An adjustable foil apparatus for papermaking machines is described in which a pair of rigid foil members are mounted in a pair and are pivotable about substantially parallel longitudinal axes in mirror image fashion to provide selected angularity therebetween. A common operating mechanism is attached to both of the adjustable angle foils in the pair, such that actuation of the operating mechanism produces concurrent mirror image pivoting of the foils in the pair.
|
1. Drainage foil apparatus for a papermaking machine comprising
a pair of foils for removing fluid from paper pulp stock carried by a conveyor along a path across said foils, each foil including an elongate rigid foil member having an upper surface comprising a hard wear resistant material, the foil members in said pair being disposed adjacent each other and extending laterally of said path, mountings supporting each of said rigid foil members on base members structured to enable pivoting of each of said foil members about a longitudinal pivot axis for the member which is substantially parallel to a longitudinal pivot axis for the other foil member, and foil angle adjustment mechanism coupled to said pair of foils operable to produce concurrent pivoting of said pair of foils about their respective pivot axes in mirror-image movement.
11. Drainage foil apparatus for a papermaking machine comprising
a first pair of foils and a second pair of foils for removing fluid from paper pulp stock carried by a conveyor along a path across said foils, said second pair of foils being positioned downstream along said conveyor path from said first pair of foils, each foil including an elongate rigid foil member having an upper surface comprising a hard wear resistant material, the foil members in said first pair being disposed adjacent each other and extending laterally of said path, and the foil members in said second pair being disposed adjacent each other and extending laterally of said path, mountings supporting each of said rigid foil members on base members structured to enable pivoting of each of said foil members about a longitudinal pivot axis for the member which is substantially parallel to a longitudinal pivot axis for the other foil member in said pair, first foil angle adjustment mechanism coupled to the foils in said first pair operable to produce concurrent pivoting of said foils in said first pair about their respective pivot axes in mirror-image movement to a selected angular relationship to each other, and second foil angle adjustment mechanism coupled to the foils in said second pair operable to produce concurrent pivoting of said foils in said second pair about their respective pivot axes in mirror-image movement to a selected angular relationship to each other different from the angular relationship of said foils in said first pair.
19. Drainage foil apparatus for a papermaking machine comprising
a first pair of foils and a second pair of foils for removing fluid from paper pulp stock carried by a conveyor along a path across said foils, said second pair of foils being spaced downstream along said conveyor path from said first pair of foils, each foil including an elongate rigid foil member having an upper surface comprising a hard wear resistant material, the foil members in said first pair being disposed adjacent each other and extending laterally of said path, and the foil members in said second pair being disposed adjacent each other and extending laterally of said path, mountings supporting each of said rigid foil members on base members structured to enable pivoting of each of said foil members about a longitudinal pivot axis for the member which is substantially parallel to a longitudinal pivot axis for the other foil member in said pair, first foil angle adjustment mechanism coupled to the foils in said first pair operable to produce concurrent pivoting of said foils in said first pair about their respective pivot axes in mirror-image movement to a selected angular relationship to each other, second foil angle adjustment mechanism coupled to the foils in said second pair operable to produce concurrent pivoting of said foils in said second pair about their respective pivot axes in mirror-image movement to a selected angular relationship to each other different from the angular relationship of said foils in said first pair, and a non-paired foil extending laterally of said path interposed in said space between said first and second pairs of foils with fluid flow spaces provided between said first pair of foils and said non-paired foil and between said non-paired foil and said second pair of foils.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
|
This invention relates to adjustable foil apparatus for a papermaking machine, and more particularly to such apparatus which includes a pair of substantially rigid foils extending laterally of a conveyor path and mounted for pivoting about longitudinal axes in mirror image movement to produce desired control of material carried on the conveyor.
In the manufacture of paper it is necessary to control the flow of fluidized material along a conveyor and to draw water therefrom. This is done generally by providing a plurality of supports which underlie the conveyor and extend laterally of the conveyor path with spaces provided therebetween through which fluids may be drawn from the papermaking stock. In the past a variety of individually adjustable foils have been proposed to provide desired dewatering and other actions in the stock being carried by the traveling conveyor.
One form of an adjustable angle foil for papermaking machine is disclosed in U.S. Pat. No. 5,169,500, issued Dec. 8, 1992. Although this patent discloses a cam adjustable rigid foil, it speaks only to the use of individual foils which have their own independent orientation and are adjusted independently of other foils in the system.
It has been found that by coordinating the adjustment of a plurality of foils improved operation may be obtained.
It is an object of the present disclosure to provide drainage foil apparatus for a papermaking machine in which a pair of foils for removing fluid from paper pulp stock are disposed adjacent each other and extend laterally of the path of an overlying conveyor, with supports and adjustment mechanism for the pair of foils being operable to produce concurrent pivoting of the foils in the pair about their respective longitudinal pivot axes to produce mirror image pivoting of the foils in the pair. In such system the foils in a pair may be selectively oriented, such that they operate together either to provide a substantially horizontal surface over which a conveyor moves, or they can be pivoted in mirror image fashion to provide either a shallow or more deeply configured V-shaped structure over which the conveyor moves.
Another object of the present disclosure is to provide such foil apparatus in which the foil angle adjustment mechanism is cam actuated in order to adjust the foil angle substantially uniformly across the entire length of the foil member.
A further object of the present disclosure is to provide such foil apparatus in which the cam actuation mechanism for one foil member in a pair is substantially a mirror image of the cam actuation mechanism of the other foil member in the pair, such that operation of the cam actuation mechanism for the pair may produce concurrent mirror image movement for the two foil members in the pair.
A still further object of the present disclosure is to provide control mechanism operatively connected to both of the foil members in a pair, with the control mechanism being operable to shift the two foil members in a pair longitudinally, with such longitudinal movement producing concurrent mirror image pivoting of the foil members in the pair about their respective longitudinal pivot axes.
An additional object of the present disclosure is to provide drainage foil apparatus for a papermaking machine in which multiple pairs of foils are provided, with the foils in each pair being pivotable in mirror image fashion relative to the other foil in its respective pair, to produce a selected angular relationship between such foils in a given pair, and a different angular relationship between the foils in another pair of foils in such system may be produced.
Yet another object of the present disclosure is to provide multiple pairs of adjustable foils disposed at different locations along the path of a papermaking conveyor, which pairs of foils may be disposed in different series of angular relationships relative to each other to provide desired actuation of material carried on the conveyor extending thereacross.
These and other objects of the present disclosure will become more fully apparent as the following description is read in conjunction with the drawings.
Referring to
The paper stock is carried in the direction of arrow 16 over apparatus including dewatering sections where water is removed from the paper stock. Three such dewatering sections are indicated generally at 20, 22, and 24, respectively. Sections 20, 22 are illustrated in greater detail in
Referring to
The variable angle foils each engage the bottom surface of a conveyor at a small foil angle, in a range of about 0 to 6 degrees, which produces a selected vacuum below the conveyor belt to draw water from the paper stock. Adjustment of the angles of the foils controls the water removal rate of the foil and such removed water then drains through the dewatering sections and is disposed of. The foils are variable in height, as is known in previous papermaking machines, and are variable in angularity as will be described further below, both to provide the desired drawing of water from the paper stock and undulation and turbulence of the paper stock to form the paper sheet and to assist in removing water therefrom.
Referring to
Apparatus 30 includes a pair of elongate adjustable foil members 40A, 40B which are substantially mirror images of each other and are disposed closely adjacent each other. These two foil members extend laterally of the path of conveyor 14 and support the full width of the conveyor. Foil members 40A, 40B are substantially mirror images of each other, and thus like parts, or portions, thereof will be given generally the same number, with an A or B suffix to denote which foil member the part, or portion, is associated with.
In one embodiment, as illustrated in
As is best seen in
Each foil support member 44A, 44B is coupled to an elongate foil mounting base 56A, 56B by means of sets of cam slots and cam follower projections riding in said cam slots as will be described below.
Each foil mounting base 56A, 56B is an elongate member extending laterally of the path of the conveyor and having a generally inverted T-shaped cross section throughout a major portion of its length, as best illustrated in FIG. 7B. The foil mounting base is secured to a machine frame in a conventional manner by T-shaped slots 58A, 58B in the bottom thereof into which a T-shaped bar, or rail, 60A, 60B is inserted when the foil mounting base is installed on the papermaking machine. The substantially horizontally disposed bottom portion 62A, 62B has a greater length than foil members 40A, 40B, whereas upstanding central portions 64A, 64B are shorter than foil members 40A, 40B. As best seen in
Referring to
A plurality of cam follower holding pins 76 extend through accommodating bores in legs 46A, 46B, 48A, 48B and have either cam follower ball heads or rods 78 secured thereto. These cam followers 78 are received in their respective slots 70A, 70B, 72A, 72B to support their respective foil members.
When the foil support members 44A, 44B slide longitudinally during adjustment of the foil angle as will be described below, the varying angles at which the cam slots are disposed will cause the foil members 40A, 40B to pivot, or rotate, about longitudinal pivot axes in mirror image fashion relative to each other.
Longitudinal movement of the foil members is produced by control mechanism indicated generally at 84 which is operatively connected to the foil members and is actuatable to shift them longitudinally relative to the base member a predetermined amount to concurrently adjust the pair of foil members in mirror image movement. The control mechanism includes a screw 86 which is rotatably mounted in a bearing 88 which is secured to rails 62A, 62B by bolts 90. An operator head 94 has an internally threaded cylindrical portion 96 threadably received on screw 86 such that rotation of the screw causes operator head 94 to move laterally of the conveyor (to the right and left as viewed in FIGS. 5 and 6), and longitudinally relative to the foils. A first swivel connector 100 operatively connects one end of operator head 94 to foil member 40A and a second swivel connector 102 operatively connects the opposite end of operator head 94 to foil member 40B. The swivel connectors are substantially rigid elements, which have ball swivel heads coupled to the operator head and their respective foil members, such that shifting of the operator head laterally of the conveyor produces corresponding and concurrent shifting of the foil members in said directions. The ball end connections permit the foil members to pivot about their longitudinal pivot axes while being shifted longitudinally by the control mechanism.
Further, screw 86 may be connected to a motor 104 which is operated by various control apparatus to vary the positions of the foil members to produce selected operation during papermaking.
Explaining operation of the apparatus thus described, the tops of foil members 40A, 40B may be substantially horizontally disposed initially. For example, the tops of foil segments 42A, 42B shown in
As illustrated in
Referring to
Referring to
In the process of making paper a mixture of water and fibrous pulp called "paper stock" is dispensed onto a porous conveyor web called the wire or fabric. At this point the major portion of the paper stock is water and only a very minor portion is fiber. As the paper stock travels on the conveyor, water is continuously being drained from the stock. As a result, the paper stock begins to thicken and form a paper sheet. Without sufficient agitation of the mixture, the fiber in the paper stock tends to clump, or flock, together. The formation of flocks, or clumps, in a sheet is detrimental to the uniform quality of the paper, causing an inconsistent appearance in the sheet. This is prevented by agitating the paper stock by producing turbulence in the stock.
Agitation of the paper stock is produced by the dewatering elements below the conveyor with a desired geometry relative to the conveyor to cause turbulence in the sheet. Foils, as described above, support the conveyor and help to remove water from the sheet. The basic foil as shown in
It has been found that providing a pair of ganged foil members which may be pivoted in mirror image fashion to provide a somewhat V-shaped combined configuration will produce improved papermaking. By increasing, or decreasing, the angularity of the ganged pair of foils, the magnitude of the pulse may be varied as desired.
Many paper machines produce a range of paper grades. As the grades, and thus the weight, of the paper sheet changes, the magnitude of the pressure pulses required also changes. In the past, changing blades has been a difficult and time-consuming process. The typical foil, or blade, is 200 to 400 inches long and replacement can require substantial down time for the machine.
With the present invention wherein a pair of foils are capable of being adjusted concurrently in mirror image fashion to produce a variety of pulsing, or other papermaking characteristics, it is a simple matter, even while a machine is operating, to actuate the control mechanism which shifts the foils laterally of the conveyor, thus to move the cam followers in the cam slots and produce concurrent pivoting of the foil members in mirror image fashion to produce a desired angularity therebetween.
Where multiple ganged pairs of foils are disposed along the conveyor line, different pairs may have different relative angularity configurations to produce differing wave forms and actuation of the paper stock as it is carried along the conveyor. Further, by inter-mixing foils and foil pairs disposed at differing selected angularity along the conveyor path a variety of selected wave forms may be produced to provide desired actuation of the paper stock on the conveyor.
It will be obvious to those having ordinary skill in the art that changes may be made in the above-described description of certain preferred embodiments thereof. Therefore, the scope of the present invention should be determined by the following claims.
Patent | Priority | Assignee | Title |
10246825, | Mar 17 2016 | ANDRITZ INC | Supporting mechanism for a papermaking machine dewatering blade |
10273630, | Sep 01 2016 | Apparatus for adjusting a scraper bar in a line for producing a paper web | |
6802940, | Oct 10 2000 | APPLETON INTERNATIONAL, INC | Variable frequency dewatering assembly |
6869507, | Oct 10 2000 | Appleton International, Inc. | Variable frequency dewatering assembly |
7993492, | Feb 03 2006 | FCPAPEL LLC | Fiber mat forming apparatus and method of preserving the hydrodynamic processes needed to form a paper sheet |
8236139, | Jun 30 2008 | GRAPHIC PACKAGING INTERNATIONAL PARTNERS, LLC; Graphic Packaging International, LLC | Apparatus for improving basis weight uniformity with deckle wave control |
9593451, | Nov 10 2014 | Movable foil blade for papermaking on a fourdrinier, including the lead blade on the forming board box |
Patent | Priority | Assignee | Title |
3017930, | |||
3027940, | |||
3140225, | |||
3201308, | |||
3220920, | |||
3323982, | |||
3520775, | |||
3535201, | |||
3573159, | |||
3576716, | |||
3647620, | |||
3874998, | |||
4061532, | Sep 02 1975 | Escher Wyss GmbH | Adjustable suction device for a paper machine |
4123322, | Jun 24 1977 | Thermo Electron Corporation | Drainage foil element having two wire bearing portions |
4162937, | Jan 14 1974 | Water-removal blade for paper-making machines | |
4184915, | Dec 08 1978 | Wilbanks International, Inc. | Drainage foil apparatus with individually replaceable ceramic segments |
4334958, | Aug 25 1980 | BALUHA, MARK R | Production of conveyor support bars for paper making machinery |
4416731, | Nov 25 1981 | VALMET-DOMINION INC , A COMPANY OF CANADA | Apparatus for controlling the position and location of a stationary device of a paper machine which acts on a paper web being manufactured therein |
4447296, | Mar 29 1982 | Champion International Corporation | Double nip hydrofoil |
4459176, | Nov 12 1982 | Thermo Electron Corporation | Dewatering system with adjustable width suction slots |
4687549, | Jan 08 1986 | M/K Systems, Inc. | Hydrofoil blade |
4789433, | Apr 13 1985 | Cerasiv GmbH Innovatives Keramik-Engineering | Skimming blade with wave shaped troughs for a papermaking machine |
4838996, | Jan 29 1988 | M/K Systems Inc. | Hydrofoil blade for producing turbulence |
4865692, | Aug 20 1986 | J. M. Voith GmbH | Stationary support member for web producing machine |
5011577, | Jun 08 1989 | ASTENJOHNSON, INC | Pressure control forming section |
5061347, | Sep 02 1989 | Sulzer-Escher Wyss GmbH | Adjustable ledge for the sheet forming zone of a papermaking machine |
5089090, | Jun 08 1989 | ASTENJOHNSON, INC | Continuous controlled drainage |
5169500, | Oct 15 1991 | WILBANKS INTERNATIONAL, INC | Adjustable angle foil for paper making machine with rigid foil body and cam actuation means |
5262009, | Apr 30 1991 | J. M. Voith GmbH | Stationary support device for dewatering wire |
5262010, | Mar 09 1991 | Sulzer Escher Wyss GmbH | Dewatering device with adjustable force elements for the web-forming section of a papermaking machine |
5387320, | Jun 26 1991 | Valmet Paper Machinery, Inc. | Twin-wire web former in a paper machine |
5437769, | Oct 29 1992 | Mitsubishi Jukogyo Kabushiki Kaisha | Dewatering instrument for a paper machine twin-wire former |
5690792, | Nov 16 1994 | Valmet Corporation | Set of ribs in a dewatering device in a paper machine |
5830322, | Feb 13 1996 | Smurfit Carton y Papel De Mexico | Velocity induced drainage method and unit |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 20 2001 | BREWER, JOHN R | WILBANKS INTERNATIONAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011753 | /0552 | |
Apr 26 2001 | Wilbanks International, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 23 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 23 2009 | REM: Maintenance Fee Reminder Mailed. |
Apr 16 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 16 2005 | 4 years fee payment window open |
Oct 16 2005 | 6 months grace period start (w surcharge) |
Apr 16 2006 | patent expiry (for year 4) |
Apr 16 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 16 2009 | 8 years fee payment window open |
Oct 16 2009 | 6 months grace period start (w surcharge) |
Apr 16 2010 | patent expiry (for year 8) |
Apr 16 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 16 2013 | 12 years fee payment window open |
Oct 16 2013 | 6 months grace period start (w surcharge) |
Apr 16 2014 | patent expiry (for year 12) |
Apr 16 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |