Programmable active damping of the overshoot in the bipolar write driver output current waveform in the write head of a hard disk drive is provided by subtracting, a controlled amount of current from the writer current, for a predetermined duration, at the beginning of each transition of the write driver output current.
|
1. A method of actively damping the overshoot in a bipolar writer output current in a write head of a hard disk drive, comprising the steps of:
(a) generating a writer reference current irefw; (b) generating a damping reference current irefd of a predetermined variable magnitude, said magnitude being a function of the amount of overshoot desired in the writer output current; (c) subtracting the damping reference current irefd from the writer reference current irefw and generating a composite writer current iwrite thereby; and (d) coupling the composite writer current iwrite to the write head via a switched circuit arrangement to produce a bipolar current in the writehead.
6. Apparatus included in an integrated circuit for providing active and passive damping of the overshoot in the writer output current flowing in a magnetic write head of a magnetic memory, comprising:
a first electrical circuit for providing a bidirectional flow of writer output current through the write head in response to a writer current applied thereto; an electrical impedance of a predetermined value shunted across the write head for providing passive damping of the overshoot in the writer output current; a first current source generating a writer reference current of a predetermined magnitude; a second current source generating a damping reference current having a variable magnitude corresponding to the amount of damping desired; and, a second electrical circuit for subtracting the magnitude of the damping reference current from the magnitude of the writer reference current so as to generate a composite writer current which is fed to the first electrical current and thereby providing active damping of the overshoot.
2. A method according to
3. A method according to
4. A method according to
5. A method according to
7. Apparatus according to
9. Apparatus according to
10. Apparatus according to
11. Apparatus according to
12. Apparatus according to
13. Apparatus according to
14. Apparatus according to
15. Apparatus according to
16. Apparatus according to
17. Apparatus according to
18. Apparatus according to
19. Apparatus according to
20. Apparatus according to
|
1. Field of the Invention
This invention relates generally to magnetic type digital storage apparatus and more particularly to circuitry for actively damping overshoot in the writer output current waveform of a hard disk drive read/write head controller integrated circuit.
2. Description of Related Art
Conventional hard disk drives currently being manufactured typically utilize an analog integrated circuit (IC) chip known as a read/write head controller, also referred to as a "preamp". The purpose of the preamp is to provide an interface between the read channel and the read and write heads. The preamp includes a write driver portion which provides a bipolar square wave of current to the inductive write head. The head current must be of a programmable magnitude as well as being well controlled. The changing polarity of the write current waveform writes a logic "1" to the spinning magnetic disk of the hard drive. The inductive write head, in combination with the accompanying interconnection wiring and preamp, forms a complex resistive, inductive, capacitive (RLC) circuit which in turn introduces a certain amount of ringing or overshoot in the preamp output current waveform as shown in FIG. 1. In the past, this overshoot has been damped to some degree by simply shunting the write driver output with a resistor. More recently, disk drive manufacturers have required of preamp suppliers the ability to precisely control the amount of overshoot and to be able to vary the overshoot after the drive has been assembled.
Previous schemes for providing controlled damping of the write driver output current waveform has been to utilize various sized damping resistors selectively coupled across the write driver output. However, the damping resistors typically require large transistors, such as field effect transistors, (FETs) connected to the output to switch the resistors in and out of the write driver output circuit. This has resulted in unwanted parasitic capacitance on the output which limits writer speed performance and the number of damping levels practically integrated. In addition, because of the process and temperature variation associated with integrated circuit components, i.e., the resistors, the amount of damping could not be adequately controlled.
Accordingly, it is an object of the present invention to provide an improvement in magnetic memory apparatus.
It is another object of the invention to provide an improvement in the control of the write current supplied to a write head of a magnetic memory.
It is still another object of the invention to provide an improvement in the control of overshoot in the write driver current waveform from a read/write head controller used in connection with hard disk drives.
It is still yet another object of the invention to provide programmable active damping of the write driver output current waveform from a read/write head controller used in connection with hard disk drives.
These and other objects of the invention are achieved by controlled damping of the write driver output current prior to the write driver output stage, thus minimizing output parasitics and configured in such a way that it becomes process and temperature insensitive. In the present invention, overshoot damping is provided by a combination of passive damping and active damping so as to provide a minimum base level of damping while additionally providing a programmable damping feature. Passive damping is provided by shunting a resistor across the write driver output terminals, while active damping is provided by sinking, i.e., subtracting, a precise amount of current, for a predetermined duration, at the beginning of each transition of a bipolar write driver output current fed to the write head of a hard disk drive.
Further scope of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood, however, that the detailed description and the specific example, while indicating the preferred embodiment of the invention, is provided by way of illustration only, since various changes, alterations and modifications coming within the spirit and scope of the invention will become apparent to those skilled in the art from the detailed description.
The present invention will become more fully understood from the detailed description provided hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not meant to be limitative of the present invention, and wherein:
Referring now to the drawings and more particularly to
Referring now to
Further as shown in
The digital control register 38 provides two outputs, namely: a 5 bit digital control signal on bus 46 to a writer current digital to analog converter (DAC) 48 and a 2 bit digital control signal on bus 50 to a damping current digital to analog converter (DAC) 52.
A current reference generator 54 is also shown in
In operation, current is made to flow back and forth through the write head 24 by the four switches 27, 28, 29 and 30 in response to the data being written. For example, in one direction the DATA control signal closes switches 27 and 30, the other two 28 and 29 remaining open, while in the other direction {overscore (DATA)} control signal operates to close switches 28 and 29, with switches 27 and 30 remaining open. Passive damping is provided by the resistor 26.
Additionally, active damping is also provided in accordance with this invention by sinking, i.e. subtracting, a precise amount of current IREFD from the writer reference current IREFW at the summing junction 64 and generating a composite writer current IWRITE for a precise duration as controlled by the closure of the damping switch 68 in accordance with the DATA and {overscore (DATA)} signals fed to the damping switch control circuit 44.
A more complete understanding will be had by a consideration of FIG. 3. Referring now to
The damping switch control circuit 44 generates a control pulse for operating the damping switch 68 at the beginning of every transition of the DATA and {overscore (DATA)} signals. The amount of damping reference current IREFD subtracted from the writer reference current IREFW varies the amount of overshoot in the writer output current waveform 70 shown in FIG. 3. Thus the solid and dashed portions of the IREFD and IWRITE waveforms 76 and 78 determine the amount of overshoot in the writer output current as shown by the solid and dashed waveform portions 80 and 82 of the waveform 70. The amount of damping of the overshoot is controlled by how much damping current IREFD is subtracted from the write current IREFW which, in turn, is controlled by the damping current DAC 52, thus providing programmability.
The reference current generator 54 which provides a reference current IREF for both the write current DAC 48 and the damping current DAC 52 is designed in such a way that the reference current IREF which feeds the damping current DAC 52 is proportional to the value of the damping resistor RDAMP 26 across write head 24. As the value of resistor 26 increases, the amount of current IREFD subtracted from IREFW also increases, and as a result, the amount of damping remains constant. In this way, sensitivity to manufacturing and temperature variation in the damping control circuitry is minimized.
Thus, by reducing the writer current IWRITE briefly during output current transition by subtracting a damping reference current IREFD therefrom, the rise time of the output current 70 supplied to the write head 24, as shown in
Having thus shown and described what is at present considered to be the preferred embodiment of the invention, it should be noted that the same has been made by way of illustration and not limitation. Accordingly, all modifications and alterations coming within the scope of the invention as set forth in the appended claims are herein meant to be included.
Ziemer, Craig B., Koenig, Reed H.
Patent | Priority | Assignee | Title |
6914738, | May 31 2002 | Kabushiki Kaisha Toshiba | Apparatus and method for controlling write current supplied to head |
6975473, | Sep 03 2002 | Texas Instruments Incorporated | Power efficient overshoot protection during an operating mode transition |
7110204, | Jul 22 2004 | Texas Instruments Incorporated | Process-insensitive write current generation for a HDD preamplifier writer equipped with parallel output resistive damping |
8310780, | Jul 20 2010 | International Business Machines Corporation | Method and apparatus for bipolar servo marks writing with high output |
8699161, | Mar 09 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Storage device having write signal with multiple-slope data transition |
9111561, | Oct 28 2014 | Western Digital Technologies, INC | Magnetic recording disk drive with write current overshoot amplitude (OSA) responsive to data transitions |
Patent | Priority | Assignee | Title |
6246269, | Apr 06 1998 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Programmable damping for write circuits |
6246533, | Jul 13 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Programmable write driver circuit for writing information to a magnetic storage media |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 28 2000 | ZIEMER, CRAIG B | Lucent Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010944 | /0634 | |
Jun 28 2000 | KOENIG, REED H | Lucent Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010944 | /0634 | |
Oct 23 2000 | Agere Systems Guardian Corp. | (assignment on the face of the patent) | / | |||
Jan 30 2001 | Lucent Technologies Inc | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012528 | /0863 | |
Aug 22 2002 | Agere Systems Guardian Corp | AGERE Systems Inc | MERGER SEE DOCUMENT FOR DETAILS | 033639 | /0751 | |
Jul 30 2012 | AGERE Systems Inc | Agere Systems LLC | CERTIFICATE OF CONVERSION | 033663 | /0948 | |
May 06 2014 | Agere Systems LLC | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
May 06 2014 | LSI Corporation | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
Aug 04 2014 | Agere Systems LLC | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035365 | /0634 | |
Feb 01 2016 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | BANK OF AMERICA, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 037808 | /0001 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Agere Systems LLC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | LSI Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Jan 19 2017 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 041710 | /0001 | |
May 09 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MERGER SEE DOCUMENT FOR DETAILS | 047195 | /0026 | |
Sep 05 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE OF MERGER PREVIOUSLY RECORDED ON REEL 047195 FRAME 0026 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 047477 | /0423 | |
Aug 26 2020 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | BROADCOM INTERNATIONAL PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053771 | /0901 |
Date | Maintenance Fee Events |
Jul 14 2003 | ASPN: Payor Number Assigned. |
Oct 25 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 23 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 02 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 30 2005 | 4 years fee payment window open |
Oct 30 2005 | 6 months grace period start (w surcharge) |
Apr 30 2006 | patent expiry (for year 4) |
Apr 30 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 30 2009 | 8 years fee payment window open |
Oct 30 2009 | 6 months grace period start (w surcharge) |
Apr 30 2010 | patent expiry (for year 8) |
Apr 30 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 30 2013 | 12 years fee payment window open |
Oct 30 2013 | 6 months grace period start (w surcharge) |
Apr 30 2014 | patent expiry (for year 12) |
Apr 30 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |