one weight causing the dropping of the weight in the crucible.
10. A method for temperature calibration of a thermogravimetric analyzer including a furnace, a microbalance for measuring changes of mass inside the furnace, a temperature controller to control temperature inside the furnace and a recording apparatus, the method comprising the steps of:
suspending within the furnace a plurality of weights by a corresponding plurality of metal foils, each of the plurality of metal foils having a different melting point above which the metal foil is not able to support its corresponding weight;
increasing the temperature inside the furnace until at least the lower of the melting points of the foils is reached causing the dropping of its corresponding weight, the plurality of metal foils being arranged so that when a weight drops it does not hit a metal foil having a higher melting point;
detecting, by means of the microbalance, the dropping of the corresponding weight and recording the temperature at the moment of said detecting.
2. The apparatus of claim 1 further comprising a plurality of weights, each weight being supported by a corresponding metal foil with each metal foil having a different melting point, said plurality of metal foils being arranged so that when a weight drops it does not hit a metal foil having a higher melting point.
3. The apparatus of claim 2 wherein each weight has substantially the shape of a hemisphere.
4. The apparatus of claim 3 wherein each weight is made of platinum.
5. The apparatus of claim 1 further comprising two weights, the first weight being supported by means of a tin foil, the second weight being supported by means of an aluminium foil.
7. The thermogravimetric is analyzer and calibration apparatus of claim 6 wherein the apparatus for temperature calibration of the thermogravimetric analyzer further comprising a plurality of weights, each weight being supported by a corresponding metal foil with each metal foil having a different melting point, the plurality of metal foils being arranged so that when a weight drops it does not hit a metal foil having a higher melting point.
8. The thermogravimetric analyzer and calibration apparatus of claim 6 wherein the apparatus for temperature calibration of the thermogravimetric analyzer further comprising two weights, the first weight being supported by means of a tin foil, the second weight being supported by means of an aluminium foil.

The present invention relates to a method and system for temperature calibration of a thermogravimetric analyzer.

Thermogravimetric equipments are used in many industrial and scientific environments to analyze the characteristics of a broad range of materials either solid or liquid. One of the main uses of a thermogravimetric analyzer is to measure the mass variations caused by sensible changes of temperature in a material specimen. Thermogravimetric analyzers must be able to continuously measuring the mass of a specimen in a controlled atmosphere and in a controlled environment over a selected period of time.

FIG. 1 shows schematically the structure and the functioning of a thermogravimetric analyzer. The specimen to be analyzed is placed on a crucible 101 on a plate of a very sensitive (e.g. sensitive to 5 μg) electronic microbalance 103 inside a furnace 105 having an inert atmosphere (e.g. purified grade N2 or other inert gas). The temperature inside the furnace 105 is then continuously varied by means of a temperature programmer, which provides a linear rate of rise; e.g. the temperature may be incremented by 10°C C./min from 25°C C. to 800°C C. The variations of temperature are measured by a thermocouple 107 and the variations in the specimen mass are measured by the microbalance 103. These measurements are usually executed by a computer 109 for obtaining indications of the change of mass in relation to temperature changes.

This mass change curve in thermogravimetry is normally influenced by many features which are characteristic of the thermogravimetric analyzer, e.g. the shape and composition of the specimen holder, the design of the furnace or the precision of the measuring sensors. These differences make it difficult to obtain absolute results and to compare experiments made with different equipment. For the above reasons a calibration of the thermogravimetric analyzer must be done.

According to the "Standard Practice for Calibration of Temperature Scale for Thermogravimetry" E1582-93 approved on Nov. 15, 1993 by the American Society for Testing and Materials (ASTM) and published January 1994, this calibration can be done either by measurement of a melting or a magnetic (Curie Point) transition temperature from the standard reference temperature. The above referenced Standard Practice describes three procedures for temperature calibration of Thermogravimetric analysers: two using melting point standards, one using magnetic transition standards for calibration.

Curie point is defined as the temperature at which ferromagnetic properties disappear and it occurs within a range of temperatures rather than at a precise temperature point. On the contrary, the melting point of metals is a well established physical property which occurs at precise temperatures. For this reason, the method based on melting point of metals (standard materials) is usually preferred to set a temperature calibration scale.

However the known methods using the melting points usually require complex manual operation for each single test: a new operation is required for each metal sample used as calibration point. This is not only time consuming, but could also cause inaccurate results due to different operator's experience.

It is an object of the present invention to alleviate the above drawbacks of the prior art.

The object of the present invention has been achieved by providing according to a first aspect of the invention an apparatus for temperature calibration of a thermogravimetric analyzer comprising:

a crucible;

at least one weight;

a metal foil corresponding to the at least one weight and having a melting point, said metal foil supporting said at least one weight in said crucible, wherein when said melting point is reached, said metal foil is not able to support said at least one weight causing the dropping of said at least one weight in the crucible.

According to a second aspect of the invention there is provided a thermogravimetric analyzer and calibration apparatus comprising:

a furnace;

a microbalance for measuring changes of mass inside the furnace;

a temperature controller to control the themperature inside the furnace;

a recording apparatus to record changes of mass inside the furnace in relation to temperature changes; and

an apparatus for temperature calibration of the thermogravimetric analyzer placed in the furnace comprising:

a crucible placed on said microbalance;

at least one weight;

a metal foil corresponding to said at least one weight and having a melting point, said metal foil supporting said at least one weight in said crucible, wherein when said melting point is reached, said metal foil is not able to support said at least one weight causing the dropping of the weight in the crucible.

According to a third aspect of the invention, there is provided a method for temperature calibration of a thermogravimetric analyzer including a furnace, a microbalance for measuring changes of mass inside the furnace, a temperature controller to control temperature inside the furnace and a recording apparatus, the method comprising the steps of:

suspending within the furnace at least one weight by a corresponding metal foil having a melting point above which the metal foil is not able to support the at least one weight;

increasing the temperature inside the furnace until at least the melting point of the foil is reached causing the dropping of the at least one weight;

detecting, by means of the microbalance, the dropping of the at least one weight and recording the temperature at the moment of said detecting.

According to a fourth aspect of the invention there is provided a method for temperature calibration of a thermogravimetric analyzer including a furnace, a microbalance for measuring changes of mass inside the furnace, a temperature controller to control temperature inside the furnace and a recording apparatus, the method comprising the steps of:

suspending within the furnace a plurality of weights by a corresponding plurality of metal foils, each of the plurality of metal foils having a different melting point above which the metal foil is not able to support its corresponding weight;

increasing the temperature inside the furnace until at least the lower of the melting points of the foils is reached causing the dropping of its corresponding weight, the plurality of metal foils being arranged so that when a weight drops it does not hit a metal foil having a higher melting point;

detecting, by means of the microbalance, the dropping of the corresponding weight and recording the temperature at the moment of said detecting.

The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The Figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:

FIG. 1 shows schematically a thermogravimetric analyzer;

FIG. 2 is an example of a preferred embodiment of the present invention.

With reference to FIG. 2 a preferred embodiment of the present invention is shown. A sandwich of thin metal foils 201 and 203 (elemental metal foils, not alloy foils) having different melting points (the lower one having a lower melting point) is assembled and put on top of a crucible 205. Weights 207 and 209 are placed on each foil. The crucible is then used to calibrate the temperature scale of the thermogravimetric analyzer described in FIG. 1. The crucible is placed on the microbalance plate 101 and the temperature is progressively increased at a constant rate, while the variation of weight and temperature are recorded by the computer. When the melting temperature of the first metal foil 201 is reached, the foil will melt releasing the weight 207 which will fall on the bottom of the crucible causing a little shock to the microbalance 103. This shock is recorded by the thermogravimetric analyzer and represents, in a thermograph of temperature/weight the melting point of the first metal foil 201. As far as the temperature further increases, the metal of the other foil 203 melts releasing the weight 209 causing another shock which will correspond on the thermograph to the melting point of the second metal.

According to a preferred embodiment of the present invention the first metal foil 201 is made of tin, with a melting point at 231.9°C C., while the second foil 203 is aluminum with a melting point of 660.3°C C.; the metal weights 207 and 209 are made of platinum, each one having a mass of about 50 mg; their shape is preferably substantially hemispherical to allow a high pressure on the metal foil surfaces while maintaining a thin space thickness. Obviously many other different embodiments, shapes and materials may be used according to the range of temperatures required and the level of accuracy desired. For example the foils may be more than two (or even only one). The choice of metal for the foils closely depends on the temperature range of interest: e.g. an assembly comprising Tin and Zinc foils could cover a range 100°C C. to 500°C C.; another assembly with Aluminium and Silver would go from 500°C C. to 1000°C C. Furthermore other materials (e.g. Gold, Stainless Steel, Nickel-Chromium) or other shapes (e.g. rods or spheres) may be used for the weights.

The above described assembly is very easy to use and avoids all the complex preparation steps of the prior art method. At the same time it allows a multi-point calibration with a single run of analysis. In a preferred embodiment of the present invention the crucible described above is built as a standard calibration kit which can be used with many different kind of thermogavimetric analysers, ensuring reproducible results.

It will be apparent to those skilled in the art having regard to this disclosure that other modifications of this invention beyond those embodiments specifically described here may be made without departing from the spirit of the invention. Accordingly, such modifications are considered within the scope of the invention as limited solely by the appended claims.

Casati, Donato, Mauri, Fabio

Patent Priority Assignee Title
6709153, Oct 23 2001 HITACHI HIGH-TECH SCIENCE CORPORATION Thermogravimetry apparatus
6871998, Aug 01 2003 Western Digital Technologies, INC Method for calibrating a vacuum thermogravimetric analyzer for determination of vapor pressures of compounds
7044635, Dec 12 2002 Rigaku Corporation Temperature correction method for thermal analysis apparatus and thermal analysis apparatus
8749629, Feb 09 2011 Siemens Energy, Inc. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment
Patent Priority Assignee Title
3902354,
4343373, Mar 29 1980 Sartorius GmbH Electronic weighing apparatus with calibrating device
4606649, Jan 14 1985 HER MAJESTY IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF ENERGY, MINES AND RESOURCES Assembly for concurrent thermogravimetry and differential thermal analysis
4977969, Nov 08 1988 METTLER-TOLEDO AG METTLER-TOLEDO SA METTLER-TOLEDO LTD , IM LANGACHER GREIFENSEE, SWITZERLAND Weighing apparatus with calibration weight means
5799606, Dec 19 1994 VOLK ENTERPRISES, INC Pop-up temperature indicating device
6302054, May 08 1998 Freezing weather indicator and method
GB1385488,
GB1540733,
GB480022,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 08 1999CASATI, DONATOInternational Business Machines CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109920961 pdf
Nov 08 1999MAURI, FABIOInternational Business Machines CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109920961 pdf
Jul 18 2000International Business Machines Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 07 2005M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 19 2009REM: Maintenance Fee Reminder Mailed.
Mar 12 2010EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 12 20054 years fee payment window open
Sep 12 20056 months grace period start (w surcharge)
Mar 12 2006patent expiry (for year 4)
Mar 12 20082 years to revive unintentionally abandoned end. (for year 4)
Mar 12 20098 years fee payment window open
Sep 12 20096 months grace period start (w surcharge)
Mar 12 2010patent expiry (for year 8)
Mar 12 20122 years to revive unintentionally abandoned end. (for year 8)
Mar 12 201312 years fee payment window open
Sep 12 20136 months grace period start (w surcharge)
Mar 12 2014patent expiry (for year 12)
Mar 12 20162 years to revive unintentionally abandoned end. (for year 12)