To elucidate the molecular mechanisms of "gain of toxic function" of expanded polyglutamine stretches in cag repeat expansion diseases, the inventors established an expression system of full-length and truncated cDNAs for dentatorubral-pallidoluysian atrophy (DRPLA) and found that truncated DRPLA proteins containing the expanded polyglutamine stretch, but not the full-length protein, form peri- and intra-nuclear aggregates consisting of filaments and concomitant apoptosis. The apoptotic cell death was partially suppressed by transglutaminase inhibitors, cystamine and monodansyl cadaverine, raising the possibility of involvement of transglutaminase reaction. The results may provide a potential basis for the development of therapeutic measures for cag repeat expansion diseases.
|
1. A method of treating a cag repeat expansion disease comprising administering a therapeutically effective amount of a pharmaceutical composition comprising a transglutaminase inhibitor, wherein the transglutaminase inhibitor is selected from a group consisting of cystamine and monodanysl cadaverine.
2. A method of treating a cag repeat expansion disease comprising administering a therapeutically effective amount of a pharmaceutical composition for treating a cag repeat expansion disease, said pharmaceutical composition comprising a transglutaminase inhibitor as its ingredient, and at least one pharmaceutically accepted ingredient for formulation.
3. The method of
|
This invention is related to a remedy for a CAG repeat expansion disease.
Expansion of CAG trinucleotide repeats coding for polyglutamine stretches has been identified as a common pathogenic mutation for eight neurodegenerative diseases including spinal and bulbar muscular atrophy (SBMA)1, Huntington disease (HD)2, spinocerebellar ataxia type1 (SCA1)3, dentatorubral-pallidoluysian atrophy (DRPLA)4,5, Machado-Joseph disease (MJD)6, SCA27-9, SCA610 and SCA711, and the number of diseases caused by the same mechanism is expected to increase further. There are many common features shared among these diseases; 1. The central nervous system is commonly affected with distinct distributions of neuronal loss, which are unique to each disorder. 2. Considerable heterogeneities of the clinical presentations even within the same pedigree, which are a function of the size of expanded CAG repeats. 3. Genetic anticipation i.e. accelerated age at onset in successive generations, which is also a result of intergenerational increase in the size of expanded CAG repeats.
There are no common homologous domains shared among the gene products except for the polyglutamine stretches1-14, and the gene products of the mutant genes have been shown to be expressed at levels comparable to those of wild-type genes15-18. These observations raise the possibility that the polyglutamine stretch itself exerts a "gain of toxic function". In accordance with this, transgenic mice harboring a full-length SCA1 cDNA containing an expanded CAG repeat under control of the L7 promoter have been shown to exhibit cerebellar ataxia and degeneration of Purkinje cells in the cerebellum19. More interestingly, transgenic mice carrying mostly the expanded CAG repeat of the MJD1 gene20 or exon 1 of huntingtin gene containing the expanded CAG repeat have also been demonstrated to exhibit neurological phenotypes and neurodegeneration. Very recently it has been demonstrated that mice transgenic for exon 1 of the HD gene carrying expanded CAG repeats develop neuronal intranuclear inclusions22. The toxicity of a peptide containing mostly the expanded polyglutamine stretch of MJD1 protein has also been demonstrated in a transient expression system using COS cells20. Thus, evidence which indicates that expanded polyglutamine stretches have toxic functions is accumulating.
Various hypotheses have been proposed to explain the mechanisms of the toxicity of expanded polyglutamine stretches. Perutz and the colleague proposed that polyglutamine stretches may function as polar zippers by joining complementary proteins through hydrogen bondings, and that extensions of the polyglutamine stretches may result in strong joining and aggregation of the affected proteins23,24. Another intriguing hypothesis has recently been proposed by Kahlem et al.25. They proposed that proteins with expanded polyglutamine stretches may serve as better substrates for transglutaminase than wild-type proteins, and that expanded polyglutamine stretches preferentially become cross-linked with polypeptides containing lysyl groups to form covalently bonded aggregates. However, the following questions has not elucidated yet. 1. Do the full-length or truncated proteins with expanded polyglutamine stretches form aggregates and exhibit cytotoxicity? and 2. Are transglutaminases involved in the formation of aggregates or in cytotoxicity? Moreover, there is no information on means for alleviate the cytotoxicity of the mutant proteins. Therefore, there has been no remedy for CAG repeat expansion diseases.
The object of this invention is to elucidate the molecular mechanism of "gain of toxic function" caused by polyglutamine stretch at CAG repeat expansion diseases and thus to provide the therapeutic remedy for CAG repeat expansion diseases. That is, a CAG repeat exists on a protein coding region and encodes polyglutamine stretches. Increase in the size of CAG repeat causes longer polyglutamine stretch, and as the result, it comes to exhibit cytotoxicity. Elucidation of the mechanism to cause cytotoxicity and establishment of the means to moderate cytotoxicity enable to develop a remedy for CAG repeat expansion disease. The object of this invention is to develop the therapeutic measures for CAG repeat expansion diseases through such kind of approach.
To address these questions, the inventors established an expression system of full-length and truncated cDNAs for dentatorubral-pallidoluysian atrophy (DRPLA) and found that truncated DRPLA proteins containing the expanded polyglutamine stretch, but not the full-length protein, form peri- and intra-nuclear aggregates consisting of filaments and induce concomitant apoptosis. Moreover, formation of the aggregates was found at cerebellar dentate nucleus of all DRPLA patients examined. That is, the relationship between truncated DRPLA protein and DRPLA was found.
The effect of various transglutaminase inhibitors was examined to elucidate the involvement of transglutaminase on the aggregation formation and apoptotic cell death. As the result, some transglutaminase inhibitors were found to inhibit the aggregate formation and apoptotic cell death. Then involvement of transglutaminase on DRPLA was confirmed.
The series of results revealed that transglutaminase inhibitors are available as a remedy for CAG repeat expansion diseases including DRPLA. In short, this invention relates to the use of transglutaminase inhibitors for treating CAG repeat expansion diseases. In preferred embodiments,
(1) A remedy for a CAG repeat expansion disease containing a transglutaminase inhibitor as its active ingredient.
(2) The remedy as described in (1), wherein the transglutaminase inhibitor is selected from a group consisting of cyctamine and monodansyl cadaverine.
(3) The remedy as described in (1) wherein the CAG repeat expansion disease is selected from a group consisting of: spinal and bulbar muscular atrophy, Huntington disease, spinocerebellar ataxia type1, dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, spinocerebellar ataxia 2, spinocerebellar ataxia 6 and spinocerebellar ataxia 7.
(4) The remedy as described in (2) wherein the CAG repeat expansion disease is selected from a group consisting of: spinal and bulbar muscular atrophy, Huntington disease, spinocerebellar ataxia type1, dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, spinocerebellar ataxia 2, spinocerebellar ataxia 6 and spinocerebellar ataxia 7.
(5) A pharmaceutical composition for treating a CAG repeat expansion disease: comprising
a transglutaminase inhibitor as its active ingredient, and a pharmaceutically accepted ingredients for formulation.
(6) The pharmaceutical composition as described in (5), wherein the transglutaminase inhibitor is selected from a group consisting of cyctamine and monodansyl cadaverine.
(7) The pharmaceutical composition as described in (5) wherein the CAG repeat expansion disease is selected from a group consisting of: spinal and bulbar muscular atrophy, Huntington disease, spinocerebellar ataxia type1, dentatorubralpallidoluysian atrophy, Machado-Joseph disease, spinocerebellar ataxia 2, spinocerebellar ataxia 6 and spinocerebellar ataxia 7.
(8) The use of a transglutaminase inhibitor for manufacturing a pharmaceutical composition for treating a CAG repeat expansion disease.
(9) The use as described in (8) wherein the transglutarninase inhibitor is selected from a group consisting of cystamine and monodansyl cadaverine.
This invention relates to a remedy for CAG repeat expansion diseases wherein the effective ingredients are transglutaminase inhibitors. The therapeutic target of this invention includes spinal and bulbar muscular atrophy, Huntington disease, spinocerebellar ataxia type1, dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, SCA2, SCA6 and SCA7.
There is no limitation for the effective ingredients of this invention such as cystamin or MDC, so far as they have inhibitory effect on transglutaminase activity. The remedy of this invention can be formulated by conventional methods, so far as transglutaminase inhibitors are used as its effective ingredients. Other ingredients for formulation includes, for example, pharmacologically accepted carriers or media such as saline, sterilized water, a plant oil, an emulsifier, a suspension agent and stabilizer, but the ingredients are not to be limited to them. It is possible to medicate the remedy of this invention to patients of CAG repeat expansion diseases by conventional methods such as arterial injection, intravenous injection, hypodermic injection.
This invention will be depicted in more detail by the following embodiments, but it is not to be considered that the range of this invention is limited by following embodiments.
Aggregate formation and induction of apoptotic cell death by truncated DRPLA protein including expanded poluglutamine stretches.
To investigate whether the full-length or truncated DRPLA mutant proteins exhibit structural abnormalities such as aggregate formation, or exhibit cytotoxicities, the inventors generated various deletion mutants of full-length wildtype (coding for 19 glutamines) and mutant (coding for 82 glutainines) DRPLA cDNAs (FIG. 1). Plasimids containing these cDNAs were constructed as below.
A full-length human DRPLA cDNA containing a CAG repeat of normal length (15 CAG repeats) (pDRPLAN) was constructed by ligating partial DRPLA cDNA clones (F1 and F15-20)18 into a pBluescript SK(-) vector. A full-length human DRPLA cDNA containing an expanded CAG repeat (78 CAG repeats) (pDRPLAE) was constructed by replacing the 963-bp EcoT22I-SplI segment of pDRPLAN with the corresponding EcoT22I-SplI segment of a cosmid DRPLA genomic clone which was isolated from a genomic cosmid library constructed from genomic DNA of a patient with DRPLA. After the NotI-BbsI fragment of pDRPLAN, pDRPLAE or pDRPLA was removed, an oligonucleotide adapter containing the sequences for a NotI site, methionine, the FLAG tag and a BbsI site
(5'-GCGGCCGCTCTAGAGCCGCCACCATGGACTACAAAGACGATGACGACAAGATGAAGACAC-3') was ligated into a pBluescript SK(-) vector (pSK-AFN and pSK-AFE). The NotI-SalI fragment of pSK-AFN or pSK-AFE containing the segment coding for the translation initiation methionine, the FLAG tag and the entire DRPLA cDNA was subcloned into a mammalian expression vector, pEF-BOS38 (pEF-BOS-AFN and pEF-BOS-AFE). Since there is a sequence of 5'-CAG-CAA-CAG-CAA upstream of the CAG repeat of the DRPLA cDNA (this segment is not included as the number of CAG repeats), pEF-BOS-AFN and pEF-BOS-AFE code for 19 and 82 glutamines, respectively.
Deletion mutants containing an expanded CAG repeat and a down-stream segment of various lengths were constructed. A segment containing 21 bp upstream of the CAG repeat, the CAG repeat and the 305 bp fragment downstream of the CAG repeat of pDRPLAN were first amplified by PCR using a primer
(5'-GGCGGCCGCTCTAGAGCCGCCACCATG-GACTACAAAGACGATGACGACAAGCATCACCACCAGCAACAGCAA-3') containing the sequences for the FLAG tag and a NotI linker, and a primer with the sequence 5'-ACCGGTGGGAAAGGGTAGGGC-3. The PCR products were digested with NotI and NarI, and then subcloned into pDRPLAE from which the corresponding NotI-NarI fragment had been removed (pBFE). Deletions of the segment downstream of the CAG repeat were generated either by ExoIII/Mung Bean nuclease digestion of pBFE, or by PCR using pDRPLAE as the template. The deleted DNA segments were subcloned into the pEF-BOS expression vector along with a multi-stop linker at the 3' end. The resultant plasmids, pEF-BOS-FQ82-447, pEF-BOS-FQ82-376, pEF-BOS-FQ82-174, pEF-BOS-FQ82-129, pEFBOS-FQ82-101, pEF-BOS-FQ82-40 and pEF-BOS-FQ82-19, contain DNA segments coding for 3 histidines, 82 glutamines and various lengths of amino acids downstream of the polyglutamine stretch (447, 376, 174, 129, 101, 40 and 19 amino acids, respectively). Deletion mutants coding for 19 glutamines were also generated using similar methods.
Deletion mutants containing CAG repeats and the upstream segment of various lengths were constructed. DNA segments containing an expanded CAG repeat and upstream segments of various lengths were obtained by PCR using one of the following sense primers:
(A1FLAG, 5'-GGCGGCCGCTCTAGAGCCGCCACCATGGACTACAAAGACGAT-GACGACAAGATGAAGACACGACAGAATAAA-3';
C1FLAG, 5'-GGCGGCCGCT-CTAGAGCCGCCACCATGGACTACAAAGACGATGACGACAAGCCTCGACA GCCA-GAGGCTAGC-3'; or
C2FLAG, 5'-GGCGGCCGCTCTAGAGCCGCCACCATGGA-CTACAAAGACGATGACGACAAGCCACTACCTGGTCATCTGCCC-3') and
an anti-sense primer (E8R: 5-GGGTCGACTTATCAGCCCTCCAGTGGGTGGGGAAAT-3'). The PCR products were digested by NotI and SalI, and subcloned into the pEF-BOS expression vector. The resultant plasmids, pEF-BOS-F483-Q82, pEF-BOS-F322-Q82 and pEF-BOS-F174-Q82 contain the segments coding for the FLAG tag, 82 glutamines, 19 amino acids downstream of the polyglutamine stretch and upstream segments with 483, 322 and 174 amino acids upstream of the polyglutamine stretch, respectively.
The COS7 cells were transfected with plasmid thus constructed. COS7 cells were seeded in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum the day before transfection at 3×104 per well of an 8-well chamber slide (Nunc Inc., Naperville, Ill.). The COS7 cells were transfected with 0.5 μg of plasmid DNA using the SuperFect transfection reagent (Qiagen, Hilden, Germany) according to the manufacturer's instructions.
On the cells transfected with plasmid DNA, expression patterns of various DRPLA proteins described above were analyzed using anti-FLAG M5 monoclonal antibody 72 hours after transfection and the extent of apoptotic cell death was examined. Cells were fixed for 30 minutes in 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS), permeabilized with PBS containing 0.02% Triton X-100, and incubated in 10% normal goat serum in PBS for 30 min at room temperature (RT). Cells were then incubated with an anti-FLAG M5 monoclonal antibody (Eastman Kodak, New Heaven, Conn.) with a 1:500 dilution for 2 hours at RT, followed by a 1 hour-incubation with rhodamine-conjugated anti-mouse IgG (Dako, Glostrup, Denmark) and observed by fluorescence microscopy.
Immunostaining using 3,3'-diaminobenzidine tetrahydrochrolide was also carried out using the avidin-biotin peroxidase complex (ABC) method. The cells were counter-stained with hematoxylin and examined by light microscopy.
Cells transfected with pEF-BOS-AFN ecoding the full-length DRPLA protein containing a polyglutamine stretch of normal length (19 glutamines) expressed DRPLA protein diffusely in the cytoplasm with a homogenous or fine granular pattern (
To investigate whether full-length mutant DRPLA protein with the expanded polyglutamine stretch is incorporated into the aggregate bodies in the presence of aggregate bodies of truncated mutant proteins, another plasmid construct (pEGFP-Q82-19) coding for the truncated mutant protein mostly containing the expanded polyglutamine stretch fused with GFP (green fluorescence protein) was made.
Incorporation of the full-length mutant FLAG-tagged DRPLA protein into the aggregate bodies was clearly demonstrated in cells co-transfected with pEF-BOS-AFE and pEGFP-Q82-19 (
To determine whether the formation of aggregate bodies is dependent on the lengths of the mutant proteins, the inventors generated various deletion mutants of the full-length wild-type and mutant DRPLA cDNAs (FIG. 1). Aggregate formation was observed at high frequencies (71-88%) in the cells expressing the truncated DRPLA proteins containing the polyglutamine stretch and the downstream region with 129 or fewer amino acids (FQ82-129, FQ82-101, FQ82-40 or FQ82-19) (
Time-dependent formation of aggregate bodies.
Time-dependent formation of aggregate bodies was examined. Imunohistochemical analysis was performed as described in EXAMPLE 1. Formation of the aggregate bodies was observed in 53% of the cells expressing the FLAG epitope at 24 hours after transfection with pEF-BOS-FQ82-19 (
Analysis on the detailed structures of aggregate bodies.
For the further analysis on the detailed structures of the aggregate bodies, the inventors observed the cells transfected with pEF-BOS-FQ82-19 by electron microscopy. Cells were fixed with 4% paraformaldeheide-0.1% glutaraldehyde in 0.1M phosphate buffer, pH 7.4, for 15 min at RT. The cells were then dehydrated in a graded dimethylformamide series and embedded in LR White resin (London Resin Company, Berkshire, England). Ultrathin sections were cut and mounted on nickel grids. After incubation with 10% normal goat serum in PBS for 10 minutes at RT, the sections were incubated overnight at 4°C C. with a mouse anti-FLAG M5 monoclonal antibody at a dilution of 1:4000. After washing with PBS, the sections were incubated with goat anti-mouse IgG conjugated to 10-nm gold (British BioCell International, Cardiff, UK; 1:30 dilution) for 30 min at RT. The sections were then washed with PBS and incubated in 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4. After washing with distilled water, the sections were stained with uranyl acetate and lead citrate, and examined with a Hitachi H-7100 electron microscope.
Immuno-electron microscopic observation revealed that the aggregate bodies consist of fibrous aggregations mainly in perinuclear cytoplasmic areas (
Detection of intranuclear inclusions in cerebellar dentate nucleus of DRPLA patients.
To investigate if similar aggregates were present in the brains of DRPLA patients, the inventors performed immunohistochemical analysis of the dentate nucleus in the cerebellum of DRPLA patients (n=5) and controls (n=5) using an anti-DRPLA protein polyclonal antibody. The autopsied brains were fixed with phosphate-buffered 4% paraformaldehyde and embedded in paraffin for histological examination. Immunostaining was performed using a rabbit antiubiquitin antibody (Dakopatts: 1:200 dilution) or a rabbit anti-DRPLA protein polyclonal antibody (1:300 dilution), which was generated against a GST-fusion protein containing amino acid residues 172-253 of DRPLA protein and affinity-purified using an Affigel-10 column (Bio-Rad) conjugated with the GST-fusion protein. Presence of intranuclear inclusions, which were stained with the anti-DRPLA protein antibody (
The intranuclear inclusions were examined by electron microscope. Cells were fixed with 3% glutaraldehyde-1% paraformaldeheide in 0.1 M phosphate buffer, pH 7.4, post-fixed in 1% osmium tetroxide, dehydrated in a graded ethanol series and embedded in Epon 812. Ultrathin sections were cut and stained with uranyl acetate and lead citrate, and examined with a Hitachi H-7100 electron microscope. Electron microscopic study revealed that the intranuclear inclusions were composed of fine granular and occasionally filamentous structures (
Suppression of aggregate formation and apoptotic cell death by transglutaminase inhibitors.
To investigate whether the transglutaminase reaction is involved in the formation of aggregate bodies and the induction of apoptotic cell death, the inventors cultured COS7 cells in the presence of transglutaminase inhibitors (cystamine28, monodansyl cadaverine (MDC)29, and putrescine30), after transfection. For tilis purpose, truncated DRPLA proteins were expressed as fusion proteins with green fluorescence protein (GFP), which allowed the highly sensitive observation of viable cells. The inserts of pEF-BOS-FQ82-19 and pEF-BOS-FQ19-19 were transferred into pEGFP containing the coding region for GFP. The resultant plasmid DNAs (pEGFP-FQ82-19 and pEGFP-FQ19-19) were transfected into COS7 cells. The plasmid DNA was constructed as below. The segment coding for 3 histidines, the polyglutamine stretch and 19 amino acids downstream of the polyglutamine stretch of DRPLA cDNA (pDRPLAE or pDRPLAN) was amplified by PCR using a primer (5'-GGGAATTCGGATGCACCAT-CACCACCAGCAACAGCAACAG-3') containing an EcoRI linker sequence and a primer (5'-GTGGATCCCCGCCCTCCAGTGGGTGGGGAAATGCT-3'). PCR products were digested with EcoRI and BamHI, and subcloned into the pEGFP-N1 expression vector (Clontech, Palo Alto, Calif.). The nucleotide sequences of all the constructs were confirmed using automated DNA sequencers (PE Applied Biosystems, Foster City, Calif.).
Cells transfected with pEGFP-Q19-19 expressed the GFP fusion protein diffusely in the cytoplasm (
The effects of other transglutaminase inhibitor (MDC) on the aggregate formation and apoptotic cell death were also investigated. The TUNEL assay was performed using an In Situ Cell Death Detection Kit (Boehringer Mannheim, Mannheim, Germany) according to the manufacturer's instructions. FITC-conjugated dUTP was used for the terminal deoxynucleotidyl transferase reaction. An assay for nuclear fragmentation was performed by staining cells with 5 M Hoechst 33342. Quantitation was performed by analyzing 100 cells expressing the FLAG epitope. Statistical analyses were performed using Student's t test.
Strong suppression of nuclear fragmentation by MDC was observed in a dose dependent manner (
1. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77-79 (1991).
2. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on huntington's disease clromosomes. Cell 72, 971-983 (1993).
3. Orr, H. T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221-226 (1993).
4. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9-13 (1994).
5. Nagafuchi, S. et al. Expansion of an unstable CAG trinucleotide on chromosome 12p in dentatorubral and pallidoluysian atrophy. Nature Genet. 6, 14-18 (1994).
6. Kawaguchi, Y. et al. CAG repeat expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 8, 221-227 (1994).
7. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277-284 (1996).
8. Pulst, S. M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269-276 (1996).
9. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285-291 (1996).
10. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1a-voltage-dependent calcium channel. Nature Genet. 15, 62-69 (1997).
11. David, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genetics. 17, 65-70 (1997).
12. Lubahn, D. B. et al. Cloning of human androgen receptor complementary DNA and localization to the x chromosome. Science 240,327-330 (1988).
13. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177-182 (1994).
14. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398-402 (1991).
15. Yazawa, I. et aL Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nature Genet. 10, 99-103 (1995).
16. Trottier, Y. et al. Cellular localization of the huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104-110 (1995).
17. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet. 10, 94-98 (1995).
18. Onodera, O. et al. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am. J. Hum. Genet. 57, 1050-1060 (1995).
19. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937-948 (1995).
20. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196-202 (1996).
21. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded cag repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493-506 (1996).
22. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537-548 (1997).
23. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355-5358 (1994).
24. Stott, K., Blackburn, J. M., Butler, P. J. & Perutz, M. F. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 92, 6509-6513 (1995).
25. Kahlem, P., Terre, C., Green, H., & Djian, P. Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc. Natl. Acad. Sci. USA 93, 14580-14585 (1996).
26. Naito, H. & Oyanagi, S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurol. 32, 798-807 (1982).
27. Ikeuchi, T. et al. Dentatorubral-pallidoluysian atrophy (DRPLA): Clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37, 769-775 (1995).
28. Lorand, L. et al. Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry 18, 1756-1765 (1979).
29. Dickson, R. B., Willingham, M. C., & Pastan, I. Binding and internalization of 125I-α2-macroglobulin by cultured fibroblast. J. Biol. Chem. 256, 3454-3459 (1981).
30. Kleman, J.-P., Aeschlimann, D., Paulsson, M. & van der Rest, M. Transglutaminase-catalyzed cross linking of fibrils of collagen V/XI in A 204 rhabdomyosarcoma cell. Biochemistry 34, 13768-13775 (1995).
31. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neutron 19, 333-334 (1997).
32. Scherzinger, E., et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549-558 (1997).
33. Onodera, O. et al. Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem.Biophy. Res. Commun., (In the press).
34. Jackson, M., et al. The cortical neuritic pathology of Huntington's disease. Neuropathol. Appl. Neurobiol. 21, 18-26 (1995).
36. DiFiglia, M. et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neulites in brain. Science 277, 1990-1993 (1997).
37. Paulson, H. L. et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453-462 (1997).
38. Goldberg, Y. P. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442-449 (1996).
39. Mizusliima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990).
Patent | Priority | Assignee | Title |
10100304, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
10113165, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
10179912, | Jan 27 2012 | BioMarin Technologies B.V. | RNA modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy |
10190116, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
10246707, | May 14 2008 | BioMarin Technologies B.V.; Academisch Ziekenhuis Leiden | Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means |
10533171, | Apr 24 2009 | BioMarin Technologies B.V. | Oligonucleotide comprising an inosine for treating DMD |
10544416, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
10689646, | Aug 11 2006 | VICO THERAPEUTICS B V | Treatment of genetic disorders associated with DNA repeat instability |
10876114, | Oct 27 2008 | BioMarin Technologies B.V.; Academisch Ziekenhuis Leiden | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53 |
10913946, | Jan 27 2012 | BioMarin Technologies B.V. | RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy |
11034956, | Apr 24 2009 | BioMarin Technologies B.V. | Oligonucleotide comprising an inosine for treating DMD |
11208657, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
11274299, | Aug 11 2006 | VICO THERAPEUTICS B V | Methods and means for treating DNA repeat instability associated genetic disorders |
11427820, | Oct 27 2008 | BioMarin Technologies B.V.; Academisch Ziekenbuls Leiden | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
11634714, | Apr 24 2009 | BIOMARIN TECHNOLOGIES B V | Oligonucleotide comprising an inosine for treating DMD |
6919076, | Jan 20 1998 | PERICOR SCIENCE, INC | Conjugates of agents and transglutaminase substrate linking molecules |
6958148, | Jan 20 1998 | PERICOR SCIENCE, INC | Linkage of agents to body tissue using microparticles and transglutaminase |
7015012, | Feb 09 2001 | Massachusetts Institute of Technology | Methods of identifying agents that mediate polypeptide aggregation |
7446239, | May 07 2001 | Cedars-Sinai Medical Center | SCA2 knockout animal and methods of use |
8263760, | Feb 08 2008 | BIOMARIN TECHNOLOGIES B V | Methods and means for treating DNA repeat instability associated genetic disorders |
8268962, | Jul 12 2007 | BIOMARIN TECHNOLOGIES B V | Molecules for targeting compounds to various selected organs or tissues |
8304398, | Apr 20 2006 | Academisch Ziekenhuis Leiden | Therapeutic intervention in a genetic disease in an individual by modifying expression of an aberrantly or abnormally expressed gene |
8361979, | May 19 2006 | Academisch Ziekenhuis Leiden | Means and method for inducing exon-skipping |
8609065, | Jul 12 2007 | BIOMARIN TECHNOLOGIES B V | Molecules for targeting compounds to various selected organs, tissues or tumor cells |
8759507, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering RNA structure |
8802645, | Dec 24 2009 | BIOMARIN TECHNOLOGIES B V | Molecule for treating an inflammatory disorder |
9139828, | May 14 2008 | BIOMARIN TECHNOLOGIES B V | Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means |
9243245, | Oct 26 2007 | BIOMARIN TECHNOLOGIES B V | Means and methods for counteracting muscle disorders |
9499818, | Oct 27 2008 | BIOMARIN TECHNOLOGIES B V ; ACADEMISCH ZIEKENHUIS LEIDEN AZL | Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene |
9528109, | Oct 27 2008 | Academisch Ziekenhuis Leiden; BIOMARIN TECHNOLOGIES B V | Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mRNA |
9890379, | Aug 11 2006 | VICO THERAPEUTICS B V | Treatment of genetic disorders associated with DNA repeat instability |
9896687, | Mar 21 2003 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure |
9926557, | Oct 27 2008 | BIOMARIN TECHNOLOGIES B V | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
RE48468, | Oct 26 2007 | BioMarin Technologies B.V.; Academisch Ziekenhuis Leiden | Means and methods for counteracting muscle disorders |
Patent | Priority | Assignee | Title |
4929630, | Mar 14 1986 | Syntex (U.S.A.) Inc. | Transglutaminase inhibitors |
5725870, | Oct 15 1993 | Methods, composites and articles for contraception | |
WO9510268, | |||
WO9606181, | |||
WO9804245, | |||
WO9306832, | |||
WO9318760, | |||
WO9804245, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 18 1999 | TSUJI, SHOJI | NIIGATA UNIVERSITY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009732 | /0953 | |
Jan 22 1999 | NIIGATA UNIVERSITY | (assignment on the face of the patent) | / | |||
Oct 25 2016 | RAPTOR PHARMACEUTICALS INC | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 040479 | /0578 | |
Oct 06 2023 | CITIBANK, N A | HORIZON THERAPEUTICS U S HOLDING LLC FKA RAPTOR PHARMACEUTICALS INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 065178 | /0955 |
Date | Maintenance Fee Events |
Dec 04 2002 | ASPN: Payor Number Assigned. |
Aug 17 2005 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 12 2009 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 18 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Mar 27 2013 | R2553: Refund - Payment of Maintenance Fee, 12th Yr, Small Entity. |
Mar 27 2013 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Date | Maintenance Schedule |
Mar 12 2005 | 4 years fee payment window open |
Sep 12 2005 | 6 months grace period start (w surcharge) |
Mar 12 2006 | patent expiry (for year 4) |
Mar 12 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 12 2009 | 8 years fee payment window open |
Sep 12 2009 | 6 months grace period start (w surcharge) |
Mar 12 2010 | patent expiry (for year 8) |
Mar 12 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 12 2013 | 12 years fee payment window open |
Sep 12 2013 | 6 months grace period start (w surcharge) |
Mar 12 2014 | patent expiry (for year 12) |
Mar 12 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |