A final closure sealing member and a method for hermetically sealing an opening, such as an electrolyte fill opening in an electrochemical cell or a battery, are disclosed. After a cell is fully assembled and filled with electrolyte, the present sealing member is force-fit into sealing registry with the electrolyte fill opening to form a secondary seal for the cell. Preferably, an outwardly facing portion of the sealing member is flush or slightly recessed with the side wall surrounding the fill opening. Then, the outwardly facing portion is welded to the opening side wall to form a primary hermetic seal.
|
1. A container, which comprises:
a) an enclosing container side wall having a thickness and defining an interior space intended to contain a fluid; b) an opening in the container side wall, the opening defined by an opening perimeter surrounding the opening; and c) a seal registered in a force-fit sealing relationship with the opening perimeter to block the opening by providing a secondary seal for the opening, wherein the seal has an outwardly facing portion fused to and completely surrounded by the opening perimeter such that no part of the seal overlays an outer surface of the container side wall to thereby provide a primary, hermetic seal for the opening.
2. The container of
3. The container of
4. The container of
6. The container of
7. The container of
8. The container of
11. The container of
12. The container of
13. The container of
14. The container of
15. The container of
16. The container of
17. The container of
|
This application is a divisional of application Ser. No. 09/109,942, filed Jul. 6, 1998 now U.S. Pat. No. 6,177,195 to Honegger, which is a divisional of application Ser. No. 08/729,673 filed Oct. 3, 1996, now U.S. Pat. No. 5,776,632 to Honegger.
1. Field of the Invention
The present invention generally relates to the conversion of chemical energy t o electrical energy. More particularly, the present invention relates to the art of sealing an electrochemical cell or battery and, still more particularly, to hermetically sealing the electrolyte charging or fill opening in an electrochemical cell by means of a unitary sealing member. The unitary sealing member of the present invention is first force-fit into sealing registry with the electrolyte fill opening to provide a secondary seal that prevents out gassed by-products from compromising the primary, hermetic weld between the sealing member and the cell casing.
2. Prior Art
Leakage of electrolyte and gases from an electro chemical cell caused by a compromised seal is extremely undesirable and can even be fatal when the cell is used as the power source for an implantable medical device and the like. In electrochemical cells having a metal casing, one means of providing a hermetic seal for an electrolyte fill opening and the like is by welding a seal member in the casing. However, the casing proximate the weld conducts heat to the electrolyte contained therein and some electrolyte evaporation invariably occurs. When these gases escape from the cell casing they are referred to as out gassed by-products and such escaping gases leave pin holes in the weld thereby compromising hermeticity.
U.S. Pat. No. 5,004,656 to Sato et al. discloses a flat-type battery having a hermetically sealed electrolyte charging opening. The sealing member consists of a spherically-shaped body press-fit into sealing registry with the charging opening followed by a disc-shaped plate covering the sealing body and welded to the battery casing. The spherically-shaped sealing body and the disc-shaped plate can be separate members or combined as an integral unit. In any event, this prior art patent discloses that the press fit sealing body prevents compromise of the weld between the disc-shaped plate and the battery casing caused by escaping out gassed by-products.
Thus, the prior art recognizes that it is extremely important for a hermetically sealed cell to retain its manufactured, gas tight condition, even after prolonged periods of storage or use. This is nowhere more important than in electrochemical cells used in implantable medical devices and the like. Sato et al. and others have recognized that simply welding a sealing means over a cell opening does not necessarily assure gas tight hermeticity. Instead a secondary seal is required to prevent evaporated electrolyte gases from escaping and causing the formation of pin holes in the primary weld. However, it is also desirable to minimize the size of such cells by reducing their volume and to simplify the manufacturing and assembly processes by reducing the number of cell components. Furthermore, the seal member should be confined within the perimeter of the electrolyte fill opening and not protrude beyond the outer surface of the cell casing to provide the casing with an aesthetic profile. Therefore, in addition to providing a hermetically sealed fluid filled container, uncompromised by out gassed by-products, a primary object of the present invention is that the seal does not hinder the insertion of the container, for example, a cell or battery, into a receptacle for the cell in an implantable medical device and the like, where a premium is placed on economy of size.
The present invention addresses and solves the problems indicated above by providing a unitary sealing member, preferably of metal, that reliably, efficiently and hermetically closes an opening in a fluid filled container. In an electrochemical cell, the opening can be the electrolyte fill opening in a cell casing. In assembly, the present sealing member is first force-fit into sealing registry with the electrolyte fill opening to provide a secondary seal for the opening. In this position, an outwardly projecting bulbous portion or proturbance of the sealing member is somewhat recessed or flush with the casing side wall surrounding the fill opening. The bulbous portion is then welded to the casing while the secondary seal prevents out gassed by-products from compromising hermeticity. In that respect, not only does the present unitary sealing member provide a hermetic seal for the electrolyte fill opening, but no portion of the sealing member extends beyond the opening to the outer surface of the casing. Consequently, the profile of the cell is not interrupted by the seal and the outer surface of the casing remains free of sealing welds.
The foregoing and additional advantages of the present invention will be readily apparent upon a reading of the following detailed description together with the appended drawings.
Referring now to the drawings,
As shown in
A terminal lead 30 for either the anode electrode or the cathode electrode is electrically insulated from the lid 26 and the casing 14 by a glass-to-metal seal 32. In a case-negative cell configuration, the lead 30 serves as the cathode terminal and the lid 26 and casing 14 serve as the negative or anode terminal, as is well known to those skilled in the art.
Referring now to
Cell 10 further includes an anode electrode, generally designated 42, comprising a unitary, conductive member 44 which serves as the anode current collector and is fabricated from a thin sheet of metal such as nickel, having a pair of wing-like sections 46 and 48 joined by an intermediate web section 50. Anode elements 52 and 54 are in pressure bonded contact with and carried by corresponding ones of the electrode wing-like sections 46 and 48, respectively.
The anode element 52 is in operative contact with the cathode plate 36 through a thin sheet of separator material 56. Similarly, anode element 54 is in operative contact with cathode plate 38 through a thin sheet of separator material 58 such that separator sheets 56 and 58 surround and envelope the cathode body 34 to prevent direct physical contact with the anode plates 52, 54.
The terminal lead 30 connected to the cathode current collector 40 extends through a header assembly comprising the glass-to-metal seal 32 fitted in the lid 26. Lead 30 is the positive electrical terminal, being connected to the cathode body 34. With the anode electrode 42 being in operative contact with the conductive casing 14 through the web section 50 of the anode current collector in electrical contact with the lid 26 welded to the casing 14, the exemplary cell 10 of this embodiment of the present invention is in a case-negative electrical configuration.
Cell 10 is completed by an electrolyte 60 provided in casing 14 to activate the anode and the cathode. In the exemplary electrochemical cell shown, the electrolyte is a liquid electrolyte, however, the sealing means of the present invention is useful in cell chemistries having both liquid electrolytes and catholytes as well as those of a solid chemistry. Thus, the electrolyte 60 is hermetically sealed in the casing 14 closed by lid 26 by the provision of the sealing member 12 of the present invention.
As shown in
To form the primary seal and thereby hermetically close the cell, the outwardly projecting protruding portion 68 of sealing member 12 is fused to surrounding side wall 62 such as by means of weld 70. As shown in
By way of example, the illustrative cell 10 shown in
It is contemplated by the scope of the present invention that the final sealing means can seal openings of various shapes and configurations. For example,
Similarly,
It should be understood that the sealing members and mating openings shown in FIG. 3 and
It is therefore apparent that the present invention accomplishes its intended objects. While embodiments of the present invention have been described in detail, that is for the purpose of illustration, not limitation.
Patent | Priority | Assignee | Title |
7666548, | Jan 27 2004 | Samsung SDI Co., Ltd. | Can type secondary battery |
8231991, | May 29 2009 | Medtronic, Inc. | Process for making fill hole in a wall of an energy storage device |
9067078, | May 29 2009 | Medtronic, Inc. | Hermetic sealing method for a battery fillport using sealing member |
9209434, | Nov 17 2011 | FASTCAP SYSTEMS CORPORATION | Mechanical hermetic seal |
9750360, | Feb 04 2014 | Double-walled glass insulated containers and method for producing same | |
9870868, | Jun 28 2016 | KYOCERA AVX Components Corporation | Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator |
9870869, | Jun 28 2016 | KYOCERA AVX Components Corporation | Wet electrolytic capacitor |
Patent | Priority | Assignee | Title |
2372885, | |||
3458224, | |||
5776632, | Oct 03 1996 | Greatbatch Ltd | Hermetic seal for an electrochemical cell |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 23 2000 | HONEGGER, ALLEN | Wilson Greatbatch Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011081 | /0714 | |
Apr 14 2000 | Wilson Greatbatch Ltd. | (assignment on the face of the patent) | / | |||
Jan 12 2001 | Wilson Greatbatch Ltd | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 011700 | /0831 | |
May 24 2005 | WILSON GREATBATCH,TD | GREATBATCH, LTD NEW YORK CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 019520 | /0743 | |
May 22 2007 | Greatbatch Ltd | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 020571 | /0205 | |
Oct 27 2015 | ELECTROCHEM SOLUTIONS, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | GREATBATCH, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | MICRO POWER ELECTRONICS, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | PRECIMED INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | GREATBATCH-GLOBE TOOL, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | NEURONEXUS TECHNOLOGIES, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | MICRO POWER ELECTRONICS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | PRECIMED INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | GREATBATCH-GLOBE TOOL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | NEURONEXUS TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | ELECTROCHEM SOLUTIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | GREATBATCH, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY | Wilson Greatbatch Ltd | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 058224 | /0190 |
Date | Maintenance Fee Events |
Sep 14 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 07 2008 | ASPN: Payor Number Assigned. |
Sep 28 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 28 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 26 2005 | 4 years fee payment window open |
Sep 26 2005 | 6 months grace period start (w surcharge) |
Mar 26 2006 | patent expiry (for year 4) |
Mar 26 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 26 2009 | 8 years fee payment window open |
Sep 26 2009 | 6 months grace period start (w surcharge) |
Mar 26 2010 | patent expiry (for year 8) |
Mar 26 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 26 2013 | 12 years fee payment window open |
Sep 26 2013 | 6 months grace period start (w surcharge) |
Mar 26 2014 | patent expiry (for year 12) |
Mar 26 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |