A method of manufacturing a semiconductor component includes depositing a first electrically conductive layer (675) over a substrate (270), forming a patterned plating mask (673) over the first electrically conductive layer, coupling a first plating electrode (250) to the first electrically conductive layer without puncturing the plating mask, and plating a second electrically conductive layer onto portions of the first electrically conductive layer. A plating tool for the manufacturing method includes an inner weir (220) located within an outer weir (210), an elastic member (230) over a rim (211) of the outer weir, a pressure ring (240) located over the rim of the outer weir and the elastic member, and a plurality of cathode contacts (250, 251, 252, 253) located between the pressure ring and the outer weir. The substrate is positioned between the elastic member and the pressure ring.
|
1. A method of manufacturing a semiconductor component comprising:
depositing a first electrically conductive layer over a first surface of a substrate; forming a plating mask over the first electrically conductive layer, the plating mask having a hole exposing a portion of the first electrically conductive layer; coupling a first plating electrode to the first electrically conductive layer without puncturing the plating mask and preventing the first plating electrode from contacting the plating mask; and plating a second electrically conductive layer onto the portion of the first electrically conductive layer.
2. The method of
preventing the plating of the second electrically conductive layer over second and edge surfaces of the substrate, wherein: the second surface is opposite the first surface; and the edge surface is located between the first and second surfaces. 3. The method of
the plating step further comprises plating the second electrically conductive layer only onto the portion of the first electrically conductive layer.
4. The method of
using the substrate to seal an outer weir of a plating tool.
5. The method of
providing an inner weir for the plating tool, the inner weir located inside the outer weir; pumping a plating solution into the inner weir, to overflow from the inner weir, to contact the portion of the first electrically conductive layer, and to flow into the outer weir; and removing the plating solution from the outer weir.
6. The method of
using an elastic member to seal the outer weir, the elastic member located between the substrate and the outer weir.
8. The method of
applying pressure to a peripheral portion of a second surface of the substrate to seal the outer weir; and keeping the pressure away from a central portion of the second surface of the substrate, wherein: the second surface is located opposite the first surface; the peripheral portion of the second surface is located over the elastic member; and the peripheral portion of the second surface of the substrate surrounds the central portion of the second surface of the substrate. 9. The method of
using a closed plating system to plate the second electrically conductive layer.
10. The method of
physically and electrically coupling a second plating electrode to the first electrically conductive layer without puncturing the plating mask, wherein: the first and second plating electrodes are located approximately 40 to 90 degrees apart. 11. The method of
physically and electrically coupling third and fourth plating electrodes to the first electrically conductive layer without puncturing the plating mask, wherein: the third and fourth plating electrodes are located approximately 40 to 90 degrees apart; the first and third plating electrodes are located approximately 180 degrees apart; and the second and fourth plating electrodes are located approximately 180 degrees apart. |
This invention relates, in general, to methods of manufacturing semiconductor components, and more particularly, to plating metal layers and plating tools therefor.
The manufacturing of semiconductor components typically includes the plating of metal layers over a semiconductor substrate. However, plating processes have many problems. For example, the plating of a front surface of a semiconductor substrate typically also results in the undesired plating of the edge and back surfaces of the semiconductor substrate, and this undesired plating must be removed. The removal of the undesired plating requires several extra processing steps and increases the cost and duration of the manufacturing process. The extra steps also increase the probability of substrate breakage. Furthermore, the plating techniques also suffer from poor process control. For example, the thickness of the plated metal layer typically varies substantially across the semiconductor substrate, and it is also difficult to determine precisely when the plated metal layer has its desired thickness and when the plating process should be terminated. One reason for the poor process control is the use of cathode contacts to puncture through a photoresist layer to contact a metal seed layer.
Accordingly, a need exists for a method of manufacturing a semiconductor component that uses a plating technique eliminating or at least substantially reducing the undesired plating of the edge and back surfaces of the semiconductor substrate. It is desired for the plating technique to also have adequate process control. Furthermore, to achieve the desired manufacturing method, a need also exists for a plating tool that prevents or at least reduces plating on the edge and back surfaces of a semiconductor substrate and that enables adequate process control.
The present invention will be better understood from a reading of the following detailed description, taken in conjunction with the accompanying drawing figures in which:
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and elements in the drawing figures are not necessarily drawn to scale. Additionally, the same reference numerals in different figures denote the same elements, and descriptions and details of well-known features and techniques are omitted to avoid unnecessarily obscuring the present invention. Furthermore, the terms left, right, front, back, top, bottom, over, under, and the like in the description and in the claims, if any, are used for descriptive purposes. However, it is understood that the embodiment of the invention described herein is capable of operation in other orientations than described or illustrated herein. It is further understood that the terms so used are for the purposes of describing relative positions and are interchangeable under appropriate circumstances.
At a step 108, cathode contacts from a plating tool are coupled or attached to the first electrically conductive layer without puncturing the photoresist layer, and at a step 110, the semiconductor substrate and an elastic member are used to seal an outer weir of a plating tool. The sequence of steps 108 and 110 can be reversed, or steps 108 and 110 can occur simultaneously. At a step 112, a second electrically conductive layer is plated onto the exposed portions of the first electrically conductive layer. In the preferred embodiment, the second electrically conductive layer is a metal layer, and the plating step occurs while the outer weir of the plating tool remains sealed. Furthermore, the plating process of step 112 is preferably performed without plating over the other surfaces of the semiconductor substrate. Additional details of steps 108, 110, and 112 are explained hereinafter.
Next, at a step 114, the semiconductor substrate is removed from the plating tool. At a step 116, the photoresist layer is removed from the semiconductor substrate after removing the semiconductor substrate from the plating tool, and at a step 118, the first electrically conductive layer is patterned after removing the photoresist layer from the semiconductor substrate.
Turning to
Outer weir 210 has a rim 211. Rim 211 includes a groove 212 in which elastic member 230 is located. Weir 210 also includes an input port 215 and a plurality of output ports 214. As explained in more detail hereinafter, a plating solution enters plating tool 200 from port 215 and exits tool 200 from ports 214. Weir 210 also includes a removable ring portion 213. Cathode contact 250 is coupled to portion 213 using fasteners 216. Fasteners 216 and the coupling portion of cathode contact 250 are located within a recess in ring 213. As explained in more detail hereinafter, knob lock 260 is also coupled to ring 213. When plating tool 200 is used to plate 150 millimeter diameter substrates, outer weir 210 preferably has a cylindrical shape with a height of approximately 150 to 200 millimeters and a diameter of approximately 150 mimeters.
Returning to
Also in
Ring 240 further includes a beveled edge 246 around a perimeter of ring 240 and a handle portion 241 extending from a top surface of ring 240. Pressure ring 240 also includes a plurality of holes 242 exposing portions of surface 272 of substrate 270. Holes 242 facilitate the removal of substrate 270 from plating tool 200, and in particular, from pressure ring 240. For example, if substrate 270 is stuck to ring 240, a person may insert his or her fingers into holes 242 to release substrate 270 from ring 240.
Cathode contact 250 is located between substrate 270 and rim 211 of outer weir 210. Cathode contact 250 is also located underneath portion 244 of pressure ring 240 and is further located adjacent to elastic member 230. Although
Turning to
Returning to
Turning to
Cathode contact 250 is located adjacent to surface 271 of substrate 270. Cathode contact 250 is coupled or attached to electrically conductive layer 675, preferably without contacting mask 673. Mask 673 is preferably patterned such that the coupling of cathode contact 250 to electrically conductive layer 675 is performed without puncturing or scraping through mask 673. In this manner, physical contact between cathode contact 250 and mask 673 can be avoided, and a more reliable electrical connection can be formed. Cathode contact 250 remains coupled to electrically conductive layer 675 during the plating of step 112 in FIG. 1.
Turning to
Adapter 780 includes a thin extension 782 for supporting substrate 270 at flat 476. Flat 476 of substrate 270 reduces the radius or diameter of substrate 270 so that substrate 270 does not overlie elastic member 230 at flat 476. Therefore, adapter 780 rests on top of elastic member 230, and extension 782 of adapter 780 supports substrate 270. The combination of adapter 780, substrate 270, and elastic member 230 forms the seal over weir 210 at flat 476.
Adapter 780 also includes a hole 781 in which a pin 788 is located. Portion 213 of weir 210 also includes a hole 714 in which pin 788 is located. Pin 788 aligns adapter 780. In the preferred embodiment, adapter 780 and weir 210 include a plurality of holes 781 and 714, respectively, to permit the use of a plurality of pins 788 to provide proper alignment of adapter 780 and substrate 270.
Returning to
After plating tool 200 is sealed, a plating solution is pumped into tool 200 through port 215. The plating solution enters inner weir 220 through port 323 and overflows from inner weir 220. As the plating solution overflows, it spills over rim 321 of weir 220 and into channel 225. Also, as the plating solution overflows from weir 220, the plating solution contacts the exposed portions of the electrically conductive layer adjacent to surface 271 of substrate 270, and a second electrically conductive layer is plated onto those exposed portions. As the plating solution travels through channel 225, the plating solution is removed from tool 200 through ports 214. The sealing of tool 200 prevents the plating of surface 272 and the edge surface of substrate 270.
Therefore, an improved method of manufacturing a semiconductor component and plating tool therefor is provided to overcome the disadvantages of the prior art. The plating technique eliminates the undesired plating of the edge and back surfaces of a substrate and also provides adequate control of the plating process. Furthermore, while the present invention has been particularly shown and described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made to the embodiments herein without departing from the spirit or scope of the present invention. For instance, the numerous details set forth herein such as, for example, the material compositions and the dimensions are provided to facilitate the understanding of the present invention and are not provided to limit the scope of the present invention.
The disclosure of the embodiments of the present invention is intended to be illustrative of the scope of the present invention and is not intended to be limiting. It is intended that the scope of the present invention shall be limited only to the extent required by the appended claims and the rules and principles of applicable law. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is expressly recited in a given claim using the phrase "means for".
Austin, David, Johnson, Timothy Lee, Mitchell, Douglas G., Carney, George F., English, Joseph, Knoblauch, Kandis Mae
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5358621, | Dec 10 1991 | NEC Corporation | Method of manufacturing semiconductor devices |
5407557, | Feb 17 1992 | Kabushiki Kaisha Toshiba | Wiring boards and manufacturing methods thereof |
5429733, | May 21 1992 | Electroplating Engineers of Japan, Ltd. | Plating device for wafer |
5447615, | Feb 02 1994 | Electroplating Engineers of Japan Limited | Plating device for wafer |
6099712, | Sep 30 1997 | Applied Materials Inc | Semiconductor plating bowl and method using anode shield |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 30 1999 | CARNEY, GEORGE F | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Nov 30 1999 | MITCHELL, DOUGLAS G | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Nov 30 1999 | KNOBLAUCH, KANDIS MAE | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Nov 30 1999 | AUSTIN, DAVID | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Nov 30 1999 | JOHNSON, TIMOTHY LEE | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Nov 30 1999 | ENGLISH, JOSEPH | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010427 | /0772 | |
Dec 01 1999 | Motorola, Inc. | (assignment on the face of the patent) | / | |||
Apr 04 2004 | Motorola, Inc | Freescale Semiconductor, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015698 | /0657 | |
Dec 01 2006 | Freescale Semiconductor, Inc | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE ACQUISITION CORPORATION | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE ACQUISITION HOLDINGS CORP | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE HOLDINGS BERMUDA III, LTD | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Apr 13 2010 | Freescale Semiconductor, Inc | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 024397 | /0001 | |
Jun 29 2012 | Freescale Semiconductor, Inc | ZOZO MANAGEMENT, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034038 | /0946 | |
Dec 19 2014 | ZOZO MANAGEMENT, LLC | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034732 | /0019 | |
Dec 07 2015 | CITIBANK, N A , AS COLLATERAL AGENT | Freescale Semiconductor, Inc | PATENT RELEASE | 037354 | /0225 |
Date | Maintenance Fee Events |
Aug 26 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 21 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 16 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Oct 16 2013 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Mar 26 2005 | 4 years fee payment window open |
Sep 26 2005 | 6 months grace period start (w surcharge) |
Mar 26 2006 | patent expiry (for year 4) |
Mar 26 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 26 2009 | 8 years fee payment window open |
Sep 26 2009 | 6 months grace period start (w surcharge) |
Mar 26 2010 | patent expiry (for year 8) |
Mar 26 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 26 2013 | 12 years fee payment window open |
Sep 26 2013 | 6 months grace period start (w surcharge) |
Mar 26 2014 | patent expiry (for year 12) |
Mar 26 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |