Apparatus for moving a stream of molten metal in a bath of molten metal, includes a pump disposed in the met. The pump has a lower inlet opening with a strainer and a slinger rib to prevent the entry of debris that exceeds a predetermined diameter from passing through the pump.
|
6. An elongated support suited for positioning a pump in a bath of molten metal, comprising:
a housing of a material that is resistant to the heat of the molten metal, said housing having an internal chamber; means for introducing an inert gas into said internal chamber; a structure, including a graphite shield, disposed in the internal chamber; and said structure having a tendency to be combustible in the presence of oxygen and non-combustible in the presence of an inert gas at such times as the housing is at least partially disposed in the bath of molten metal.
14. A shaft for a molten metal pump comprising:
an elongated drive element and an elongated shield assembly, the shield assembly being so attached to the drive element as to be rotatable therewith as a unit, the shield assembly further comprising: an inner tubular shield having a bore with a diameter greater than the diameter of the drive element, and enclosing the drive element to form a chamber therearound sufficient to permit thermal expansion of the drive element; an outer tubular shield having a monolithic closed lower end surrounding the drive element and the inner tubular shield; a tongue extending from said drive element below said inner tubular shield; at least one of said inner tubular shield and said tongue being secured to said outer shield; and said outer shield being secured to a pumping member. 1. Apparatus for moving a stream of molten metal in a bath of molten metal comprising:
a pumping member adapted to be disposed in a bath of heated molten metal and to move a stream of molten metal as the pumping member is driven in a path of pumping motion; a power device adapted to be supported above the bath of molten metal and to be actuated in a powered motion; means for connecting the power device to the pumping member to move the pumping member in said path of pumping motion; a pump housing having a pumping chamber and an inlet opening, the pumping member being disposed in the pump housing, the inlet opening being adapted for receiving molten metal into said pumping chamber; the pumping member having a strainer plate having apertures for receiving molten metal into the pumping chamber as the pumping member is being rotated about an axis of rotation; and a slinger rib mounted on the strainer plate adjacent the apertures and upstream thereof so as to strike debris carried into the stream toward the apertures, in a direction away from said inlet opening as the pumping member is being rotated.
13. A shaft for a molten metal pump comprising:
an elongated drive element and an elongated shield assembly, the shield assembly having a monolithic closed end surrounding, and forming a space between the drive element and the shield assembly sufficient to permit thermal expansion of the drive element; the shield assembly including: an outer tubular shield; an inner tubular shield telescopically disposed in the outer tubular shield; said inner tubular shield surrounding said drive element; an elongated graphite member disposed between said inner tubular shield and said outer tubular shield; a drive structure supported on the lower end of the graphite member and connected to the pumping member; and cement disposed in the outer tubular shield to provide a socket accommodating a portion of said drive element extending out of said inner tubular shield, the drive element being disposed in said socket but having a clearance therebetween to accommodate the relative thermal expansion characteristics of said drive structure, but permitting the drive structure to be rotated to engage the socket wall to rotate a pumping member. 9. A shaft comprising:
an outer tubular shield having a lower end attached to a pump housing; an inner tubular shield telescopically disposed in said outer tubular shield and being cemented thereto; a pumping shaft; the inner tubular shield having a bore with a diameter greater than the diameter of the pumping shaft, and enclosing the pumping shaft so as to form a chamber therearound; the lower end of the inner tubular shield being spaced from the lower end of the outer tubular shield to form a shoulder; a structure disposed adjacent the lower end of the pumping shaft having a diameter greater than the diameter of the bore of the inner tubular shield but less than the diameter of the outer shield, and the structure engages the shoulder to locate the lower end of the structure with respect to the inner tubular shield; and cement disposed in the lower end of the outer shield with a socket accommodating the configuration of the structure but having a clearance therebetween to accommodate the relative thermal expansion characteristics of said structure, but permitting the structure, to be rotated in the socket to rotate the pumping shaft.
4. An apparatus for moving a stream of molten metal, comprising:
a pumping member; a housing at least partially enclosing the pumping member; a power device; a shaft connecting the power device and the pumping member, said shaft having an elongated drive element and an elongated shield assembly, the shield assembly surrounding and forming a space between the drive element and the shield assembly sufficient to permit thermal expansion of the drive element; the shield assembly; comprising: an outer tubular shield connected to the pumping member; an inner tubular shield telescopically disposed in the outer shield; said inner tubular shield surrounding said drive element; an elongated graphite member disposed between said inner and outer tubular shields; and further including a tongue (58) carried on the lower end of the drive element (24) and secured to the pumping member; and cement disposed in the outer shield to provide a socket accommodating said tongue, the tongue being disposed in said socket but having a clearance therebetween to accommodate the relative thermal expansion characteristics of said tongue, but permitting the tongue to be rotated to engage the socket to rotate the pumping member.
7. Apparatus for moving a stream of molten metal in a bath of molten metal, comprising:
a pumping member adapted to be disposed in a bath of heated molten metal and to move a stream of molten metal as the pumping member is driven in a path of pumping motion; a power device adapted to be supported above the bath of molten metal and to be actuated in a powered motion; means for connecting the power device to the pumping member to move the pumping member in said path of pumping motion; a pump housing having a pumping chamber and a bottom inlet opening, the pumping member being disposed in the pump housing, the bottom inlet opening being adapted for receiving molten metal into said pumping chamber; the pumping member having a strainer plate having apertures for receiving molten metal into the pumping chamber as the pumping member is being rotated about an axis of rotation; a slinger rib mounted on the strainer plate adjacent the apertures and upstream thereof so as to strike debris carried in a stream of molten metal toward the apertures, in a direction away from said inlet opening as the pumping member is being rotated; and the pump housing having feet for supporting the pump housing above the floor of a pot containing molten metal such that the bottom inlet opening faces toward the floor of the pot when receiving molten metal therein.
8. Apparatus for moving a stream of molten metal in a bath of molten metal comprising:
a pumping member adapted to be disposed in a bath of heated molten metal and to move a stream of molten metal as the pumping member is driven in a path of pumping motion; a power device adapted to be supported above the bath of molten metal and to be actuated in a powered motion; means for connecting the power device to the pumping member to move the pumping member in said path of pumping motion; a pump housing having a pumping chamber and an inlet opening, the pumping member being disposed in the pump housing, the inlet opening being adapted for receiving molten metal into said pumping chamber; the pumping member having a strainer plate in the inlet opening, having apertures for receiving molten metal into the pumping chamber as the pumping member is being rotated about an axis of rotation; a slinger rib mounted on the strainer plate adjacent the apertures and upstream thereof so as to strike debris carried into a stream of molten metal toward the apertures, in a direction away from said inlet opening as the pumping member is being rotated; and the pumping member having pumping vanes for moving the molten metal, the vanes having vane openings therebetween greater than the strainer apertures, whereby debris passing through the inlet opening is smaller than the vane openings between the vanes.
2. Apparatus as defined in
3. Apparatus as defined in
10. The apparatus as defined in
11. The shaft as defined in
12. The apparatus as defined in
an outer tubular graphite shield telescopically receiving the shaft and the inner tubular graphite shield; and a tubular shield telescopically receiving the shaft, the inner graphite shield and the outer graphite shield.
15. The apparatus as defined in
|
This application is a division of application Ser. No. 09/130937, filed Aug. 7, 1998, pending.
This invention is related to mechanical pumps for moving or pumping metal such as aluminum or zinc in a bath of molten metal, and more particularly to such a pump in which a motor supported above the bath drives a vertical stainless steel shaft. The lower end of the shaft drives the impeller to create a stream of molten metal. A ceramic sleeve shields the stainless steel shaft to protect it from the corrosive effects of the heated molten metal, as well as forming a loose fit with the shaft to accommodate differences in the thermal expansion characteristics between the ceramic and the stainless steel.
Mechanical power driven pumps for moving metal in a bath of molten metal conventionally have a relatively short life because of the destructive effects of the molten metal on the pump components. If the pump shaft connecting the motor to an impeller is formed of any steel to provide sufficient torque to move the impeller in the molten metal, the steel has a short life because it is chemically attacked by the molten metal. If the steel shaft is shielded by a protective coating of a ceramic material, then the different thermal expansion characteristics of the steel and the ceramic causes the ceramic to shatter in a relatively short time.
A shaft made of graphite alone will burn at the metal surface. A shaft made of ceramic alone does not have sufficient tensile, torque or impact strength to overcome the stresses normally encountered when pumping molten metal.
A pump housing submerged in molten metal and made of graphite or ceramic material to withstand the heat, tends to rise in the metal bath because the ceramic has a lower density than the metal. In order to prevent the pump housing from rising in the metal, it is desirable to mount a series of vertical legs between the pump housing and an overhead supporting structure. In addition the legs (or posts as they are also called) should be strong enough to overcome the tensile stresses created during installation and subsequent removal of the pump in the molten metal bath. Such legs experience problems similar to that of an unshielded pumping shaft, that is, if they are made of an uncoated steel they have a short life because the steel is attacked by the molten metal. If they are made entirely of graphite, the legs will bum at the metal interface. If a leg is made entirely of a ceramic material having good heat resistant characteristics, it has insufficient tensile strength to ensure a long life.
The broad purpose of the present invention is to provide a shielded stainless steel driving shaft for a centrifugal impeller-type pump immersed in a molten metal bath.
Another object of the invention is to provide an improved stainless steel leg (post) for supporting and preventing the pump housing from rising in the molten metal.
Still another object of the invention is to provide an improved static inlet filter configuration for an impeller pump immersed in a molten metal bath.
Still another object of the invention is to provide a ceramic shield surrounding a graphite leg and forming an inert gas chamber around the leg. An inert gas is delivered to the gas chamber to provide an oxygen-free environment around those graphite components of the leg that may tend to burn at the temperatures of the surface of the molten metal bath.
Still another object of the invention is to provide a dynamic filter for the inlet opening of the impeller of a pump mounted in a molten metal bath. The filter rotates with the impeller without interfering with the pumping vanes. Slinger ribs provided on the dynamic filter deflect debris attempting to enter the strainer apertures to prevent their passage into the pump housing.
Still further objects and advantages of the invention will become readily apparent to those skilled in the art to which the invention pertains upon reference to the following detailed description.
The description refers to the accompanying drawings in which like reference characters refer to like parts throughout the several views and in which:
Referring to the drawings,
A pump housing assembly 28 includes a housing 30 and a vane-type pumping member 32 disposed in the housing. The shaft is drivingly connected to the pumping member to rotate it in the housing in order to produce a stream of molten metal that enters the housing adjacent the floor of the pot through an inlet opening 34, into a pumping chamber 36 and toward an outlet opening 38 in the direction of arrows 40.
The pumping member includes a ceramic impeller 33 which carries pumping vanes 44. Bearing means 46 carried in a shoulder 48 of the housing 30 engage a ceramic end driver 42 cemented to a vertical outer tubular ceramic shield 50. The lower end of the end driver 42 is closed off and fits into pumping member 32. The upper end of the shield extends upwardly through cover plate 18. End driver 42, after cementing, forms a single integral part of shaft assembly 20 together with shield 50, tubular spacer shield 52, steel driving shaft 24 and tongue 58.
Inner ceramic tubular shield 52 is cemented to the inside of the outer shield 50. The upper end of the inner shield is flush with the upper end of the outer shield. The inner tubular shield is shorter than the outer shield to form an annular shoulder 54.
The lower end of the drive shaft 24 is threaded at 56 as illustrated in FIG. 1. The threaded end 56 extends below shoulder 54. A stainless steel tongue 58 is threadably mounted on threaded end 56 and seated on shoulder 54 in a manner that will be described.
Referring to
As can be seen in
Referring to
The inner spacer shield is located to form an annular air chamber 76 between the shaft and the inner shield along its full length. The air chamber has a size chosen to permit the stainless steel shaft to fully expand in the bath of molten metal without applying any expansion pressure on the ceramic shield. The shaft is then fully shielded by heat-resistant and molten metal resistant ceramic.
Bearing means 46 carried in a shoulder 48 of the housing 30 engage an inner graphite sleeve-like shield 50'. The lower end of shield 50' is closed off and fits into pumping member 32. The upper end of shield 50' extends upwardly through cover plate 18. Inner shield 50' is cemented to a protective ceramic sleeve 78' to form a single integral part of shaft assembly 20 together with, spacer shield 52, steel driving shaft 24 and tongue 58.
Graphite leg 120 has an upper end fastened to the cover plate by a threaded fastener 122. The lower end of the leg is received in a cylindrical socket 124 in the pump housing. The leg's lower end has an annular enlargement 126 which is bottomed in the socket. The leg has an annular groove 128 above the enlargement for receiving a close fitting split ring 130. The socket also has an annular groove 132 for receiving the split ring.
In this embodiment of the invention, the lower end of the leg is inserted into the socket by squeezing the split ring into groove 128. Once the split ring is disposed in the socket, the shaft is pushed down until the split ring snaps into groove 132 thereby being disposed in both the groove in the leg and the groove in the socket, locking the leg in position.
In
An inner ceramic tubular shield 188 is disposed inside the outer shield and cemented along the length and around the inner shield in the area 190 (indicated by the heavier line). The lower end of the inner shield extends above the bottom of the outer shield. The upper end of the outer shield is located by an annular mounting member 192 that is attached to the cover plate. The lower end of the outer shield is threaded at 194 to receive a locking nut 196 which is screwed up to abut the inside surface of the housing.
A stainless steel leg 198 is disposed in the inner shield. The lower end of the stainless steel leg has a radial enlargement 200 which has a diameter less than the inner diameter of the outer shield but greater than the inner diameter of the inner shield so that it abuts the lower edge of the inner shield. Leg 198 is located so as to form an annular chamber 201 between the leg and the inner shield to permit the leg to thermally expand when it is disposed in the molten metal bath, without imposing an expansion stress on the shields.
The upper end of the leg is threaded at 202 for receiving a locking nut 204 and bevel washer 206 in order to lock the leg in position when it has been properly located within the ceramic shield.
In this case, a stainless steel leg 222 has an enlargement 224 carried at its lower end mounted within an inner graphite tubular shield 226. The enlargement is seated against the lower end of the inner shield. The upper end of the leg is threaded at 228 to engage a fastening nut 230 and bevel washers 232 in such a manner that by tightening on nut 230, enlargement 224 firmly seats graphite shield 226 in position against the bottom of the cover plate to form a gas chamber 234 around leg 222.
An intermediate tubular graphite shield 236 telescopically receives the inner shield and has its internal surface cemented to the inner shield.
Leg 222 has a longitudinal gas passage 242 that extends from its upper end down to its lower end and also radially out through an opening 244 into chamber 234.
The inner shield, in turn, has a small passage 246 which communicates with a passage 248 in shield 236.
An outer ceramic tubular shield 250 encloses both of the graphite shields and has an internal annular chamber 252 in communication with passage 248. Chamber 252 is filled with molten metal resistant cement. A source of nitrogen 254 is connected to passage 242 to form an oxygen-free atmosphere around the leg as well as an oxygen-free atmosphere along and around the graphite shields exposed to the metal level to prevent the graphite shields from burning.
The pumping member has an internal chamber 304 with outlet opening means 306 and an apertured bottom strainer plate 308. The strainer plate has an annular outer series of openings 310 and an inner series of openings 312. The inner series of openings are in a bottom horizontal portion of the strainer plate while the outer inlet openings are in a frusto-conical wall.
Referring to
A series of inner linear radial slinger bars 320 and outer radial slinger bars 322 are mounted on the strainer plate between adjacent strainer openings to strike any relatively large debris attempting to enter the strainer openings before they reach the vane openings. The slinger vanes strike the debris thereby permitting the pump to be located closely adjacent the bottom of the molten metal pot thereby permitting a stream of inlet liquid metal to be generated at a lower level in the pot.
Thus, it is to be understood that several variations have been described of an improved impeller-type pump useful in molten metal baths as well as several variations of shielded legs for supporting the pump in the molten metal bath.
Patent | Priority | Assignee | Title |
10052688, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10072891, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal using non-gravity assist launder |
10126058, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Molten metal transferring vessel |
10126059, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Controlled molten metal flow from transfer vessel |
10138892, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Rotor and rotor shaft for molten metal |
10195664, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Multi-stage impeller for molten metal |
10267314, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
10274256, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer systems and devices |
10302361, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Transfer vessel for molten metal pumping device |
10307821, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10309725, | Sep 10 2009 | Molten Metal Equipment Innovations, LLC | Immersion heater for molten metal |
10322451, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10345045, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
10352620, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
10428821, | Aug 07 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Quick submergence molten metal pump |
10458708, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
10465688, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Coupling and rotor shaft for molten metal devices |
10562097, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
10570745, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
10641270, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
10641279, | Mar 13 2013 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened tip |
10947980, | Feb 02 2015 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened blade tips |
11020798, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of transferring molten metal |
11098719, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
11098720, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned rotor shaft for molten metal |
11103920, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transfer structure with molten metal pump support |
11130173, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
11149747, | Nov 17 2017 | Molten Metal Equipment Innovations, LLC | Tensioned support post and other molten metal devices |
11167345, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transfer system with dual-flow rotor |
11185916, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer vessel with pump |
11193492, | Jul 25 2016 | PYROTEK, INC | Open exit molten metal gas injection pump |
11286939, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Rotor and rotor shaft for molten metal |
11358216, | May 17 2019 | Molten Metal Equipment Innovations, LLC | System for melting solid metal |
11358217, | May 17 2019 | Molten Metal Equipment Innovations, LLC | Method for melting solid metal |
11391293, | Mar 13 2013 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened top |
11471938, | May 17 2019 | Molten Metal Equipment Innovations, LLC | Smart molten metal pump |
11519414, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned rotor shaft for molten metal |
11759853, | May 17 2019 | Molten Metal Equipment Innovations, LLC | Melting metal on a raised surface |
11759854, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer structure and method |
11850657, | May 17 2019 | Molten Metal Equipment Innovations, LLC | System for melting solid metal |
11858036, | May 17 2019 | Molten Metal Equipment Innovations, LLC | System and method to feed mold with molten metal |
11858037, | May 17 2019 | Molten Metal Equipment Innovations, LLC | Smart molten metal pump |
11873845, | May 28 2021 | Molten Metal Equipment Innovations, LLC | Molten metal transfer device |
7278824, | Feb 01 2000 | PYROTEK, INC | Pump for molten materials with suspended solids |
7507367, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Protective coatings for molten metal devices |
7896617, | Sep 26 2008 | High flow/high efficiency centrifugal pump having a turbine impeller for liquid applications including molten metal | |
7906068, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Support post system for molten metal pump |
8033792, | Sep 26 2008 | High flow/high efficiency centrifugal pump having a turbine impeller for liquid applications including molten metal | |
8075837, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Pump with rotating inlet |
8110141, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Pump with rotating inlet |
8178037, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | System for releasing gas into molten metal |
8215899, | Sep 15 2009 | Flowserve Management Company | Vertically rotatable shaft assembly with thermally insulated housing |
8337746, | Jun 21 2007 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
8361379, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Gas transfer foot |
8366993, | Jun 21 2007 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | System and method for degassing molten metal |
8409495, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Rotor with inlet perimeters |
8440135, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | System for releasing gas into molten metal |
8444911, | Aug 07 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Shaft and post tensioning device |
8449814, | Aug 07 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Systems and methods for melting scrap metal |
8475708, | Feb 04 2004 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Support post clamps for molten metal pumps |
8501084, | Feb 04 2004 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Support posts for molten metal pumps |
8524146, | Aug 07 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
8529828, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Molten metal pump components |
8535603, | Aug 07 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Rotary degasser and rotor therefor |
8613884, | Jun 21 2007 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Launder transfer insert and system |
8714914, | Sep 08 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Molten metal pump filter |
8753563, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | System and method for degassing molten metal |
9011761, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Ladle with transfer conduit |
9017597, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal using non-gravity assist launder |
9034244, | Jul 12 2002 | Molten Metal Equipment Innovations, LLC | Gas-transfer foot |
9080577, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Shaft and post tensioning device |
9108244, | Sep 09 2009 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Immersion heater for molten metal |
9156087, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
9205490, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transfer well system and method for making same |
9328615, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
9377028, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tensioning device extending beyond component |
9382599, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degasser and rotor therefor |
9383140, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
9409232, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer vessel and method of construction |
9410744, | May 12 2011 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
9422942, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tension device with internal passage |
9435343, | Jul 12 2002 | Molten Metal Equipment Innovations, LLC | Gas-transfer foot |
9464636, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tension device graphite component used in molten metal |
9470239, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Threaded tensioning device |
9482469, | May 12 2011 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
9506129, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degasser and rotor therefor |
9566645, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
9581388, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
9587883, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Ladle with transfer conduit |
9643247, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer and degassing system |
9657578, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
9855600, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
9862026, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of forming transfer well |
9903383, | Mar 13 2013 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened top |
9909808, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | System and method for degassing molten metal |
9925587, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of transferring molten metal from a vessel |
9982945, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer vessel and method of construction |
Patent | Priority | Assignee | Title |
2468704, | |||
2808782, | |||
3255702, | |||
3291473, | |||
3612715, | |||
3724831, | |||
3836280, | |||
4940384, | Feb 10 1989 | PYROTEK, INC | Molten metal pump with filter |
5088893, | Feb 24 1989 | METAULLICS SYSTEMS CO , L P | Molten metal pump |
5181828, | Nov 22 1991 | METAULLICS SYSTEMS CO , L P | Molten metal pump |
5203681, | Aug 21 1991 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Submerisble molten metal pump |
5238363, | Oct 30 1987 | WEIR SLURRY GROUP, INC | Dual suction vertical pump with pendant auger |
5676520, | Jun 07 1995 | Method and apparatus for inhibiting oxidation in pumps for pumping molten metal |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 20 1999 | Alphatech, Inc. | (assignment on the face of the patent) | / | |||
Sep 22 1999 | MORANDO, JORGE A | ALPHATECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010325 | /0739 |
Date | Maintenance Fee Events |
Apr 13 2005 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 09 2009 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 03 2013 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 12 2005 | 4 years fee payment window open |
Sep 12 2005 | 6 months grace period start (w surcharge) |
Mar 12 2006 | patent expiry (for year 4) |
Mar 12 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 12 2009 | 8 years fee payment window open |
Sep 12 2009 | 6 months grace period start (w surcharge) |
Mar 12 2010 | patent expiry (for year 8) |
Mar 12 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 12 2013 | 12 years fee payment window open |
Sep 12 2013 | 6 months grace period start (w surcharge) |
Mar 12 2014 | patent expiry (for year 12) |
Mar 12 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |