A mount both supports a compressor, and provides fluid communication, between the compressor and a heat exchanger. A first axis is defined extending through the compressor center of mass. A second axis is defined extending parallel to the first axis and positioned a distance from the first axis. A manifold is provided by the mount, and has an inlet and an outlet. The inlet is positioned along the first axis and connected to the heat exchanger and the outlet is positioned along the second axis and connected to the compressor.
|
1. An assembly including a compressor and a heat exchanger mounted together in a chilled water air conditioning system comprising:
a compressor mounted to a heat exchanger by a mount; said mount providing a manifold having an inlet and an outlet, said inlet disposed along a first axis and connected to the heat exchanger, said outlet disposed along a second axis and connected to said compressor, said inlet and said outlet being spaced from each other by a distance.
13. An assembly including a compressor and a heat exchanger mounted together in a chilled water air conditioning system comprising:
a compressor mounted to a heat exchanger by a mount; said mount providing a manifold having an inlet and an outlet, said inlet disposed along a first axis and connected to the heat exchanger, said outlet disposed along a second axis parallel to said first axis and connected to said compressor, said compressor includes a center of mass and said first axis passes through said center of mass; said inlet and said outlet being spaced from each other by a distance and said distance between said first and second axes is predetermined to counteract vibration created by operation of the compressor.
2. The assembly of
3. The assembly of
5. The assembly of
7. The assembly of
8. The assembly of
9. The assembly of
10. The assembly of
11. The assembly of
12. The assembly of
14. The assembly of
16. The assembly of
17. The assembly of
18. The assembly of
|
This invention relates to a compressor mount having an integrated muffler for supporting a compressor utilized in a chilled water air conditioning system (i.e. a chiller).
Typically a chiller is utilized in a large building where a standard single circuit system is not practical due to the long lengths of piping required and limitations on compressor capacities. The chiller includes a compressor to compress and circulate refrigerant within a heat exchanger. The refrigerant chills water contained in tubes running through the heat exchanger. Water cooled in the heat exchanger is pumped through tubing routed throughout the entire building. Air handlers disposed throughout the building are connected to the chilled water tubing to provide cool air for the building.
In chilled water systems, the connection between the compressor and the heat exchanger supports the compressor and provides a fluid path between the compressor and the refrigerant within the heat exchanger. A mount provides the connection and fluid path between the compressor and the heat exchanger. Mounting the compressor atop the cooler by way of the mount raises the compressor up off the heat exchanger, raising the compressor's center of mass. A running compressor vibrates at a particular frequency and the mount supports the compressor some distance upwardly off the heat exchanger. The combination of the distance from the heat exchanger and the vibration of the compressor creates a larger bending moment about the center of mass that exerts a high stress on the mount. In addition, fluid suction through the mount and pressure fluctuations caused by the compression of refrigerant creates undesirable noise.
For these reason it is desirable and necessary to develop a mount that can counteract forces exerted by the compressor and reduce noise emission created by the flow of fluid through the mount.
The invention provides a mount for supporting a compressor atop a heat exchanger for a chilled water air conditioning system that reduces stress exerted by the compressor onto the heat exchanger and suppresses noises caused by pressure fluctuations in the fluid passing through the mount between the compressor and heat exchanger.
The mount supports the compressor and provides fluid communication between the heat exchanger and the compressor. The compressor has a center of mass and a first axis could be defined that extends through the center of mass and perpendicular to the heat exchanger. A second axis is defined that extends substantially parallel to the first axis and is disposed a distance from the first axis and the center of mass of the compressor. The mount includes a manifold having an inlet and an outlet. The inlet is positioned along the first axis and connected to the cooler, the outlet is positioned along the second axis and connected to the compressor such that the compressor is mounted offset from the center of mass to create a moment to counteract any vibrations emanating from the compressor.
The mount includes a manifold constructed from three plates. The manifold includes first, second and third plates. Each of the plates includes an opening such that the combination of plates provides a non-linear fluid passage through the manifold. The opening in the first plate is positioned along one of the axes and the opening in the second plate is disposed along the other axis. The third plate includes an opening through which both axes extend such that the openings of the first and second plates are in fluid communication. The non-uniformity of the fluid path also constitutes a muffler that reduces the emission of noise. The third plate provides an additional muffling device positioned within the opening to reduce the emission of noise.
The subject invention overcomes the deficiencies of the prior art by providing a mount that offsets the compressor to counteract the vibration affects of the compressor and further includes an internal muffler that reduces noise emission created by pressure fluctuations in the refrigerant caused by compressor operation.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, the subject invention shown in
Referring to
The mount includes a fluid passage 32 that provides fluid communication between the compressor 12 and the heat exchanger 14. The compressor 12 draws refrigerant from the heat exchanger 14 up through the mount 16 and the offset configuration of the mount 16 breaks up the flow of refrigerant to reduce noise.
Referring to
Although within the preferred embodiments the passages 44 and 46 extend parallel to each other, and the passage 44 extends through the center of mass of the compressor, other arrangements may provide the essential benefits of this application. As an example, it may be that the passage 46 need not be coincident with the center of mass of the compressor, and the majority of the benefits could still be provided if the two passages 44 and 46 are offset. Moreover, it is possible that the passages 44 and 46 need not be parallel, and yet the bulk of the benefits could also be provided. Thus, many arrangements are within the skill of a worker in this art.
Referring to
The foregoing description is exemplary, and not a material specification. The invention has been described in an illustrative manner, and it should be understood that the terminology used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications are within the scope of this invention. It is understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Daniels, Mark, Li, Wen L., Chou, Rudy
Patent | Priority | Assignee | Title |
10808969, | Aug 11 2015 | Carrier Corporation | Screw compressor economizer plenum for pulsation reduction |
10830239, | Aug 11 2015 | Carrier Corporation | Refrigeration compressor fittings |
10941776, | Oct 02 2015 | Carrier Corporation | Screw compressor resonator arrays |
8496446, | Aug 29 2005 | Honeywell International, Inc | Compressor muffler |
Patent | Priority | Assignee | Title |
2247904, | |||
3578107, | |||
4888962, | Jan 06 1989 | Tecumseh Products Company | Suction accumulator strap |
4891955, | Mar 14 1989 | MARATHON ENGINE SYSTEMS, INC | Engine suspension system |
5070708, | Dec 29 1987 | Whirlpool Corporation | Floating frame mounting system and method for a refrigerator |
5507151, | Feb 16 1995 | Trane International Inc | Noise reduction in screw compressor-based refrigeration systems |
5913892, | Dec 27 1996 | Daewoo Electronics Corporation | Compressor fixture structure for a refrigerator |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 26 2001 | CHOU, RUDY | Carrier Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011561 | /0291 | |
Feb 05 2001 | LI, WEN L | Carrier Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011561 | /0291 | |
Feb 05 2001 | DANIELS, MARK A | Carrier Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011561 | /0291 | |
Feb 20 2001 | Carrier Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 26 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 21 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 28 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 26 2005 | 4 years fee payment window open |
Sep 26 2005 | 6 months grace period start (w surcharge) |
Mar 26 2006 | patent expiry (for year 4) |
Mar 26 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 26 2009 | 8 years fee payment window open |
Sep 26 2009 | 6 months grace period start (w surcharge) |
Mar 26 2010 | patent expiry (for year 8) |
Mar 26 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 26 2013 | 12 years fee payment window open |
Sep 26 2013 | 6 months grace period start (w surcharge) |
Mar 26 2014 | patent expiry (for year 12) |
Mar 26 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |